Phenotypic Divergences in Growth and Reproduction Underpin the Invasion of Suckermouth Armored Catfish Pterygoplichthys disjunctivus (Loricariidae) into Lotic and Lentic Habitats in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Populations
2.2. Sample Processing and Data Collection
2.3. Data Analyses
3. Results
3.1. Length Frequency Distribution and Age Structure
3.2. The Length–Weight Relationships and Growth Pattern
3.3. Growth Parameters
3.4. Sex Ratio
3.5. Gonadal Maturation Stages
3.6. Spawning Season
3.6.1. Monthly Changes in the Percentage of Matured Fish
3.6.2. Monthly Changes in the Gonado-Somatic Index (GSI)
3.7. Length at First Sexual Maturity (50% Maturity)
3.8. Fecundity
3.9. Oocyte Diameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz, S.M.; Settele, J.; Brondízio, E.; Ngo, H.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers; IPBES Secretariat: Bonn, Germany, 2019; p. 60. [Google Scholar]
- Burgiel, S.W.; Muir, A.A. Invasive Species, Climate Change and Ecosystem-Based Adaptation: Addressing Multiple Drivers of Global Change; Global Invasive Species Programme (GISP), ZA: Washington, DC, USA, 2010; p. 55. ISBN 978-92-9059-287-7. [Google Scholar]
- Torchin, M.E.; Mitchell, C.E. Parasites, pathogens, and invasions by plants and animals. Front. Ecol. Environ. 2004, 2, 183–190. [Google Scholar] [CrossRef]
- Schofield, P.J.; Loftus, W.F. Non-native fishes in Florida freshwaters: A literature review and synthesis. Rev. Fish Biol. Fish. 2015, 25, 117–145. [Google Scholar] [CrossRef]
- Magalhães, A.L.B.; Bezerra, L.A.V.; Daga, V.S.; Pelicice, F.M.; Vitule, J.R.S.; Brito, M.F.G. Biotic differentiation in headwater creeks after the massive introduction of non-native freshwater aquarium fish in the Paraíba do Sul River basin, Brazil. Neotrop. Ichthyol. 2021, 19, e200147. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef]
- Magalhães, A.L.B.; Brito, M.F.G.; Silva, L.G.M. The fluorescent introduction has begun in the southern hemisphere: Presence and life-history strategies of the transgenic zebrafish Danio rerio (Cypriniformes: Danionidae) in Brazil. Stud. Neotrop. Fauna Environ. 2022, 1–13. [Google Scholar] [CrossRef]
- Orfinger, A.B.; Goodding, D.D. The global invasion of the suckermouth armored catfish genus Pterygoplichthys (Siluriformes: Loricariidae): Annotated list of species, distributional summary, and assessment of impacts. Zool. Stud. 2018, 57, 7. [Google Scholar] [CrossRef]
- Samat, A.; Yusoff, F.; Arshad, A.; Ghaffar, M.; Nor, S.; Magalhaes, A.; Das, S. Reproductive biology of the introduced sailfin catfish Pterygoplichthys pardalis (Pisces: Loricariidae) in Peninsular Malaysia. Indian J. Fish. 2016, 63, 35–41. [Google Scholar] [CrossRef]
- Bijukumar, A.; Smrithy, R.; Sureshkumar, U.; George, S. Invasion of South American suckermouth armoured catfishes Pterygoplichthys spp. (Loricariidae) in Kerala, India-a case study. J. Threat. Taxa 2015, 7, 6987–6995. [Google Scholar] [CrossRef]
- Stolbunov, I.A.; Gusakov, V.A.; Dien, T.D.; Thanh, N.T.H. Food Spectrum, Trophic and Length-Weight Characteristics of Nonindigenous Suckermouth Armored Catfishes Pterygoplichthys spp. (Loricariidae) in Vietnam. Inland Water Biol. 2021, 14, 597–605. [Google Scholar] [CrossRef]
- Kramer, D.L.; Bryant, M.J. Intestine length in the fishes of a tropical stream: 2. Relationships to diet-the long and short of a convoluted issue. Environ. Biol. Fishes 1995, 42, 129–141. [Google Scholar] [CrossRef]
- Pavlov, D.; Kasumyan, A. Feeding diversity in fishes: Trophic classification of fish. J. Ichthyol. 2002, 42, S137. [Google Scholar]
- Alfaro, R.E.M.; Cudmore, C.; Orr, R.; Fisher, J.P.; Balderas, S.C.; Courtenay, W.R.; Osorio, P.K.; Mandrak, N.; Torres, P.A.; Damián, M.A.; et al. Trinational Risk Assessment Guidelines for Aquatic Alien Invasive Species: Test Cases for the Snakeheads (Channidae) and Armored Catfishes (Loricariidae) in North American Inland Waters; Commission for Environmental Cooperation: Montreal, QC, Canada, 2009; p. 100. [Google Scholar]
- Stolbunov, I.A.; Dien, T.D. Mass alien fish species in the fish fauna of inland waters in Central Vietnam. Inland Water Biol. 2019, 12, 477–480. [Google Scholar] [CrossRef]
- Suresh, V.R.; Ekka, A.; Biswas, D.K.; Sahu, S.K.; Yousuf, A.; Das, S. Vermiculated sailfin catfish, Pterygoplichthys disjunctivus (Actinopterygii: Siluriformes: Loricariidae): Invasion, biology, and initial impacts in east Kolkata Wetlands, India. Acta Ichthyol. Piscat. 2019, 49, 221–233. [Google Scholar] [CrossRef]
- Gusakov, V.A.; Stolbunov, I.A.; Dien, T.D. Modern distribution of armored catfishes (Siluriformes: Loricariidae) in Central Vietnam. Inland Water Biol. 2018, 11, 179–183. [Google Scholar] [CrossRef]
- Hussan, A.; Sundaray, J.; Mandal, R.; Hoque, F.; Das, A.; Chakrabarti, P.; Adhikari, S. Invasion of non-indigenous suckermouth armoured catfish of the genus Pterygoplichthys (Loricariidae) in the East Kolkata Wetlands: Stakeholders’ perception. Indian J. Fish. 2019, 66, 29–42. [Google Scholar] [CrossRef]
- Stolbunov, I.A.; Dien, T.D.; Armbruster, J.W. Suckermouth-armored Catfish (Siluriformes: Loricariidae) of Central and Southern Vietnam. Inland Water Biol. 2020, 13, 627–639. [Google Scholar] [CrossRef]
- Stolbunov, I.A.; Dien, T.D.; Karabanov, D.P. Taxonomic composition and distribution of alien suckermouth armored Catfish (Siluriformes: Loricariidae) in Southern Vietnam. Inland Water Biol. 2021, 14, 263–273. [Google Scholar] [CrossRef]
- Nico, L.G.; Loftus, W.F.; Reid, J.P. Interactions between non-native armored suckermouth catfish (Loricariidae: Pterygoplichthys) and native Florida manatee (Trichechus manatus latirostris) in artesian springs. Aquat. Invasions 2009, 4, 511–519. [Google Scholar] [CrossRef]
- Hossain, M.Y.; Vadas, R.L., Jr.; Ruiz-Carus, R.; Galib, S.M. Amazon sailfin catfish Pterygoplichthys pardalis (Loricariidae) in Bangladesh: A critical review of its invasive threat to native and endemic aquatic species. Fishes 2018, 3, 14. [Google Scholar] [CrossRef]
- Mendoza, R.; Luna, S.; Aguilera, C. Risk assessment of the ornamental fish trade in Mexico: Analysis of freshwater species and effectiveness of the FISK (Fish Invasiveness Screening Kit). Biol. Invasions 2015, 17, 3491–3502. [Google Scholar] [CrossRef]
- Zworykin, D.D.; Budaev, S.V. Non-indigenous armoured catfish in Vietnam: Invasion and systematics. Ichthyol. Res. 2013, 60, 327–333. [Google Scholar] [CrossRef]
- Armbruster, J.W.; Page, L.M. Redescription of Pterygoplichthys punctatus and description of a new species of Pterygoplichthys (Siluriformes: Loricariidae). Neotrop. Ichthyol. 2006, 4, 401–410. [Google Scholar] [CrossRef]
- Nikolsky, G. The Ecology of Fishes; Academic Press: London, UK, 1963. [Google Scholar]
- King, M. Fisheries Biology Assessment and Management; Fishing News Books: Oxford, UK, 1995. [Google Scholar]
- Sang, H.M.; Lam, H.S. Reproductive biology of blue tang fish (Paracanthurus hepatus Linnaeus, 1776) in Khanh Hoa seawater, Viet Nam. Indian J. Geo-Mar. Sci. 2018, 47, 839–845. [Google Scholar]
- Gibbs, M.; Shields, J.; Lock, D.; Talmadge, K.; Farrell, T. Reproduction in an invasive exotic catfish Pterygoplichthys disjunctivus in Volusia Blue Spring, Florida, USA. J. Fish Biol. 2008, 73, 1562–1572. [Google Scholar] [CrossRef]
- Gibbs, M.; Watson, P.; Johnson-Sapp, K.; Lind, C. Reproduction revisited—A decade of changes in the reproductive strategies of an invasive catfish, Pterygoplichthys disjunctivus (Weber, 1991), in Volusia Blue Spring, Florida. Aquat. Invasions 2017, 12, 225–239. [Google Scholar] [CrossRef]
- Dong, X.; Xiang, T.; Ju, T.; Li, R.; Ye, S.; Lek, S.; Liu, J.; Grenouillet, G. Age, growth, mortality and recruitment of thin sharpbelly Toxabramis swinhonis Günther, 1873 in three shallow lakes along the middle and lower reaches of the Yangtze River basin, China. PeerJ 2019, 7, e6772. [Google Scholar] [CrossRef]
- Ricker, W.E. Computation and Interpretation of Biological Statistics of Fish Populations. Fish. Res. Board Can. Bull. 1975, 191, 1–382. [Google Scholar]
- O’Brien, C.M. Modelling and quantitative methods in fisheries, second edition by Malcolm Haddon. Int. Stat. Rev. 2012, 80, 201–202. [Google Scholar] [CrossRef]
- Ye, S.; Li, Z.; Feng, G.; Cao, W. Length-weight relationships for thirty fish species in Lake Niushan, a Shallow Macrophytic Yangtze Lake in Chin. Asian Fish. Sci. 2007, 20, 217–226. [Google Scholar] [CrossRef]
- Koutrakis, E.; Tsikliras, A. Length–weight relationships of fishes from three northern Aegean estuarine systems (Greece). J. Appl. Ichthyol. 2003, 19, 258–260. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 3 February 2022).
- Von Bertalanffy, L. A quantitative theory of organic growth (inquiries on growth laws. II). Hum. Biol. 1938, 10, 181–213. [Google Scholar]
- Sparre, P. Introduction to Tropical Fish Stock Assessment. Part 1. Manual. FAO Fish. Tech. Paper 1998, 306, 407. [Google Scholar]
- Gayanilo, F.C.; Sparre, P. FAO-ICLARM Stock Assessment Tools II: User’s Guide; Food & Agriculture Org.: Rome, Italy, 2005. [Google Scholar]
- Pauly, D. Some Simple Methods for the Assessment of Tropical Fish Stocks; Food & Agriculture Org.: Rome, Italy, 1983. [Google Scholar]
- Pauly, D.; Munro, J. Once more on the comparison of growth in fish and invertebrates. Fishbyte 1984, 2, 1–21. [Google Scholar]
- Rueda-Jasso, R.A.; Campos-Mendoza, A.; Arreguín-Sánchez, F.; Díaz-Pardo, E.; Martínez-Palacios, C.A. The biological and reproductive parameters of the invasive armored catfish Pterygoplichthys disjunctivus from Adolfo López Mateos El Infiernillo Reservoir, Michoacán-Guerrero, Mexico. Rev. Mex. Biodivers. 2013, 84, 318–326. [Google Scholar] [CrossRef]
- Hasan, M.; Hosen, M.H.A.; Miah, M.I.; Ahmed, Z.F.; Chhanda, M.S.; Shahriar, S.I.M. Fecundity, length at maturity and gonadal development indices of river catfish (Clupisoma garua) of the old Brahmaputra River in Bangladesh. Egypt. J. Aquat. Res. 2020, 46, 259–263. [Google Scholar] [CrossRef]
- McLeay, L.J.; Doubell, M.J.; Linnane, A.J. Spatial and temporal variations in female size at maturity of a Southern Rock Lobster (Jasus edwardsii) population: A likely response to climate change. PLoS ONE 2019, 14, e0225144. [Google Scholar] [CrossRef]
- Jumawan, J.C.; Herrera, A.A.; Jumawan, J.H.; Benjamin, V., Jr. Size structure and reproductive phenology of the suckermouth sailfin catfish Pterygoplichthys disjunctivus (Weber, 1991) from Marikina River, Philippines. ARPN J. Agric. Biol. Sci. 2016, 11, 18–23. [Google Scholar]
- Gibbs, M.A.; Kurth, B.N.; Bridges, C.D. Age and growth of the loricariid catfish Pterygoplichthys disjunctivus in Volusia Blue Spring, Florida. Aquat. Invasions 2013, 8, 207–218. [Google Scholar] [CrossRef]
- Truong, K.N.; Vu, N.-A.; Doan, N.X.; Le, M.-H.; Vu, M.T.; Dinh, K.V. Predator cues increase negative effects of a simulated marine heatwave on tropical zooplankton. J. Exp. Mar. Biol. Ecol. 2020, 530, 151415. [Google Scholar] [CrossRef]
- Jumawan, J.; Herrera, A. Ovary morphology and reproductive features of the female suckermouth sailfin catfish, Pterygoplichthys disjunctivus (Weber 1991) from Marikina River, Philippines. Asian Fish. Sci. 2014, 27, 75–89. [Google Scholar] [CrossRef]
- Nico, L.; Jelks, H.; Tuten, T. Non-Native suckermouth armored catfishes in Florida: Description of Nest Borrows and Burrow Colonies with assessment of Shoreline Conditions. Aquat. Nuis. Species Res. Program Bull. 2009, 9, 1–30. [Google Scholar]
- De Roos, A.M.; Boukal, D.S.; Persson, L. Evolutionary regime shifts in age and size at maturation of exploited fish stocks. Proc. R. Soc. B Biol. Sci. 2006, 273, 1873–1880. [Google Scholar] [CrossRef]
- Winemiller, K.O. Life-history strategies and the effectiveness of sexual selection. Oikos 1992, 63, 318–327. [Google Scholar] [CrossRef]
- Daufresne, M.; Lengfellner, K.; Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12788–12793. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.W.; Sarmiento, J.L.; Dunne, J.; Frölicher, T.L.; Lam, V.W.; Deng Palomares, M.; Watson, R.; Pauly, D. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Chang. 2013, 3, 254–258. [Google Scholar] [CrossRef]
- Forster, J.; Hirst, A.G.; Woodward, G. Growth and development rates have different thermal responses. Am. Nat. 2011, 178, 668–678. [Google Scholar] [CrossRef]
- Doan, N.X.; Vu, M.T.; Pham, H.Q.; Wisz, M.S.; Nielsen, T.G.; Dinh, K.V. Extreme temperature impairs growth and productivity in a common tropical marine copepod. Sci. Rep. 2019, 9, 4550. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.L.B.; Jacobi, C.M. Asian aquarium fishes in a Neotropical biodiversity hotspot: Impeding establishment, spread and impacts. Biol. Invasions 2013, 15, 2157–2163. [Google Scholar] [CrossRef]
- Hunter, J.; Lo, N.C.; Leong, R.J. Batch fecundity in multiple spawning fishes. NOAA Tech. Rep. NMFS 1985, 36, 67–77. [Google Scholar]
- Growns, I. A numerical classification of reproductive guilds of the freshwater fishes of south-eastern Australia and their application to river management. Fish. Manag. Ecol. 2004, 11, 369–377. [Google Scholar] [CrossRef]
- McEvoy, L.; McEvoy, J. Multiple spawning in several commercial fish species and its consequences for fisheries management, cultivation and experimentation. J. Fish Biol. 1992, 41, 125–136. [Google Scholar] [CrossRef]
Parameters | Dinh River | Suoi Trau Reservoir |
---|---|---|
Geographic Coordinates (N, E) | 12°29.740′ 109°7.686′ | 12°30.302′ 109°2.694′ |
Type | lotic | lentic |
Length (km) | 53 | - |
Square–Volume | 916 km2 | (1.42–9.8) × 106 m3 |
Altitude (m) | 2 | 22 |
Depth (min–max; m) | 3–4 | 4–9 |
Current velocity (min–max; m/s) | 0.1–0.7 | 0 |
Temperature (surface water; °C) | 25.4–32.9 | 25.4–32.9 |
pH | 6.75–7.58 | 7.09–8.5 |
Salinity (PSU) | 0.04–0.05 | 0.0 |
Total dissolved solids (ppm) | 48–60 | 71–100 |
Total phosphorus (µg/L) | 45.9–75.9 | 49.7–65.3 |
Total nitrogen (µg/L) | 769–985 | 826–869 |
Stations | Sex | Lmin–Lmax (mm) (Mean ± SE) | Wmin–Wmax (g) (Mean ± SE) | a | b | CI(b) | R2 | p of Regression | t-Test Sig | Growth Behavior |
---|---|---|---|---|---|---|---|---|---|---|
Dinh River | Females (n = 169) | 177–451 (310.12 ± 4.70) | 44–768 (267.53 ± 12.49) | 0.000023 | 2.82 | 2.70–2.94 | 0.93 | <2.2 × 10−16 | 0.003 | Negative allometry |
Males (n = 190) | 183–479 (327.33 ± 4.54) | 53–767 (275.76 ± 10.91) | 0.00005 | 2.66 | 2.57–2.76 | 0.94 | <2.2 × 10−16 | <6.16 × 10−11 | Negative allometry | |
Suoi Trau Reservior | Females (n = 156) | 82–313 (200.99 ± 2.94) | 4.6–245 (67.30 ± 2.58) | 0.000039 | 2.70 | 2.58–2.81 | 0.94 | <2.2 × 10−16 | 1.93 × 10−7 | Negative allometry |
Males (n = 147) | 88–316 (211.54 ± 2.93) | 5.62–219 (70.69 ± 2.59) | 0.000035 | 2.70 | 2.58–2.82 | 0.93 | <2.2 × 10−16 | <4.60 × 10−6 | Negative allometry |
Maturity Stages | Characteristics of Ovaries | |
---|---|---|
I | Resting phase (immature) | The ovaries were pale pink to translucent in color with inconspicuous vascularisation. Ovarian wall was very thin and no oocyte was visible with naked eye. Wgonad = 0.0230 ± 0.0060 g (range: 0.0110–0.0230 g). Histologically, oocytes, mainly PG types, were dense and closely distributed (Figure 6a,b). |
II | Developing phase | Ovaries were light yellowish to opaque in color. Vascular supply increased and the blood capillaries became conspicuous. Oocyte was not visible through ovarian wall with naked eye. Wgonad = 0.4645 ± 0.0428 g (range: 0.0204–2.2300 g). In histological sections, oocytes grew with nucleus up to 50% of the whole oocyte area and limited vacuolation (Figure 6c,d). |
III | Ripening phase | Ovaries increased in weight and volume, and were light color. Oocytes (including stage II and III oocytes) can be seen by naked eye. Oocytes increased considerably in size and were pale pink in color in H&E stained sections (Figure 6e,f). |
IV | Mature | At close to spawning, the ovaries turned to deep yellow color (straw yellow or red-yellow). The blood supply increased considerably with a large blood vessel visible along the ovary. Oocytes reached maximum in size and contained dense yolk particles. In H&E stained sections, the oocytes were dark purple in color (Figure 6g,h) |
V | Spawning phase | The ovaries were involved in reproduction. Ripened eggs were released directly into the abdominal cavity. Oocytes were separate and came out with light pressing on the abdomen (Figure 6i). |
VI | Recovering phase (spent) | Ovaries appeared bruised; purple to dark pink in color. Ovarian wall was thicker, ovaries were empty or had a few small eggs left (Figure 6j). |
Parameters | Unit | Dinh River Mean ± SE (Min–Max) | Suoi Trau Reservoir Mean ± SE (Min–Max) | p |
---|---|---|---|---|
Fb | oocytes/ind. | 4812 ± 383 (103–8208) | 841 ± 91 (150–1993) | <0.05 |
Ft | oocytes/ind. | 6000 ± 483 (1303–10,574) | 995 ± 101 (150–2255) | <0.05 |
Fb/Ft | % | 79.83 ± 2.73 (7.90–92.72) | 84.09 ± 2.00 (59.26–100) | >0.05 |
RFb | oocytes/g | 13.36 ± 0.81 (0.69–21.32) | 12.97 ± 1.19 (3.26–25.23) | >0.05 |
RFt | oocytes/g | 16.63 ± 0.92 (7.05–26.00) | 15.48 ± 1.35 (3.26–28.55) | >0.05 |
Diameter top decile of oocytes | mm | 2.95 ± 0.04 (2.50–3.41) | 2.58 ± 0.01 (2.42–2.80) | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dien, T.D.; Ha, V.T.; Dang, M.; Sang, H.M.; Hieu, N.T.D.; Stolbunov, I.A. Phenotypic Divergences in Growth and Reproduction Underpin the Invasion of Suckermouth Armored Catfish Pterygoplichthys disjunctivus (Loricariidae) into Lotic and Lentic Habitats in Vietnam. Water 2023, 15, 3616. https://doi.org/10.3390/w15203616
Dien TD, Ha VT, Dang M, Sang HM, Hieu NTD, Stolbunov IA. Phenotypic Divergences in Growth and Reproduction Underpin the Invasion of Suckermouth Armored Catfish Pterygoplichthys disjunctivus (Loricariidae) into Lotic and Lentic Habitats in Vietnam. Water. 2023; 15(20):3616. https://doi.org/10.3390/w15203616
Chicago/Turabian StyleDien, Tran Duc, Vo Thi Ha, Mai Dang, Huynh Minh Sang, Nguyen Trinh Duc Hieu, and Igor Anatolievich Stolbunov. 2023. "Phenotypic Divergences in Growth and Reproduction Underpin the Invasion of Suckermouth Armored Catfish Pterygoplichthys disjunctivus (Loricariidae) into Lotic and Lentic Habitats in Vietnam" Water 15, no. 20: 3616. https://doi.org/10.3390/w15203616
APA StyleDien, T. D., Ha, V. T., Dang, M., Sang, H. M., Hieu, N. T. D., & Stolbunov, I. A. (2023). Phenotypic Divergences in Growth and Reproduction Underpin the Invasion of Suckermouth Armored Catfish Pterygoplichthys disjunctivus (Loricariidae) into Lotic and Lentic Habitats in Vietnam. Water, 15(20), 3616. https://doi.org/10.3390/w15203616