Cool- and Warm-Season Turfgrass Irrigation with Subsurface Drip and Sprinkler Methods Using Different Water Management Strategies and Tools
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The healthiest and the best visually appealing turf was maintained at optimum soil moisture levels (I30) in all main and sub-treatments. At this irrigation threshold, max and min amounts of irrigation water was applied in SI CS I30 treatment (523.5 mm) and SDI WS I30 treatment (298.6 mm), respectively. In other words, CS turf under SI method required 75% more water than WS turf under SDI method.
- The target of sustainable water saving has been proven and irrigation water conservation of about 30% was achieved with SDI. The main reasons of water saving in SDI were low evaporation from soil surface and no wind effect.
- Not only the irrigation method selected, but also the turf type, affected the seasonal amount of irrigation water. WS turf required up to 40% less water than CS turf mix. In addition, the clipping range is much higher than CS turf mix. However, WS turf cannot maintain its green appearance all year round, provided that the ambient temperature drops to 15–18 °C and below. Therefore, the use CS turf may be recommended for landscaping with I50 treatment where 12 months green is targeted. If the green visual characteristics are desired only in the summer months, it can be recommended to use WS turf and apply the I70 treatment.
- I30 treatment provided the best visual quality with the highest water consumption. However, in the regions with limited water resources, I50 treatment for CS and I70 treatment for WS can be suggested for acceptable visual quality, with lower water consumption and less frequently clipping, if some sacrifice is considered for color and quality.
- When evaporation from Class A Pan was used in irrigation scheduling, the irrigation interval could be 5 days and 10 days for CS and WS, respectively. Totals of 60% and 30% of evaporated water from class A pan can be applied as irrigation water amount via SI method for CS and WS, respectively. Under the SDI method, only 0.50 Epan and 0.25 Epan are enough as the amount of irrigation water for CS and WS, respectively.
- The average CWSI values just before irrigation for I30, I50, I70 treatments in CS plots were found to be 0.24, 0.50 and 0.70, respectively. The same values for WS plots were 0.22, 0.42 and 0.55 in I30, I50, I70 treatments, respectively. According to these results, it can be said that CWSI is a valuable tool for monitoring and quantifying water stress and scheduling irrigations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fader, M.; Giupponi, C.; Burak, S.; Dakhlaoui, H.; Koutroulis, A.; Lange, M.A.; Llasat, M.C.; Pulido-Velazquez, D.; Sanz-Cobeña, A.; Grillakis, M.; et al. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future; First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; UNEP/MAP: Marseille, France, 2020; pp. 184–236. [Google Scholar]
- Serena, M.; Velasco-Cruz, C.; Friell, J.; Schiavon, M.; Sevostianova, M.; Beck, L.; Sallenave, R.; Leinauer, B. Irrigation scheduling technologies reduce water use and maintain turfgrass quality. J. Agron. 2020, 112, 3456–3469. [Google Scholar] [CrossRef]
- Hatfield, J. Turfgrass and climate change. J. Agron. 2017, 109, 1708–1718. [Google Scholar] [CrossRef] [Green Version]
- Camp, C.R. Subsurface drip irrigation: A review. ASAE Pap. 1998, 41, 1353–1367. [Google Scholar] [CrossRef]
- Suarez-Rey, E.; Choi, C.Y.; Waller, P.M.; Kopec, D.M. Comparison of subsurface drip irrigation and sprinkler irrigation for Bermuda grass turf in Arizona. Trans. ASAE 2000, 43, 631–640. [Google Scholar] [CrossRef]
- Pinnix, G.D.; Miller, G.L. Comparing evapotranspiration rates of tall fescue and bermudagrass in North Carolina. Agric. Water Manag. 2019, 223, 105725. [Google Scholar] [CrossRef]
- Milesi, C.; Running, S.W.; Elvidge, C.D.; Dietz, J.B.; Tuttle, B.T.; Nemani, R.R. Mapping and modeling the biogeochemical cycling of turfgrasses in the United States. Environ. Manag. 2005, 36, 426–438. [Google Scholar] [CrossRef]
- Leinauer, B.; Smeal, D. Turfgrass Irrigation; New Mexico State University Circular 660; College of Agricultural, Consumer and Environmental Sciences: Urbana, IL, USA, 2012; pp. 1–12. [Google Scholar]
- Kim, K.S.; Beard, J.B. Comparative turfgrass evapotranspiration rates and associated plant morphological characteristics. Crop Sci. 2010, 28, 328–331. [Google Scholar] [CrossRef]
- Carrow, R.N. Drought resistance aspects of turfgrasses in the southeast: Evapotranspiration and crop coefficients. Crop Sci. 1995, 35, 1685–1690. [Google Scholar] [CrossRef]
- Wherley, B.; Dukes, M.D.; Cathey, S.; Miller, G.; Sinclair, T. Consumptive water uses and crop coefficients for warm-season turfgrass species in the Southeastern United States. Agric. Water Manag. 2015, 156, 10–18. [Google Scholar] [CrossRef]
- Amgain, N.R.; Harris, D.K.; Thapa, S.B.; Martin, D.L.; Wu, Y.; Moss, J.Q. Evapotranspiration rates of turf bermudagrasses under non-limiting soil moisture conditions in Oklahoma. Crop Sci. 2018, 58, 1409–1415. [Google Scholar] [CrossRef]
- Haghverdi, A.; Reiter, M.; Sapkota, A.; Singh, A. Hybrid Bermudagrass and tall fescue turfgrass irrigation in Central California: I. Assessment of visual quality, soil moisture and performance of an ET-based smart controller. Agronomy 2021, 11, 1666. [Google Scholar] [CrossRef]
- Burgin, H.R. Hybrid Bermudagrass and Kentucky Bluegrass Response Under Deficit Irrigation in a Semi-Arid, Cool Season Climate. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2021. [Google Scholar]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr. Normalizing the stress- degree- day parameter for environmental variability. J. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Jalali-Farahani, H.R.; Slack, D.C.; Kopec, D.M.; Matthias, A.D.; Brown, P.W. Evaluation of resistances for bermudagrass turf crop water stress index models. J. Agron. 1994, 86, 574–581. [Google Scholar] [CrossRef]
- Bijanzadeh, E.; Naderi, R.; Emam, Y. Determination of crop water stress index for irrigation scheduling of turfgrass (Cynodon dactylon L. Pers.) under drought conditions. J. Plant Physiol. 2013, 3, 13–22. [Google Scholar]
- Emekli, Y.; Baştuğ, R.; Büyüktaş, D.; Emekli, N.Y. Evaluation of a crop water stress index for irrigation scheduling of bermudagrass. Agric. Water Manag. 2007, 90, 205–212. [Google Scholar] [CrossRef]
- U.S. Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils; Handbook 60; U.S. Government Printing Office: Washington, DC, USA, 1954.
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Heerman, D.F. Evapotranspiration in Irrigation Management. In Proceedings of the National Conference on Advance in Evapotranspiration, Chicago, IL, USA, 16–17 December 1985. [Google Scholar]
- Brede, A.D.; Duich, J.M. Establishment characteristics of Kentucky bluegrass-perennial ryegrass turf mixtures affected by seeding rate and ratio. J. Agron. 1984, 76, 875–879. [Google Scholar] [CrossRef]
- Avcıoğlu, R. Çim Tekniği, Yeşil Alanların Ekimi, Dikimi ve Bakımı; Ege Üniversitesi Yayınları: Bornova, İzmir, 1997. (In Turkish) [Google Scholar]
- Kopec, D.M.; Umeda, K. Mowing Turfgrasses in the Desert. Available online: https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1681-2015.pdf (accessed on 22 October 2022).
- Zhang, H.; Owesis, T. Water–yield relations and optimal irrigation scheduling o wheat in the Mediterranean Region. Agric. Water Manag. 1999, 38, 195–211. [Google Scholar] [CrossRef]
- Synder, G.H.; Burt, E.O. The potential of subsurface irrigation for reducing water usage in turfgrass. Rasen Grünfl. Begrün. 1980, 11, 31–35. [Google Scholar]
- Esmailpourmoghadam, E.; Salehi, H. Tall fescue is a super turfgrass: Tolerance to shade conditions under deficit irrigation. J. Saudi Soc. Agric. Sci. 2021, 20, 290–301. [Google Scholar]
- Hejl, R.W.; Wherley, B.G.; Fontanier, C.H. Long-term performance of warm-season turfgrass species under municipal irrigation frequency restrictions. Hortscience 2021, 56, 1221–1225. [Google Scholar] [CrossRef]
- Sandor, D. Water Conservation Practices for Irrigation of Turfgrass Lawns. Doctoral Thesis, University of Arkansas, Fayetteville, NC, USA, 2019. [Google Scholar]
- Throssell, C.S.; Carrow, R.N.; Milliken, G.A. Canopy temperature based irrigation scheduling indices for Kentucky bluegrass turf. Crop Sci. 1987, 27, 126–131. [Google Scholar] [CrossRef]
- Idso, S.B. Non-water stressed baselines: A key to monitoring and interpreting plant water stress. J. Agric. Meteorol. 1982, 27, 59–77. [Google Scholar] [CrossRef]
- Jalali-Farahani, H.R.; Slack, D.C.; Kopec, D.M.; Matthias, A.D. Crop water stress index models for bermudagrass turf: A comparison. J. Agron. 1993, 85, 1210–1217. [Google Scholar] [CrossRef]
- Jackson, R.D. Canopy Temperature and Crop Water Stress. In Advances in Irrigation; Hillel, D., Ed.; Academic Press: New York, NY, USA, 1982; pp. 43–85. [Google Scholar]
- Alves, I.; Pereira, L.S. Non-water stressed baselines for irrigation scheduling with infrared thermometers, a new approach. Irrig. Sci. 2000, 19, 101–106. [Google Scholar] [CrossRef]
- Garrot, D.J.; Kilby, M.W.; Fangmeier, D.D.; Husman, S.H.; Ralowicz, A.E. Production, growth, and nut quality in pecans under water-stress based on the crop water-stress index. J. Am. Soc. Hortic. Sci. 1993, 118, 694–698. [Google Scholar] [CrossRef] [Green Version]
- Irmak, S.; Haman, D.Z.; Baştuğ, R. Determination of crop water stress index for irrigation timing and yield estimation of corn. J. Agron. 2000, 92, 1221–1227. [Google Scholar] [CrossRef]
- Alderfasi, A.A.; Nielsen, D. Use of water stress index for monitoring water status and scheduling irrigation in wheat. Agric. Water Manag. 2001, 47, 69–75. [Google Scholar] [CrossRef]
- Cremona, M.V.; Stützel, H.; Kage, H. Irrigation scheduling of kholrabi (Brassica oleracea var. Gongylodes) using crop water stress index. Hort. Sci. 2004, 39, 276–279. [Google Scholar]
- Orta, A.H.; Erdem, Y.; Erdem, T. Crop water stress index for watermelon. Sci. Hort. 2003, 98, 121–130. [Google Scholar] [CrossRef]
Climatic Parameters | Months | Annual Average | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | May | June | July | August | September | October | November | December | |||
Long term (1997–2016) | Mean temperature (°C) | 4.70 | 5.40 | 7.30 | 11.80 | 16.80 | 21.30 | 23.80 | 23.80 | 20.00 | 15.40 | 11.00 | 7.10 | 14.00 |
Sunshine duration (h/day) | 2.40 | 3.20 | 4.10 | 5.40 | 7.40 | 9.60 | 9.50 | 9.00 | 7.20 | 4.50 | 3.20 | 2.30 | 67.68 | |
Average precipitation days | 12.20 | 10.50 | 10.60 | 9.30 | 8.20 | 7.20 | 3.60 | 2.50 | 4.60 | 7.60 | 9.50 | 12.10 | 97.90 | |
Monthly precipitation (mm) | 68.30 | 54.30 | 54.70 | 40.70 | 36.90 | 37.90 | 22.50 | 13.20 | 33.90 | 61.70 | 75.30 | 81.40 | 580.80 | |
Mean relative humidity (%) | 84.00 | 81.60 | 80.80 | 77.80 | 75.00 | 72.50 | 69.00 | 70.10 | 74.60 | 80.40 | 83.90 | 83.10 | 77.70 | |
Average wind speed (m/s) | 3.00 | 3.10 | 2.80 | 2.30 | 2.20 | 2.20 | 2.60 | 2.70 | 2.60 | 2.70 | 2.70 | 3.10 | 2.66 | |
Evaporation (mm) | - | - | - | 62.40 | 112.40 | 138.10 | 176.80 | 170.20 | 113.20 | 67.80 | 22.60 | 9.20 | 872.70 | |
Year of 2017 | Mean temperature (°C) | 1.71 | 5.86 | 8.70 | 10.75 | 16.20 | 21.14 | 23.36 | 23.86 | 21.01 | 14.34 | 10.21 | 6.14 | 13.60 |
Mean monthly precipitation (mm) | 115.40 | 46.00 | 41.60 | 31.80 | 54.00 | 38.00 | 78.80 | 15.60 | 16.80 | 62.40 | 42.70 | 113.50 | 656.6 | |
Mean relative humidity (%) | 83.48 | 79.08 | 79.65 | 72.07 | 74.18 | 75.20 | 66.73 | 67.61 | 65.58 | 76.51 | 80.11 | 79.20 | 75.00 | |
Average wind speed (m/s) | 2.90 | 2.40 | 2.10 | 1.70 | 1.90 | 1.30 | 1.90 | 1.90 | 1.60 | 1.30 | 3.40 | 3.20 | 2.13 | |
Evaporation (mm) a | - | - | - | - | - | - | 72.40 b | 220.60 | 157.70 | - | - | - | - | |
Reference ET (mm) | - | - | - | - | - | - | 51.26 b | 144.46 | 108.00 | - | - | - | - | |
Year of 2018 | Mean temperature (°C) | 5.69 | 6.04 | 8.60 | 14.16 | 18.59 | 21.69 | 24.36 | 25.20 | 20.60 | 15.92 | 11.45 | 5.43 | 14.81 |
Mean monthly precipitation (mm) | 52.90 | 58.10 | 83.50 | 26.80 | 80.80 | 65.00 | 39.00 | 1.40 | 120.20 | 29.60 | 75.80 | 105.00 | 738.10 | |
Mean relative humidity (%) | 84.93 | 91.62 | 86.15 | 63.65 | 79.61 | 75.97 | 72.60 | 68.96 | 75.64 | 80.99 | 84.72 | 89.77 | 79.56 | |
Average wind speed (m/s) | 3.64 | 4.84 | 4.16 | 3.94 | 1.59 | 1.50 | 1.27 | 2.06 | 1.83 | 1.70 | 2.40 | 2.50 | 2.62 | |
Evaporation (mm) a | - | - | - | - | 105.21 | 190.25 | 221.45 | 283.23 | 66.10 c | - | - | - | - | |
Reference ET (mm) | - | - | - | - | 96.41 | 130.80 | 150.97 | 151.59 | 67.60 c | - | - | - | - |
Irrigation Method | Turf Type | Irrigation Threshold | Irrigation Number | Irrigation Water Amount (mm) | Rainfall (mm) | Evaporation (mm) | Seasonal ETc (mm) |
---|---|---|---|---|---|---|---|
2017 | |||||||
SI | CS | I30 | 30 | 501.6 | 53.3 | 457.8 | 510.5 |
I50 | 11 | 295.8 | 384.9 | ||||
I70 | 7 | 238.5 | 317.8 | ||||
WS | I30 | 24 | 416.7 | 488.8 | |||
I50 | 8 | 229.2 | 324.4 | ||||
I70 | 4 | 140.7 | 211.0 | ||||
SDI | CS | I30 | 24 | 324.2 | 53.3 | 457.8 | 382.7 |
I50 | 12 | 267.1 | 343.9 | ||||
I70 | 7 | 195.7 | 260.2 | ||||
WS | I30 | 22 | 298.6 | 357.9 | |||
I50 | 9 | 203.6 | 260.9 | ||||
I70 | 4 | 117.1 | 188.4 | ||||
2018 | |||||||
SI | CS | I30 | 36 | 523.5 | 290.0 | 874.8 | 754.8 |
I50 | 23 | 506.0 | 636.0 | ||||
I70 | 11 | 275.3 | 521.9 | ||||
WS | I30 | 31 | 423.8 | 590.1 | |||
I50 | 20 | 368.2 | 560.7 | ||||
I70 | 8 | 186.2 | 521.5 | ||||
SDI | CS | I30 | 26 | 371.2 | 290.0 | 874.8 | 695.2 |
I50 | 17 | 349.3 | 609.3 | ||||
I70 | 11 | 273.1 | 498.1 | ||||
WS | I30 | 24 | 321.2 | 561.2 | |||
I50 | 15 | 310.5 | 555.5 | ||||
I70 | 8 | 165.8 | 441.1 |
Irrigation Method | Turf Type | Irrigation Threshold | Vegetation Height (cm) | Surface Coverage | Color | Quality |
---|---|---|---|---|---|---|
SDI | CS | I30 | 13.49 b1 | 8.67 b | 9.00 a | 8.70 a |
I50 | 13.18 c | 7.28 c | 8.06 b | 8.67 a | ||
I70 | 12.68 d | 7.06 d | 7.22 c | 8.08 c | ||
WS | I30 | 12.35 e | 9.00 a | 6.44 e | 8.26 bc | |
I50 | 12.02 g | 9.00 a | 6.22 e | 8.59 a | ||
I70 | 12.16 f | 9.00 a | 6.17 e | 8.26 bc | ||
SI | CS | I30 | 15.32 a | 8.61 b | 9.00 a | 8.61 a |
I50 | 12.00 g | 7.11 d | 6.61 d | 5.39 d | ||
I70 | 9.17 ı | 6.00 e | 4.06 f | 4.61 e | ||
WS | I30 | 12.77 d | 9.00 a | 6.22 e | 8.28 bc | |
I50 | 10.94 h | 9.00 a | 6.00 e | 8.67 a | ||
I70 | 10.84 h | 9.00 a | 5.94 e | 8.33 b | ||
LSD | 0.11 ** | 0.11 ** | 0.32 ** | 0.21 ** | ||
SDI | 12.65 a | 8.33 a | 7.19 a | 8.43 a | ||
SI | 11.84 b | 8.12 b | 6.31 b | 7.32 b | ||
LSD | 0.06 ** | 0.03 ** | 0.12 ** | 0.14 ** | ||
CS | 12.64 a | 7.46 b | 7.33 a | 7.34 b | ||
WS | 11.85 b | 9.00 a | 6.17 b | 8.40 a | ||
LSD | 0.06 ** | 0.03 ** | 0.14 ** | 0.14 ** | ||
I30 | 13.48 a | 8.82 a | 7.67 a | 8.46 a | ||
I50 | 12.04 b | 8.10 b | 6.72 b | 7.83 b | ||
I70 | 11.21 c | 7.76 c | 5.85 c | 7.32 c | ||
LSD | 0.06 ** | 0.06 ** | 0.16 ** | 0.10 ** |
Irrigati-on Method | Turf Type | Irrigati- on Thresh-old | Vegetati-on Height (cm) | Surface Covera-ge | Color | Quality | Fresh Yield (gm−2) | Dry Matter Yield (gm−2) | IWP (gm−2 mm−1) | WP (gm−2 mm−1) |
---|---|---|---|---|---|---|---|---|---|---|
SDI | CS | I30 | 488.33 d1 | 8.49 c | 8.98 a | 8.30 c | 488.33 d | 52.40 ef | 0.14 e | 0.08 ef |
I50 | 461.00 e | 7.19 d | 7.85 b | 7.10 d | 461.00 e | 39.37 g | 0.11 f | 0.06 fg | ||
I70 | 428.00 f | 6.55 f | 5.98 d | 6.03 e | 428.00 f | 29.68 h | 0.11 f | 0.06 fgh | ||
WS | I30 | 1200.00 a | 9.00 a | 6.03 d | 9.00 a | 1200.00a | 152.96 a | 0.48 b | 0.27 a | |
I50 | 1161.00 b | 9.00 a | 6.03 d | 9.00 a | 1161.00b | 131.39 b | 0.42 c | 0.24 b | ||
I70 | 1043.67 c | 8.93 a | 5.90de | 8.87ab | 1043.67c | 101.17 c | 0.61 a | 0.23 b | ||
SI | CS | I30 | 160.13 g | 8.80 b | 8.03 b | 8.57 bc | 160.13 g | 40.50 g | 0.08 g | 0.05 gh |
I50 | 79.77 h | 6.77 e | 7.63 c | 5.57 f | 79.77 h | 29.73 h | 0.06 h | 0.05 h | ||
I70 | 65.57 h | 5.90 g | 5.70 f | 5.23 f | 65.57 h | 24.70 h | 0.09 g | 0.05 h | ||
WS | I30 | 157.33 g | 9.00 a | 5.73 ef | 8.57 bc | 157.33 g | 55.70 de | 0.13 e | 0.09 d | |
I50 | 150.57 g | 9.00 a | 5.60 f | 8.77 ab | 150.57 g | 47.40 f | 0.13 ef | 0.08 de | ||
I70 | 154.37 g | 9.00 a | 5.77 ef | 8.53 bc | 154.37 g | 61.83 d | 0.33 d | 0.12 c | ||
LSD | 24.06 ** | 0.17 ** | 0.20 ** | 0.35 ** | 24.06 ** | 6.41 ** | 0.02 * | 0.01 ** | ||
SDI | 797.00 a | 8.20 a | 6.80 a | 8.05 a | 797.00 a | 84.49 a | 0.31 a | 0.16 a | ||
SI | 127.96 b | 8.08 b | 6.39 b | 7.54 b | 127.96 b | 43.31 b | 0.14 b | 0.07 b | ||
LSD | 13.80 ** | 0.07 ** | 0.08 ** | 0.15 ** | 13.80 ** | 6.15 ** | 0.01 ** | 0.01 ** | ||
CS | 280.47 b | 7.28 b | 7.36 a | 6.80 b | 280.47 b | 36.06 b | 0.10 b | 0.06 b | ||
WS | 644.49 a | 8.99 a | 5.82 b | 8.79 a | 644.49 a | 91.74 a | 0.35 a | 0.17 a | ||
LSD | 11.00 ** | 0.07 ** | 0.08 ** | 0.11 ** | 11.00 ** | 4.44 ** | 0.01 ** | 0.01 ** | ||
I30 | 501.45 a | 8.82 a | 7.16 a | 8.61 a | 501.45 a | 75.39 a | 0.21 b | 0.12 a | ||
I50 | 463.08 b | 7.99 b | 6.78 b | 7.61 b | 463.08 b | 61.97 b | 0.18 c | 0.11 b | ||
I70 | 422.90 c | 7.60 c | 5.84 c | 7.17 c | 422.90 c | 54.34 c | 0.29 a | 0.11 b | ||
LSD | 12.03 ** | 0.09 ** | 0.10 ** | 0.18 ** | 12.03 ** | 3.2 ** | 0.01 ** | 0.01 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orta, A.H.; Todorovic, M.; Ahi, Y. Cool- and Warm-Season Turfgrass Irrigation with Subsurface Drip and Sprinkler Methods Using Different Water Management Strategies and Tools. Water 2023, 15, 272. https://doi.org/10.3390/w15020272
Orta AH, Todorovic M, Ahi Y. Cool- and Warm-Season Turfgrass Irrigation with Subsurface Drip and Sprinkler Methods Using Different Water Management Strategies and Tools. Water. 2023; 15(2):272. https://doi.org/10.3390/w15020272
Chicago/Turabian StyleOrta, Abdül Halim, Mladen Todorovic, and Yeşim Ahi. 2023. "Cool- and Warm-Season Turfgrass Irrigation with Subsurface Drip and Sprinkler Methods Using Different Water Management Strategies and Tools" Water 15, no. 2: 272. https://doi.org/10.3390/w15020272