Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Graphene Oxide and Graphene Oxide-Based Magnetic Nanoadsorbent
2.2. Adsorbent Characterization
2.3. Adsorption Procedure and Mathematical Modeling
3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.2. X-ray Diffraction (XRD)
3.3. Scanning Electron Microscopy (SEM)
3.4. Raman Spectroscopy
3.5. Vibrating Sample Magnetometer (VSM)
3.6. Captopril Adsorption
3.6.1. Effect of Magnetite Incorporation onto Graphene Oxide Surface
3.6.2. Effect of Initial Concentration of CPT and Adsorbent Dosage
3.6.3. Effect of pH and Adsorption Mechanisms
3.6.4. Effect of Ionic Strength
3.6.5. Kinetic Modeling
3.6.6. Adsorption Equilibrium Isotherms and Thermodynamic Study
3.6.7. Regeneration and Reuse
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duarte, E.D.V.; Oliveira, M.G.; Spaolonzi, M.P.; Costa, H.P.S.; da Silva, T.L.; da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Pharmaceutical Products from Aqueous Solutions on Functionalized Carbon Nanotubes by Conventional and Green Methods: A Critical Review. J. Clean. Prod. 2022, 372, 133743. [Google Scholar] [CrossRef]
- Ramos, S.; Homem, V.; Alves, A.; Santos, L. A Review of Organic UV-Filters in Wastewater Treatment Plants. Environ. Int. 2016, 86, 24–44. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging Pollutants in the Environment: Present and Future Challenges in Biomonitoring, Ecological Risks and Bioremediation. N. Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, G.; Shu, H.; Cui, X.; Luo, Z.; Chang, C.; Zeng, A.; Zhang, J.; Fu, Q. Facile Covalent Preparation of Carbon Nanotubes / Amine-Functionalized Fe3O4 Nanocomposites for Selective Extraction of Estradiol in Pharmaceutical Industry Wastewater. J. Chromatogr. A 2021, 1638, 461889. [Google Scholar] [CrossRef]
- Xi, L.; Zhang, X.; Chen, Y.; Peng, J.; Liu, M.; Huo, D.; Li, G.; He, H. A Fluorescence Turn-on Strategy to Achieve Detection of Captopril Based on Ag Nanoclusters. Chem. Phys. Lett. 2022, 807, 140085. [Google Scholar] [CrossRef]
- Qu, F.; Zhu, G.; Huang, S.; Li, S.; Qiu, S. Effective controlled release of captopril by silylation of mesoporous MCM-41. ChemPhysChem 2006, 7, 400–406. [Google Scholar] [CrossRef]
- Mahmoud, W.M.M.; Kümmerer, K. Captopril and Its Dimer Captopril Disulfide: Photodegradation, Aerobic Biodegradation and Identification of Transformation Products by HPLC-UV and LC-Ion Trap-MS(n). Chemosphere 2012, 88, 1170–1177. [Google Scholar] [CrossRef]
- Da Silva, D.M.; Carneiro da Cunha Areias, M. Voltammetric Detection of Captopril in a Commercial Drug Using a Gold-Copper Metal-organic Framework Nanocomposite Modified Electrode. Electroanalysis 2021, 33, 1255–1263. [Google Scholar] [CrossRef]
- Cunha, M.R.; Lima, E.C.; Lima, D.R.; Da Silva, R.S.; Thue, P.S.; Seliem, M.K.; Sheir, F.; Dos Reis, G.S.; Larsson, S.H. Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis. J. Environ. Chem. Eng. 2020, 8, 104506. [Google Scholar] [CrossRef]
- Alayli, A.; Nadaroglu, H.; Turgut, E. Nanobiocatalyst beds with Fenton process for removal of methylene blue. Appl. Water Sci. 2021, 11, 32. [Google Scholar] [CrossRef]
- Oviedo, L.R.; Muraro, P.C.L.; Pavoski, G.; Espinosa, D.C.R.; Ruiz, Y.P.M.; Galembeck, A.; Rhoden, C.R.B.; da Silva, W.L. Synthesis and Characterization of Nanozeolite from (Agro)Industrial Waste for Application in Heterogeneous Photocatalysis. Environ. Sci. Pollut. Res. Int. 2022, 29, 3794–3807. [Google Scholar] [CrossRef] [PubMed]
- Sani, O.N.; Yazdani, M.; Taghavi, M. Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters. J. Water Process Eng. 2019, 32, 100894. [Google Scholar] [CrossRef]
- Erdem, S.; Öztekin, M.; Açıkel, Y.S. Investigation of tetracycline removal from aqueous solutions using halloysite/chitosan nano-composites and halloysite nanotubes/alginate hydrogel beads. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100576. [Google Scholar]
- Ciğeroğlu, Z.; Kazan-Kaya, E.S.; El Messaoudi, N.; Fernine, Y.; Américo-Pinheiro, J.H.P.; Jada, A. Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: Optimization, modeling, and theoretical calculation. J. Mol. Liq. 2022, 369, 120866. [Google Scholar] [CrossRef]
- Silveira, C.C.; Botega, C.S.; Rhoden, C.R.B.; Nunes, M.R.S.; Braga, A.L.; Lenardão, E.J. A Facile Synthesis of α-Phenylchalcogeno(S, Se) α,β-Unsaturated Esters from Ethyl α-Bromo-α-Phenylchalcogeno Acetates. Synth. Commun. 1998, 28, 3371–3380. [Google Scholar] [CrossRef]
- Kasperiski, F.M.; Lima, E.C.; Umpierres, C.S.; Dos Reis, G.S.; Thue, P.S.; Lima, D.R.; Dias, S.L.P.; Saucier, C.; Da Costa, J.B. Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions. J. Clean. Prod. 2018, 197, 919–929. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Anil, A.G.; Kapoor, D.; Khasnabis, S.; Shekar, S.; Pavithra, N.; Samuel, J.; Subramanian, S.; Singh, J.; et al. Adsorption and Detoxification of Pharmaceutical Compounds from Wastewater Using Nanomaterials: A Review on Mechanism, Kinetics, Valorization and Circular Economy. J. Environ. Manag. 2021, 300, 113569. [Google Scholar] [CrossRef]
- El Messaoudi, N.; El Mouden, A.; Fernine, Y.; El Khomri, M.; Bouich, A.; Faska, N.; Ciğeroğlu, Z.; Américo-Pinheiro, J.H.P.; Jada, A.; Lacherai, A. Green synthesis of Ag2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: Characterization, experimental study, modeling, and DFT calculation. Environ. Sci. Pollut. Res. 2022, 29, 1–18. [Google Scholar] [CrossRef]
- Singh, S.; Anil, A.G.; Khasnabis, S.; Kumar, V.; Nath, B.; Adiga, V.; Kumar Naik, T.S.S.; Subramanian, S.; Kumar, V.; Singh, J.; et al. Sustainable Removal of Cr(VI) Using Graphene Oxide-Zinc Oxide Nanohybrid: Adsorption Kinetics, Isotherms and Thermodynamics. Environ. Res. 2022, 203, 111891. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Lan, G.; Qiu, H.; Xu, B.; Xu, Q.; Sun, N.; Zhang, L. Pb(II) Adsorption Characteristics of Magnetic GO-Hydroxyapatite and the Contribution of GO to Enhance Its Acid Resistance. J. Environ. Chem. Eng. 2021, 9, 105310. [Google Scholar] [CrossRef]
- Rhoden, C.R.B.; Bruckmann, F.d.S.; Salles, T.d.R.; Kaufmann Junior, C.G.; Mortari, S.R. Study from the Influence of Magnetite onto Removal of Hydrochlorothiazide from Aqueous Solutions Applying Magnetic Graphene Oxide. J. Water Proc. Eng. 2021, 43, 102262. [Google Scholar] [CrossRef]
- Salles, T.d.R.; Rodrigues, H.d.B.; Bruckmann, F.d.S.; Alves, L.C.S.; Mortari, S.R.; Rhoden, C.R.B. Graphene Oxide Optimization Synthesis for Application on Laboratory of Universidade Franciscana. Discip. Sci. 2020, 21, 15–26. [Google Scholar] [CrossRef]
- Bruckmann, F.d.S.; Zuchetto, T.; Ledur, C.M.; dos Santos, C.L.; da Silva, W.L.; Binotto Fagan, S.; Zanella da Silva, I.; Bohn Rhoden, C.R. Methylphenidate Adsorption onto Graphene Derivatives: Theory and Experiment. New J. Chem. 2022, 46, 4283–4291. [Google Scholar] [CrossRef]
- Bruckmann, F.S.; Schnorr, C.; Oviedo, L.R.; Knani, S.; Silva, L.F.O.; Silva, W.L.; Dotto, G.L.; Bohn Rhoden, C.R. Adsorption and Photocatalytic Degradation of Pesticides into Nanocomposites: A Review. Molecules 2022, 27, 6261. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Chao, H.-P. Thermodynamic Parameters of Cadmium Adsorption onto Orange Peel Calculated from Various Methods: A Comparison Study. J. Environ. Chem. Eng. 2016, 4, 2671–2682. [Google Scholar] [CrossRef]
- Da Rosa Salles, T.; Da Silva Bruckamann, F.; Viana, A.R.; Krause, L.M.F.; Mortari, S.R.; Rhoden, C.R.B. Magnetic nanocrystalline cellulose: Azithromycin adsorption and in vitro biological activity against melanoma cells. J. Polym. Environ. 2022, 30, 2695–2713. [Google Scholar] [CrossRef]
- Cimirro, F.N.; Lima, C.E.; Cunha, M.R.; Dias, S.L.; Thue, P.S.; Mazzocato, A.C.; Dotto, G.L.; Gelesky, M.A.; Pavan, F.A. Removal of pharmaceutical compounds from aqueous solution by novel activated carbon synthesized from lovegrass (Poaceae). Environ. Sci. Pollut. Res. 2020, 27, 21442–21454. [Google Scholar] [CrossRef]
- Kanta, U.-A.; Thongpool, V.; Sangkhun, W.; Wongyao, N.; Wootthikanokkhan, J. Preparations, Characterizations, and a Comparative Study on Photovoltaic Performance of Two Different Types of Graphene/TiO2 Nanocomposites Photoelectrodes. J. Nanomater. 2017, 2017, 2758294. [Google Scholar] [CrossRef] [Green Version]
- Ossonon, B.D.; Bélanger, D. Synthesis and Characterization of Sulfophenyl-Functionalized Reduced Graphene Oxide Sheets. RSC Adv. 2017, 7, 27224–27234. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Bruckmann, F.; Viana, A.R.; Lopes, L.Q.S.; Santos, R.C.V.; Muller, E.I.; Mortari, S.R.; Rhoden, C.R.B. Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1459–1472. [Google Scholar] [CrossRef]
- Bruckmann, F.d.S.; Pimentel, A.C.; Viana, A.R.; Salles, T.d.R.; Krause, L.M.F.; Mortari, S.R.; da Silva, I.Z.; Rhoden, C.R.B. Synthesis, Characterization and Cytotoxicity Evaluation of Magnetic Nanosilica in L929 Cell Line. Discip. Sci. 2020, 21, 1–14. [Google Scholar] [CrossRef]
- Ain, Q.T.; Haq, S.H.; Alshammari, A.; Al-Mutlaq, M.A.; Anjum, M.N. The Systemic Effect of PEG-NGO-Induced Oxidative Stress in Vivo in a Rodent Model. Beilstein J. Nanotechnol. 2019, 10, 901–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Xu, D.; Chen, P.; Yu, Q.; Qiu, H.; Xiong, X. Solvothermal Synthesis of Porous Superparamagnetic RGO@Fe3O4 Nanocomposites for Microwave Absorption. J. Mater. Sci. Mater. Electron. 2019, 30, 17106–17118. [Google Scholar] [CrossRef]
- Kellici, S.; Acord, J.; Ball, J.; Reehal, H.S.; Morgan, D.; Saha, B. A Single Rapid Route for the Synthesis of Reduced Graphene Oxide with Antibacterial Activities. RSC Adv. 2014, 4, 14858–14861. [Google Scholar] [CrossRef]
- Côa, F.; Strauss, M.; Clemente, Z.; Rodrigues Neto, L.L.; Lopes, J.R.; Alencar, R.S.; Souza Filho, A.G.; Alves, O.L.; Castro, V.L.S.S.; Barbieri, E.; et al. Coating Carbon Nanotubes with Humic Acid Using an Eco-Friendly Mechanochemical Method: Application for Cu(II) Ions Removal from Water and Aquatic Ecotoxicity. Sci. Total Environ. 2017, 607–608, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Q.; Gao, X.; Chen, X.; Wang, Y.; Li, W.; Wu, J. Effect of absorbers’ composition on the microwave absorbing performance of hollow Fe3O4 nanoparticles decorated CNTs/graphene/C composites. J. Alloys Compd. 2018, 748, 70–716. [Google Scholar] [CrossRef]
- Hatel, R.; Majdoub, S.E.; Bakour, A.; Khenfouch, M.; Baitoul, M. Graphene Oxide/Fe3O4 Nanorods Composite: Structural and Raman Investigation. J. Phys. Conf. Ser. 2018, 1081, 012006. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, B.; Sarma, S.; Pontsho, M.; Ray, S.C. Tuning of Magnetic Behaviour in Nitrogenated Graphene Oxide Functionalized with Iron Oxide. Diam. Relat. Mater. 2018, 89, 35–42. [Google Scholar] [CrossRef]
- Da Silva Bruckmann, F.; Mafra Ledur, C.; Zanella da Silva, I.; Luiz Dotto, G.; Rodrigo Bohn Rhoden, C. A DFT Theoretical and Experimental Study about Tetracycline Adsorption onto Magnetic Graphene Oxide. J. Mol. Liq. 2022, 353, 118837. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, S.; Tao, E. Magnetic graphene oxide prepared via ammonia coprecipitation method: The effects of preserved functional groups on adsorption property. Inorg. Chem. Commun. 2021, 128, 108603. [Google Scholar] [CrossRef]
- Zeng, K.; Hachem, K.; Kuznetsova, M.; Chupradit, S.; Su, C.H.; Nguyen, H.C.; El-Shafay, A.S. Molecular dynamic simulation and artificial intelligence of lead ions removal from aqueous solution using magnetic-ash-graphene oxide nanocomposite. J. Mol. Liq. 2022, 347, 118290. [Google Scholar] [CrossRef]
- Nuengmatcha, P.; Mahachai, R.; Chanthai, S. Thermodynamic and kinetic study of the intrinsic adsorption capacity of graphene oxide for malachite green removal from aqueous solution. Orient. J. Chem. 2014, 30, 1463. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, A.; Rajabi, S.; Amiri, A.; Fattahizade, M.; Hasani, O.; Lalehzari, A.; Hashemi, M. Adsorption of tetracycline using CuCoFe2O4@ Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: Isotherm, kinetic and thermodynamic study. Arab. J. Chem. 2022, 15, 104014. [Google Scholar] [CrossRef]
- Da Silva Bruckmann, F.; Schnorr, C.E.; Da Rosa Salles, T.; Nunes, F.B.; Baumann, L.; Müller, E.I.; Silva, L.F.O.; Dotto, G.L.; Bohn Rhoden, C.R. Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent. Polymers 2022, 14, 4854. [Google Scholar] [CrossRef]
- Pereira, A.V.; Garabeli, A.A.; Schunemann, G.D.; Borck, P.C. Determination of dissociation constant (Ka) of captopril and nimesulide: Analytical chemistry experiments for undergraduate pharmacy. Quim Nova 2011, 34, 1656–1660. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Chen, T.; Liu, J.; Li, D. Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Adv. 2018, 8, 2616–2621. [Google Scholar] [CrossRef] [Green Version]
- Bruckmann, F.S.; Rossato Viana, A.; Tonel, M.Z.; Fagan, S.B.; Garcia, W.J.D.S.; Oliveira, A.H.D.; Dorneles, L.S.; Mortari, S.R.; Da Silva, W.L.; Da Silva, I.Z.; et al. Influence of magnetite incorporation into chitosan on the adsorption of the methotrexate and in vitro cytotoxicity. Environ. Sci. Pollut. Res. 2022, 29, 70413–70434. [Google Scholar] [CrossRef]
- Ji, L.; Chen, W.; Bi, J.; Zheng, S.; Xu, Z.; Zhu, D.; Alvarez, P.J. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 2010, 29, 2713–2719. [Google Scholar] [CrossRef]
- Liang, J.; Fang, Y.; Luo, Y.; Zeng, G.; Deng, J.; Tan, X.; Tang, N.; Li, X.; He, X.; Feng, C.; et al. Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride. Environ. Sci. Pollut. Res. 2019, 26, 5892–5903. [Google Scholar] [CrossRef]
- Agarry, S.E.; Aworanti, O.A. Kinetics, Isothermal and Thermodynamic Modelling Studies of Hexavalent Chromium Ions Adsorption from Simulated Wastewater onto Parkia biglobosa-Sawdust Derived Acid-Steam Activated Carbon. Appl. J. Envir. Eng. Sci. 2017, 3, 58–76. [Google Scholar]
- De Souza, F.M.; Dos Santos, O.A.A.; Vieira, M.G.A. Adsorption of herbicide 2,4-D from aqueous solution using organo-modified bentonite clay. Environ. Sci. Pollut. Res. 2019, 26, 18329–18342. [Google Scholar] [CrossRef] [PubMed]
- Nunes, F.B.; Da Silva Bruckmann, F.; Da Rosa Salles, T.; Rhoden, C.B.R. Study of phenobarbital removal from the aqueous solutions employing magnetite-functionalized chitosan. Environ. Sci. Pollut. Res. 2022, 29, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Bernal, A.M.; Gomez-Granados, F.; Giraldo, L.; Moreno-Pirajan, J.C. Application of the Sips model to the calculation of maximum adsorption capacity and immersion enthalpy of phenol aqueous solutions on activated carbons. Eur. J. Chem. 2017, 8, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef]
- Gago, D.; Chagas, R.; Ferreira, L.M.; Velizarov, S.; Coelhoso, I. A Novel Cellulose-Based Polymer for Efficient Removal of Methylene Blue. Membranes 2020, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Salvstrini, S.; Ambrosone, L.; Kopinke, F.D. Some mistakes and misinterpretations in the analysis of thermodynamic adsorption data. J. Mol. Liq. 2022, 352, 118762. [Google Scholar] [CrossRef]
- Tran, H.N. Improper Estimation of Thermodynamic Parameters in Adsorption Studies with Distribution Coefficient KD (Qe/Ce) or Freundlich Constant (KF): Considerations from the Derivation of Dimensionless Thermodynamic Equilibrium Constant and Suggestions. Adsorp. Sci. Technol. 2022, 2022, 5553212. [Google Scholar] [CrossRef]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Tran, H.N.; Lima, E.C.; Juang, R.-S.; Bollinger, J.-C.; Chao, H.-P. Thermodynamic Parameters of Liquid–Phase Adsorption Process Calculated from Different Equilibrium Constants Related to Adsorption Isotherms: A Comparison Study. J. Environ. Chem. Eng. 2021, 9, 106674. [Google Scholar] [CrossRef]
- Dotto, G.L.; Moura, J.M.D.; Cadaval, T.R.S.; Pinto, L.A.D.A. Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem. Eng. J. 2013, 214, 8–16. [Google Scholar] [CrossRef]
- Li, Z.; Wu, D.; Liang, Y.; Xu, F.; Fu, R. Facile Fabrication of Novel Highly Microporous Carbons with Superior Size-Selective Adsorption and Supercapacitance Properties. Nanoscale 2013, 5, 10824–10828. [Google Scholar] [CrossRef] [PubMed]
Removal Percentage and Adsorption Capacity | Mathematical Expression | Parameters | |
---|---|---|---|
Removal percentage | (1) | C0 is the initial concentration of CPT (mg L−1); Ce is the concentration of CPT at equilibrium (mg L−1), qe is the adsorption capacity at equilibrium; V is the volume (L); m is the mass of adsorbent material (g) | |
Adsorption capacity | (2) | ||
Isotherm models | Mathematical expression | Parameters | |
Langmuir | (3) | qmax- maximum amount adsorbed (mg g−1); KL- is the Langmuir isotherm constant (L g−1) | |
Freundlich | (4) | KF- Freundlich constant ((mg g−1) (L mg−1)−1/n); n- heterogeneity factor | |
Sips | (5) | KSips- Sips isotherm constant (L mg−1); qSips- maximum amount adsorbed (mg g−1); nSips- heterogeneity factor | |
Kinetic models | Mathematical expression | Parameters | |
Pseudo-first-order | (6) | k1- pseudo-first-order kinetic constant (min−1) | |
Pseudo-second-order | (7) | k2- pseudo-second-order kinetic constant (mg g−1 min−1) | |
Elovich | (8) | α- initial adsorption rate (mg g−1 min−1); β- desorption constant (g mg−1) | |
Thermodynamic | Mathematical expression | Parameters | |
Gibbs free energy variation (ΔG0) | (9) | R- gas constant (8.314 J mol−1 K−1); T- absolute temperature (K); Kd- thermodynamic equilibrium constant | |
van’t Hoff | (10) | ||
Relationship of Gibbs free energy(ΔG0), Enthalpy (ΔH0) and entropy (ΔS0) variation | (11) | ||
Mathematical modeling | Mathematical expression | Parameters | |
Adjusted coefficient of determination (R2adj) | (12) | qe,exp and qe,pred are the adsorbed amounts obtained from the experiment and the isotherm and kinetic model, respectively; n is the amount of data; k is the number of parameters in the model | |
Sum squares error (SSE) | (13) | ||
Average relative error (ARE) | (14) | ||
Mean square error (MSE) | (15) | qe,exp is the experimental value; qe,pred is the predicted value; n is the number of experimental values; p is the number of parameters according to the model. |
Concentration (mg L−1) | 10 | 25 | 50 | 100 | 200 |
---|---|---|---|---|---|
Pseudo-first-order model (PFO) | |||||
q1 (mg g−1) | 13.44 ± 0.34 a | 45.69 ± 0.97 | 96.06 ± 0.91 | 186.32 ± 1.81 | 386.58 ± 0.60 |
k1 (min−1) | 0.375 ± 0.11 | 0.205 ± 0.04 | 0.606 ± 0.15 | 0.403 ± 0.05 | 0.804 ± 0.05 |
R2 | 0.948 | 0.966 | 0992 | 0.991 | 0.998 |
R2adj | 0.935 | 0.957 | 0.990 | 0.988 | 0.997 |
ARE (%) | 5.67 | 4.28 | 2.09 | 1.96 | 0.25 |
SSE | 0.84 | 6.17 | 5.77 | 6.47 | 2.51 |
MSE (mg g−1)2 | 1.33 | 9.69 | 9.06 | 38.17 | 3.94 |
Pseudo-second-order model (PSO) | |||||
q2 (mg g−1) | 13.59 ± 0.35 | 47.99 ± 0.62 | 97.03 ± 0.87 | 190.11 ± 1.21 | 387.53 ± 0.48 |
k2 (g mg−1 min−1) | 0.049 ± 0.02 | 0.007 ± 0.001 | 0.025 ± 0.01 | 0.005 ± 0.001 | 0.023 ± 0.004 |
R2 | 0.966 | 0.991 | 0.994 | 0.997 | 0.983 |
R2adj | 0.957 | 0.988 | 0.992 | 0.996 | 0.978 |
ARE (%) | 5.04 | 1.97 | 1.82 | 1.11 | 2.59 |
SSE | 0.53 | 1.51 | 3.93 | 7.16 | 16.35 |
MSE (mg g−1)2 | 0.83 | 3.36 | 6.17 | 11.25 | 9.98 |
Elovich model | |||||
α (mg g−1 min−1) | 10.48 ± 0.21 | 15.35 ± 0.59 | 16.62 ± 1.02 | 4.57 ± 0.97 | 3.95 ± 1.02 |
β (g mg−1) | 0.997 ± 0.01 | 0.222 ± 0.05 | 0.273 ± 0.026 | 0.118 ± 0.02 | 0.066 ± 0.002 |
R2 | 0.995 | 0.994 | 0.998 | 0.999 | 0.999 |
R2adj | 0.993 | 0.992 | 0.997 | 0.998 | 0.998 |
ARE (%) | 2.53 | 2.88 | 1.02 | 0.62 | 0.19 |
SSE | 0.14 | 2.14 | 2.41 | 1.81 | 1.20 |
MSE (mg g−1)2 | 0.23 | 2.27 | 4.01 | 2.84 | 2.57 |
Temperature | 20 °C | 30 °C | 40 °C |
---|---|---|---|
Langmuir | |||
qmax (mg g−1) | 101.93 ± 1.76 a | 101.49 ± 3.35 | 99.28 ± 5.96 |
KL (L mg−1) | 0.771 ± 0.46 | 0.43 ± 0.055 | 0.057 ± 0.97 |
R2 | 0.979 | 0.953 | 0.979 |
R2adj | 0.973 | 0.941 | 0.973 |
ARE (%) | 3.82 | 5.69 | 4.92 |
SSE | 15.71 | 26.73 | 8.54 |
MSE (mg g−1)2 | 16.38 | 17.42 | 19.55 |
Freundlich | |||
KF ((mg g−1) (L−1)−1/n | 74.51 ± 2.21 | 5.01 ± 3.32 | 2.61 ± 1.97 |
n | 10.95 ± 3.29 | 45.85 ± 2.05 | 16.54 ± 1.44 |
R2 | 0.986 | 0.997 | 0.997 |
R2adj | 0.982 | 0.995 | 0.997 |
ARE (%) | 3.84 | 1.99 | 1.01 |
SSE | 10.21 | 2.64 | 1.87 |
MSE (mg g−1)2 | 9.77 | 5.67 | 15.43 |
Sips | |||
qs (mg g−1) | 100.41 ± 0.97 | 90.47 ± 1.19 | 70.72 ± 2.56 |
Ks (L mg−1) | 0.444 ± 0.14 | 0.255 ± 0.65 | 0.082 ± 0.001 |
ns | 2.26 ± 1.15 | 3.91 ± 1.74 | 7.88 ± 0.68 |
R2 | 0.998 | 0.999 | 0.999 |
R2adj | 0.997 | 0.998 | 0.999 |
ARE (%) | 1.24 | 1.84 | 0.09 |
SSE | 1.85 | 0.55 | 0.01 |
MSE (mg g−1)2 | 3.41 | 2.48 | 3.01 |
T(K) | Ke | ΔG0 (kJ mol−1) | ΔH0 (kJ mol−1) | ΔS0 (kJ mol−1 K−1) |
---|---|---|---|---|
293.15 | 96476.76 | −27.92 | −64.19 | −0.12 |
303.15 | 55408.95 | −27.52 | ||
313.15 | 17817.78 | −25.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, M.P.; Schnorr, C.; da Rosa Salles, T.; da Silva Bruckmann, F.; Baumann, L.; Muller, E.I.; da Silva Garcia, W.J.; de Oliveira, A.H.; Silva, L.F.O.; Rhoden, C.R.B. Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents. Water 2023, 15, 293. https://doi.org/10.3390/w15020293
de Oliveira MP, Schnorr C, da Rosa Salles T, da Silva Bruckmann F, Baumann L, Muller EI, da Silva Garcia WJ, de Oliveira AH, Silva LFO, Rhoden CRB. Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents. Water. 2023; 15(2):293. https://doi.org/10.3390/w15020293
Chicago/Turabian Stylede Oliveira, Miguel Pereira, Carlos Schnorr, Theodoro da Rosa Salles, Franciele da Silva Bruckmann, Luiza Baumann, Edson Irineu Muller, Wagner Jesus da Silva Garcia, Artur Harres de Oliveira, Luis F. O. Silva, and Cristiano Rodrigo Bohn Rhoden. 2023. "Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents" Water 15, no. 2: 293. https://doi.org/10.3390/w15020293
APA Stylede Oliveira, M. P., Schnorr, C., da Rosa Salles, T., da Silva Bruckmann, F., Baumann, L., Muller, E. I., da Silva Garcia, W. J., de Oliveira, A. H., Silva, L. F. O., & Rhoden, C. R. B. (2023). Efficient Uptake of Angiotensin-Converting Enzyme II Inhibitor Employing Graphene Oxide-Based Magnetic Nanoadsorbents. Water, 15(2), 293. https://doi.org/10.3390/w15020293