Occurrence of and Factors Affecting Groundwater Fluoride in the Western Coastal Area of Hainan Island, South China
Abstract
:1. Introduction
2. Study Area
2.1. Geographical Overview and Land-Use Types
2.2. Geological and Hydrogeological Conditions
3. Materials and Methods
3.1. Sampling and Analysis
3.2. Inverse Distance Weighting (IDW) Method
3.3. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA)
4. Results
4.1. Fluoride Concentrations in Different Aquifers and Land-Use Types
4.2. Hydrochemistry Characteristics of Groundwater with Different Levels of F−
4.3. Spatial Distribution of Fluoride
4.4. PCA and HCA
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jha, P.K.; Tripathi, P. Arsenic and fluoride contamination in groundwater: A review of global scenarios with special reference to India. Groundw. Sustain. Dev. 2021, 13, 100576. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. J. Environ. Manag. 2015, 162, 306–325. [Google Scholar] [CrossRef]
- Cherry, J. The Groundwater Project: Democratizing Groundwater Knowledge. Groundwater 2020, 58, 682–683. [Google Scholar] [CrossRef] [PubMed]
- Hao, A.B.; Zhang, Y.L.; Zhang, E.Y.; Li, Z.H.; Yu, J.; Wang, H.; Yang, J.F.; Wang, Y. Review: Groundwater resources and related environmental issues in China. Hydrogeol. J. 2018, 26, 1325–1337. [Google Scholar] [CrossRef]
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global Groundwater Sustainability, Resources, and Systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Gleeson, T.; Richter, B. How much groundwater can we pump and protect environmental flows through time? Presumptive standards for conjunctive management of aquifers and rivers. River Res. Appl. 2018, 34, 83–92. [Google Scholar] [CrossRef]
- Medici, G.; Langman, J.B. Pathways and Estimate of Aquifer Recharge in a Flood Basalt Terrain; A Review from the South Fork Palouse River Basin (Columbia River Plateau, USA). Sustainability 2022, 14, 11349. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Dong, D.L.; Lv, S.T.; Ding, J.; Yan, M.H.; Han, G.L. Spatial evolution analysis of groundwater chemistry, quality, and fluoride health risk in southern Hebei Plain, China. Environ. Sci. Pollut. Res. 2023, 30, 61032–61051. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Hou, Q.X.; Chen, Y.T.; Huang, G.X. Hydrogeochemical Characteristics and Groundwater Quality in a Coastal Urbanized Area, South China: Impact of Land Use. Water 2022, 14, 4131. [Google Scholar] [CrossRef]
- Huang, G.X.; Hou, Q.X.; Han, D.Y.; Liu, R.A.; Song, J.M. Large scale occurrence of aluminium-rich shallow groundwater in the Pearl River Delta after the rapid urbanization: Co-effects of anthropogenic and geogenic factors. J. Contam. Hydrol. 2023, 254, 104130. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.X.; Liu, C.Y.; Li, L.P.; Zhang, F.G.; Chen, Z.Y. Spatial distribution and origin of shallow groundwater iodide in a rapidly urbanized delta: A case study of the Pearl River Delta. J. Hydrol. 2020, 585, 124860. [Google Scholar] [CrossRef]
- Huang, G.X.; Pei, L.X.; Li, L.P.; Liu, C.Y. Natural background levels in groundwater in the Pearl River Delta after the rapid expansion of urbanization: A new pre-selection method. Sci. Total Environ. 2022, 813, 151890. [Google Scholar] [CrossRef]
- Kumar, M.; Goswami, R.; Patel, A.K.; Srivastava, M.; Das, N. Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: A review. Chemosphere 2020, 249, 126126. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, J.Y.; Kim, K. Geochemical characteristics of fluoride in groundwater of Gimcheon, Korea: Lithogenic and agricultural origins. Environ. Earth Sci. 2011, 63, 1139–1148. [Google Scholar] [CrossRef]
- Young, S.M.; Pitawala, A.; Ishiga, H. Factors controlling fluoride contents of groundwater in north-central and northwestern Sri Lanka. Environ. Earth Sci. 2011, 63, 1333–1342. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Schecher, W.D. The Chemistry of Aluminum in the Environment. Environ. Geochem. Health 1990, 12, 28–49. [Google Scholar] [CrossRef]
- Selinus, O. Fluoride in Natural Waters. In Essentials of Medical Geology; Academic Press: Cambridge, MA, USA, 2013; pp. 311–336. [Google Scholar]
- Marandi, A.; Karro, E.; Puura, E. Barium anomaly in the Cambrian-Vendian aquifer system in North Estonia. Environ. Geol. 2004, 47, 132–139. [Google Scholar] [CrossRef]
- Underwood, E.C.; Ferguson, G.A.; Betcher, R.; Phipps, G. Elevated Ba concentrations in a sandstone aquifer. J. Hydrol. 2009, 376, 126–131. [Google Scholar] [CrossRef]
- Bondu, R.; Cloutier, V.; Rosa, E.; Roy, M. An exploratory data analysis approach for assessing the sources and distribution of naturally occurring contaminants (F, Ba, Mn, As) in groundwater from southern Quebec (Canada)—ScienceDirect. Appl. Geochem. 2020, 114, 104500. [Google Scholar] [CrossRef]
- Huang, G.X.; Sun, J.C.; Zhang, Y.; Chen, Z.Y.; Liu, F. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci. Total Environ. 2013, 463, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, M.; Naseem, S.; Bashir, E.; Shahab, B.; Rafique, T. Discrete geochemical behavior of Sr and Ba in the groundwater of Southern Mor Range, Balochistan, a tracer for igneous and sedimentary rocks weathering and related environmental issues. Appl. Geochem. 2021, 130, 104996. [Google Scholar] [CrossRef]
Groundwater | pH | K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | NH4+ |
---|---|---|---|---|---|---|---|---|---|
FHG in PW | 7.3 | 7.4 | 44.1 | 44.0 | 14.0 | 38.2 | 55.1 | 128.0 | 0.1 |
FPG in PW | 7.1 | 23.0 | 40.5 | 41.0 | 16.5 | 63.1 | 46.6 | 117.0 | 0.1 |
FHG in FW | 7.1 | 2.3 | 95.6 | 53.2 | 18.1 | 108.1 | 37.5 | 242.8 | <DL |
FPG in FW | 7.2 | 13.1 | 42.4 | 43.2 | 20.3 | 53.6 | 31.8 | 158.4 | 0.1 |
Groundwater | NO3− | NO2− | TDS | As | Se | Al | Ba | Mn | Sr |
FHG in PW | 30.4 | <DL | 320.8 | 0.9 | 0.3 | 0.9 | 0.1 | 0.1 | 0.4 |
FPG in PW | 47.5 | <DL | 324.1 | 1.3 | 1.3 | 0.1 | 0.2 | 0.1 | 0.4 |
FHG in FW | 29.7 | <DL | 442.9 | 5.7 | 0.5 | <DL | 0.1 | 0.1 | 0.8 |
FPG in FW | 44.5 | <DL | 321.5 | 0.9 | 1.0 | 0.1 | 0.2 | <DL | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Li, X.; Yang, X.; Zhang, M. Occurrence of and Factors Affecting Groundwater Fluoride in the Western Coastal Area of Hainan Island, South China. Water 2023, 15, 3678. https://doi.org/10.3390/w15203678
Liu R, Li X, Yang X, Zhang M. Occurrence of and Factors Affecting Groundwater Fluoride in the Western Coastal Area of Hainan Island, South China. Water. 2023; 15(20):3678. https://doi.org/10.3390/w15203678
Chicago/Turabian StyleLiu, Ruinan, Xiwen Li, Xiujiu Yang, and Ming Zhang. 2023. "Occurrence of and Factors Affecting Groundwater Fluoride in the Western Coastal Area of Hainan Island, South China" Water 15, no. 20: 3678. https://doi.org/10.3390/w15203678