Patterns of Recent Changes in Channel Morphology and Flows in the Upper and Middle Odra River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results
3.1. Changes in Water-Stage and Discharge Duration Curves
3.2. Precipitation Variability as a Driver of Hydrological Changes
3.3. Channel Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Williams, M.; Zalasiewicz, J.; Davies, N.; Mazzini, I.; Goiran, J.P.; Kane, S. Humans as the third evolutionary stage of biosphere engineering of rivers. Anthropocene 2014, 7, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Macklin, M.G.; Lewin, J. The rivers of civilization. Quat. Sci. Rev. 2015, 114, 228–244. [Google Scholar] [CrossRef]
- Downs, P.W.; Piégay, H. Catchment-scale cumulative impact of human activities on river channels in the late Anthropocene: Implications, limitations, prospect. Geomorphology 2019, 338, 88–104. [Google Scholar] [CrossRef]
- Kiss, T.; Fiala, K.; Sipos, G.; Szatmári, G. Long-term hydrological changes after various river regulation measures: Are we responsible for flow extremes? Hydrol. Res. 2019, 50, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Searcy, J.K. Flow-duration curves. Manual of hydrology: Part 2, Low-flow techniques. U. S. Geol. Surv. Water Supply Paper 1959, 1542-A, 1–38. [Google Scholar]
- Booker, D.J.; Snelder, T.H. Comparing methods for estimating flow duration curves at ungauged sites. J. Hydrol. 2012, 434–435, 78–94. [Google Scholar] [CrossRef]
- Jurasz, J.; Dąbek, P.B.; Kaźmierczak, B.; Kies, A.; Wdowikowski, M. Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland). Energy 2018, 161, 183–192. [Google Scholar] [CrossRef]
- Mendicino, G.; Senatore, A. Evaluation of parametric and statistical approaches for the regionalization of flow duration curves in intermittent regimes. J. Hydrol. 2013, 480, 19–32. [Google Scholar] [CrossRef]
- Hope, A.; Bart, R. Evaluation of a regionalization approach for daily flow duration curves in central and southern California watersheds. J. Am. Water Resour. Ass. 2012, 48, 123–133. [Google Scholar] [CrossRef]
- Longobardi, A.; Villani, P. A statistical, parsimonious, empirical framework for regional flow duration curve shape prediction in high permeability Mediterranean region. J. Hydrol. 2013, 507, 174–185. [Google Scholar] [CrossRef]
- Banasiak, R.; Krzyżanowski, M.; Gierczak, J.; Wdowikowski, M. Bathymetric Changes, Roughness and Conveyance of a Compound, Regulated by Groynes River Channel during low and High Water Conditions. In River Flow 2014, 1st ed.; Shleiss, A.J., de Cesare, G., Franca, M.J., Pfister, M., Eds.; Taylor and Francis: London, UK, 2014; pp. 369–374. [Google Scholar]
- Banasiak, R.; Krzyżanowski, M. Flood flows in the Odra River in 2010—Quantitative and qualitative assessment of ADCP data. Meteorol. Hydrol. Water Manag. 2015, 3, 11–20. [Google Scholar] [CrossRef]
- Schoor, M.M.; Wolfert, H.R.; Maas, G.J.; Middelkoop, H.; Lambeek, J.J.E. Potential for floodplain rehabilitation based on historical maps and present-day processes along the River Rhine, The Netherlands. Geol. Soc. (London) Spec. Publ. 1999, 163, 123–137. [Google Scholar] [CrossRef]
- Castellarin, A.; Galeati, G.; Brandimarte, L.; Montanari, A.; Brath, A. Regional flow-duration curves: Reliability for ungauged basins. Adv. Water Resour. 2004, 27, 953–965. [Google Scholar] [CrossRef]
- Vogel, R.M.; Fennessey, N.M. Flow-duration curves. I: New interpretation and confidence intervals. J. Water Res. Plan. Man. 1994, 120, 485–504. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Chin, A.; Gaffney, K.; Slota, D. Thresholds of stability in incised “Anthropocene” landscapes. Anthropocene 2013, 2, 27–41. [Google Scholar] [CrossRef]
- Darby, S.E.; Simon, A. Incised River Channels: Processes, Forms, Engineering and Management; Wiley: Chichester, UK, 1999; 452p. [Google Scholar]
- Kondolf, G.M.; Piégay, H.; Landon, N. Channel response to increased and decreased bedload supply from land use change: Contrasts between two catchments. Geomorphology 2002, 45, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Wohl, E. Disconnected Rivers: Linking Rivers to Landscapes; Yale Univ. Press: New Haven, CT, USA, 2004; 320p. [Google Scholar]
- Simon, A.; Rinaldi, M. Disturbance, stream incision, and channel evolution: The roles of excess transport capacity and boundary materials in controlling channel response. Geomorphology 2006, 79, 361–383. [Google Scholar] [CrossRef]
- Rinaldi, M.; Wyżga, B.; Dufour, S.; Bertoldi, W.; Gurnell, A. River processes and implications for fluvial ecogeomorphology: A European perspective. In Treatise on Geomorphology; Shroder, J., Butler, D., Hupp, C.R., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 12, pp. 37–52. [Google Scholar]
- Wyżga, B.; Zawiejska, J.; Radecki-Pawlik, A. Impact of channel incision on the hydraulics of flood flows: Examples from Polish Carpathian rivers. Geomorphology 2016, 272, 10–20. [Google Scholar] [CrossRef]
- Bull, W.B.; Scott, K.M. Impact of mining gravel from urban stream beds in the southwestern United States. Geology 1974, 2, 171–174. [Google Scholar] [CrossRef]
- Peiry, J.L. Channel degradation in the middle Arve River, France. Regul. Rivers Res. Manag. 1987, 1, 183–188. [Google Scholar] [CrossRef]
- Collins, B.; Dunne, T. Gravel transport, gravel harvesting and channel-bed degradation in rivers draining the southern Olympic Mountains, Washington, USA. Environ. Geol. Water Sci. 1989, 13, 213–224. [Google Scholar] [CrossRef]
- Sear, D.A.; Archer, D. Effects of Gravel Extraction on Stability of Gravel-Bed Rivers: The Wooler Water, Northumberland, UK. In Gravel-Bed Rivers in the Environment; Klingeman, P.C., Beschta, R.L., Komar, P.D., Bradley, J.B., Eds.; Water Resources Publication: Highlands Ranch, CO, USA, 1998; pp. 415–432. [Google Scholar]
- Rinaldi, M.; Wyżga, B.; Surian, N. Sediment mining in alluvial channels: Physical effects and management perspectives. River Res. Appl. 2005, 21, 805–828. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.P.; Wolman, M.G. Downstream effects of dams on alluvial rivers. U.S. Geol. Surv. Prof. Paper 1984, 1286, 1–83. [Google Scholar]
- Germanovski, D.; Ritter, D.F. Tributary response to local base level lowering below a dam. Regul. Rivers Res. Manag. 1988, 2, 11–24. [Google Scholar] [CrossRef]
- Kiss, T.; Andrási, G.; Hernesz, P. Morphological alteration of the Dráva as the result of human impact. Acta Geogr. Debrecina, Lands. Environ. 2011, 5, 58–75. [Google Scholar]
- Keesstra, S.D.; van Huissteden, J.; Vanderberghe, J.; Van Dam, O.; de Gier, J.; Pleizer, I.D. Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 2005, 69, 191–207. [Google Scholar] [CrossRef]
- Emerson, J.W. Channelization: A case study. Science 1971, 173, 325–326. [Google Scholar] [CrossRef]
- Brookes, A. River channel adjustment downstream from channelization works in England and Wales. Earth Surf. Process. Landf. 1987, 12, 337–351. [Google Scholar] [CrossRef]
- Simon, A. A model of channel response in disturbed alluvial channels. Earth Surf. Process. Landf. 1989, 14, 11–26. [Google Scholar] [CrossRef]
- Wyżga, B. Impact of the channelization-induced incision of the Skawa and Wisłoka Rivers, southern Poland, on the conditions of overbank deposition. Regul. Rivers Res. Manag. 2001, 17, 85–100. [Google Scholar] [CrossRef]
- Wyżga, B. A geomorphologist’s criticism of the engineering approach to channelization of gravel-bed rivers: Case study of the Raba River, Polish Carpathians. Environ. Manag. 2001, 28, 341–358. [Google Scholar] [CrossRef]
- Liébault, F.; Piégay, H. Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology 2001, 36, 167–186. [Google Scholar] [CrossRef]
- Galay, V.J. Causes of river bed degradation. Water Resour. Res. 1983, 19, 1057–1090. [Google Scholar] [CrossRef]
- Wyżga, B. A review on channel incision in the Polish Carpathian rivers during the 20th century. In Gravel-Bed Rivers VI: From Process Understanding to River Restoration; Habersack, H., Piégay, H., Rinaldi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 525–556. [Google Scholar]
- Wyżga, B. Present-day downcutting of the Raba River channel (Western Carpathians, Poland) and its environmental effects. Catena 1991, 18, 551–566. [Google Scholar] [CrossRef]
- Dente, E.; Lensky, N.G.; Morin, E.; Dunne, T.; Enzel, Y. Sinuosity evolution along an incising channel: New insights from the Jordan River response to the Dead Sea level fall. Earth Surf. Process. Landf. 2019, 44, 781–795. [Google Scholar] [CrossRef]
- Dente, E.; Lensky, N.G.; Morin, E.; Enzel, Y. From straight to incised meandering channels: Slope impact on sinuosity of confined streams. Earth Surf. Process. Landf. 2021, 46, 1041–1054. [Google Scholar] [CrossRef]
- Wrzesiński, D. Wpływ Oscylacji Północnoatlatyckiej na Zmiany Odpływu Rzek w Polsce w Latach 1951–2000 (Impact of the North Atlantic Oscillation on Changes in the River Runoff in Poland over the Years 1951–2000). In Odpływ Rzeczny i Jego Regionalne Uwarunkowania; Wrzesiński, D., Ed.; Bogucki Wyd. Nauk.: Poznań, Poland, 2010; pp. 153–167. [Google Scholar]
- Wrzesiński, D. Flow Regime Patterns and Their Changes. In Management of Water Resources in Poland; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 163–180. [Google Scholar]
- Born, A. Regulacja Odry i Rozbudowa Urządzeń Technicznych. In Monografia Odry; Instytut Zachodni: Poznań, Poland, 1948. [Google Scholar]
- Dubicki, A. Tendencje zmian intensywnosci opadow w dorzeczu Odry. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu. Inżynieria Środowiska 1993, 4, 23–34. [Google Scholar]
- Szulczewski, W.; Jakubowski, W.; Tokarczyk, T. An analysis of the hydrological regime as a factor influencing on the distributions of maximum annual flows. In ITM Web of Conferences; EDP Sciences: Ulysses, Frence, 2018; Volume 23, p. 00034. [Google Scholar]
- Dubicki, A.; Malinowska-Małek, J.; Strońska, K. Flood hazards in the upper and middle Odra River basin—A short review over the last century. Limnologica 2005, 35, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Mielcarek, A. Z historii żeglugi odrzańskiej w latach osiemdziesiątych XIX wieku. Zeszyty Naukowe. Problemy Transportu i Logistyki 2003, 2, 225–236. [Google Scholar]
- Kundzewicz, Z.W.; Szamalek, K.; Kowalczak, P. The great flood of 1997 in Poland. Hydrol. Sci. J. 1999, 44, 855–870. [Google Scholar] [CrossRef]
- Czajka, A.; Ciszewski, D. Deposition of overbank sediments within a regulated reach of the upper Odra River, Poland. IAHS-AISH Publ. 2010, 337, 137–142. [Google Scholar]
- Nieznański, P.; Wyżga, B.; Obrdlik, P. Korytarz swobodnej migracji rzeki–koncepcja i jej wdrażanie w czesko-polskim, granicznym odcinku Odry. In Stan Środowiska Rzek Południowej Polski i Możliwości jego Poprawy–Wybrane Aspekty; Wyżga, B., Ed.; Instytut Ochrony Przyrody PAN: Kraków, Poland, 2008; pp. 135–144. [Google Scholar]
- Monthly Mean North Atlantic Oscillation Index Since January 1950. Available online: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml (accessed on 15 September 2021).
- Szczepański, A. “Powódź stulecia” w Legnicy w 1977 roku (The flood of century in Legnica in 1977). Zesz. Nauk PWSZ w Legnicy 2018, 27, 29–44, (In Polish, with English summary). [Google Scholar]
- Kundzewicz, Z.W.; Dobrowolski, A.; Lorenc, H.; Niedźwiedź, T.; Pińskwar, I.; Kowalczak, P. Floods in Poland. In Changes in Flood Risk in Europe; Kundzewicz, Z.W., Ed.; Taylor and Francis: London, UK, 2012; pp. 319–334. [Google Scholar]
- Nádudvari, Á.; Czajka, A. Statistical calculations of the Tisza River channel changes along Vezseny and Martfű (Hungary) from 1873–2010. Carpath. J. Earth Environ. Sci. 2014, 9, 57–70. [Google Scholar]
- Ellis, L.E.; Jones, N.E. Longitudinal trends in regulated rivers: A review and synthesis within the context of the serial discontinuity concept. Environ. Rev. 2013, 21, 136–148. [Google Scholar] [CrossRef]
- Gurnell, A.M. Adjustments in river channel geometry associated with hydraulic discontinuities across the fluvial–tidal transition of a regulated river. Earth Surf. Process. Landf. 1997, 22, 967–985. [Google Scholar] [CrossRef]
- Magilligan, F.J.; Roberts, M.O.; Marti, M.; Renshaw, C.E. The impact of run-of-river dams on sediment longitudinal connectivity and downstream channel equilibrium. Geomorphology 2021, 376, 107568. [Google Scholar] [CrossRef]
- Kondolf, G.M. Hungry water: Effects of dams and gravel mining on river channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T. Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland. Water 2017, 9, 156. [Google Scholar] [CrossRef]
- European Commission. Climate Change and the European Water Dimension. In EU Report No. 21553; European Commission—Joint Research Centre: Ispra, Italy, 2005. [Google Scholar]
- Pociask-Karteczka, J.; Limanówka, D.; Nieckarz, Z. Wpływ oscylacji północnoatlantyckiej na przepływy rzek karpackich 1951–2000 (The North Atlantic Oscillation impact on hydrologcal regime in Polish Carpathians 1951–2000). Folia Geogr. Ser. Geogr. Phys. 2003, 33, 89–104, (In Polish, with English Summary). [Google Scholar]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; van Loon, H. Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Chang. 1997, 36, 301–326. [Google Scholar] [CrossRef]
- Niedźwiedź, T. Characteristics in southern Poland during the severe flooding event of July 1997. Stud. Geomorph. Carpath. Balc. 1999, 33, 5–25. [Google Scholar]
- Stoffel, M.; Wyżga, B.; Niedźwiedź, T.; Ruiz-Villanueva, V.; Ballesteros-Cánovas, J.A.; Kundzewicz, Z.W. Floods in mountain basins. In Flood Risk in the Upper Vistula Basin; Kundzewicz, Z.W., Stoffel, M., Niedźwiedź, T., Wyżga, B., Eds.; Springer: Cham, Switzerland, 2016; pp. 23–37. [Google Scholar]
- Pociask-Karteczka, J. River hydrology and the North Atlantic Oscillation–A general review. Ambio 2006, 35, 312–314. [Google Scholar] [CrossRef] [PubMed]
- Urban, G.; Richterová, D.; Kliegrová, S.; Zusková, I.; Pawliczek, P. Winter severity and snowiness and their multiannual variability in the Karkonosze Mountains and Jizera Mountains. Theor. Appl. Climatol. 2018, 134, 221–240. [Google Scholar] [CrossRef] [Green Version]
- Urban, G.; Richterová, D.; Kliegrová, S.; Zusková, I. Durability of snow cover and its long-term variability in the Western Sudetes Mountains. Theor. Appl. Climatol. 2019, 137, 2681–2695. [Google Scholar] [CrossRef]
- Wdowikowski, M.; Szumiejko, F.; Krakowski, K.; Kózka, K. Wykorzystanie Patrolowych Pomiarów Pokrywy Śnieżnej Jako Element Wsparcia Oceny Określenia Zasobów Wodnych Śniegu w Obszarze Środkowej Odry—Badania Pilotażowe (The Use of Patrol Measurements of Snow Cover as an Element of Support for the Assessment of Snow Water Resources in the Area of the Middle Odra River–Pilot Studies). In JIZERKA 2022; Lipina, P., Procházka, J., Eds.; Český Hydrometeorologický Ústav: Prague, Czech Republic, 2022; pp. 134–137. (In Polish) [Google Scholar]
Station | Slope of Regression (B) | Goodness of Fit (R2) | Significance (p Value) |
---|---|---|---|
Racibórz | −2.277 | 0.07 | 0.04 |
Opole | −2.551 | 0.12 | 0.01 |
Kłodzko | −0.136 | 0.0004 | 0.88 |
Jelenia Góra | 0.239 | 0.001 | 0.83 |
Wrocław | −1.645 | 0.06 | 0.06 |
Leszno | −0.061 | 0.0001 | 0.94 |
Legnica | −0.680 | 0.01 | 0.42 |
Zielona Góra | 0.098 | 0.0002 | 0.92 |
Słubice | 0.082 | 0.0001 | 0.94 |
Catchment average | −0.767 | 0.02 | 0.26 |
Station | Slope of Regression (B) | Goodness of Fit (R2) | Significance (p Value) |
---|---|---|---|
Racibórz | −205.6 | 0.37 | 0.000001 |
Opole | −145.1 | 0.23 | 0.0002 |
Kłodzko | −151.4 | 0.31 | 0.00001 |
Jelenia Góra | −194.5 | 0.34 | 0.000003 |
Wrocław | −106.1 | 0.16 | 0.003 |
Leszno | −106.8 | 0.19 | 0.0009 |
Legnica | −119.5 | 0.23 | 0.0002 |
Zielona Góra | −107.2 | 0.15 | 0.004 |
Słubice | −109.4 | 0.13 | 0.007 |
Catchment average | −123.7 | 0.37 | 0.000001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nádudvari, Á.; Czajka, A.; Wyżga, B.; Zygmunt, M.; Wdowikowski, M. Patterns of Recent Changes in Channel Morphology and Flows in the Upper and Middle Odra River. Water 2023, 15, 370. https://doi.org/10.3390/w15020370
Nádudvari Á, Czajka A, Wyżga B, Zygmunt M, Wdowikowski M. Patterns of Recent Changes in Channel Morphology and Flows in the Upper and Middle Odra River. Water. 2023; 15(2):370. https://doi.org/10.3390/w15020370
Chicago/Turabian StyleNádudvari, Ádám, Agnieszka Czajka, Bartłomiej Wyżga, Marcin Zygmunt, and Marcin Wdowikowski. 2023. "Patterns of Recent Changes in Channel Morphology and Flows in the Upper and Middle Odra River" Water 15, no. 2: 370. https://doi.org/10.3390/w15020370