Comparative Experimental Study of Geotube Groins and Mixed Clay–Geotube Groins under Various Flow Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Measurement Equipment
2.2. Similarity Conditions and Scale Ratio
2.3. Selection of Model Sediment
2.4. Experimental Design
2.4.1. Groin Models
2.4.2. Measurement Point Configuration
2.4.3. Experimental Conditions
3. Results
3.1. Experimental Condition 1: Neap Tide Inflow
3.2. Experimental Condition 2: Spring Tide Inflow
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, C.; Wang, Q.; Pan, D.; Hu, C. Characteristics of river discharge and its indirect effect on the tidal bore in the Qiantang River, China. Int. J. Sediment Res. 2023, 38, 253–264. [Google Scholar] [CrossRef]
- Pan, C. Special Research Report on Scouring at the Foot of the Ancient Sea Dyke on the North Shore of Qiantang River; Zhejiang Provincial Institute of Water Resources and Estuary: Hangzhou, China, 2019. (In Chinese) [Google Scholar]
- Wang, D. Study of local scour around submerged spur-dikes. Adv. Hydrodyn. 1988, 3, 60–69. (In Chinese) [Google Scholar]
- Xu, H.; Li, Y.; Zhao, Z.; Wang, X.; Zhang, F. Experimental study on the local scour of submerged spur dike heads under the protection of soft mattress in plain sand-bed rivers. Water 2023, 15, 413. [Google Scholar] [CrossRef]
- Aung, H.; Onorati, B.; Oliveto, G.; Yu, G. Riverbed morphologies induced by local scour processes at single spur dike and spur dikes in Cascade. Water 2023, 15, 1746. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, P.; Yang, W.; Zuo, W.; Gu, X.; Yang, X. Geometric characteristics of spur dike scour under clear-water scour conditions. Water 2018, 10, 680. [Google Scholar] [CrossRef]
- Han, X.; Lin, P.; Gary, P. Influence of layout angles on river flow and local scour in grouped spur dikes field. J. Hydrol. 2022, 614, 128502. [Google Scholar] [CrossRef]
- Reza, F.; Mahmood, S.K.; Mehdi, G.; Giuseppe, O. Temporal scour variations at permeable and angled spur dikes under steady and unsteady flows. Water 2022, 14, 3310. [Google Scholar] [CrossRef]
- Tang, X.; Ding, X.; Chen, Z. Large eddy simulations of three-dimensional flows around a spur dike. Tsinghua Sci. Technol. 2006, 11, 117–123. [Google Scholar] [CrossRef]
- Peng, X.; Zhao, Y.; Gao, L.; Xu, X.; Xia, J. Hydraulic and alluvial characteristics of the lower Yellow River after the sudden dam-break of permeable spur dikes. J. Water Resour. Water Eng. 2023, 34, 121–127+134. (In Chinese) [Google Scholar]
- Zhao, W.; Yan, S.; Xuan, W.; He, C.; Lin, B. Study of erosion-lessening and siltation-promotion effect for sheet-pile groins under strong tidal estuary. Chin. J. Hydrodyn. 2006, 21, 324–330. (In Chinese) [Google Scholar]
- Zhao, W.; Yan, S.; Xuan, W.; Lin, B. Effect of sheet-pile groins on protecting dykes and flats in tidal bore estuary. Shuili Xubao 2006, 37, 699–703. (In Chinese) [Google Scholar]
- Zhao, W.; Yan, S.; Xuan, W.; Lin, B. Study of flat-maintenance and dyke-protection effect for sheet-pile groins. J. Basic Sci. Eng. 2005, S1, 33–42. (In Chinese) [Google Scholar]
- Qian, S.; Chen, G.; Jin, X.; Luo, H.; He, K. Experimental study on local scour of a spur dike in a curved river channel under the action of tidal bore. Zhejiang Hydrotech. 2022, 50, 32–35, 41. (In Chinese) [Google Scholar]
- Zhang, Z.; Pan, C.; Zeng, J.; Chen, F.; Qin, H.; He, K.; Zhu, K.; Zhao, E. Hydrodynamics of tidal bore overflow on the spur dike and its influence on the local scour. Ocean Eng. 2022, 266, 113140. [Google Scholar] [CrossRef]
- Pan, D.; Li, Y. Tidal bore scour around a spur dike. J. Mar. Sci. Eng. 2022, 10, 1086. [Google Scholar] [CrossRef]
- Yu, P.; Pan, C. 1D numerical simulation of tidal bore in Qiantang River. Chin. J. Hydrodyn. 2010, 25, 669–675. (In Chinese) [Google Scholar]
- Pan, C.; Lu, H. 2D numerical model for discontinuous shallow water flows and application to simulation of tidal bore. J. Zhejiang Univ. (Eng. Sci.) 2009, 43, 2107–2113. (In Chinese) [Google Scholar]
- Pan, C.; Lu, H.; Zeng, J. 2D numerical simulation for sediment transport affected by tidal bore in the Qiantang River. Shuili Xuebao 2011, 42, 798–804. (In Chinese) [Google Scholar]
- Pan, C.; Lin, B.; Mao, X. Case study: Numerical modeling of the tidal bore on the Qiantang River, China. J. Hydraul. Eng. 2007, 133, 130–138. [Google Scholar] [CrossRef]
- Rong, G.; Wei, W.; Liu, Y.; Xu, G. Study on flow characteristics near spur dikes under tidal bore. Shuili Xuebao 2012, 43, 296–301. (In Chinese) [Google Scholar]
- Xiao, T.; Chen, Y.; Zhang, Y.; Zhang, Z.; Zhang, Q.; Ma, L.; Li, N.; Zong, X.; Yang, J.; Yu, C. Analysis of local hydrodynamic characteristics of wading buildings under tidal action. J. Phys. Conf. Ser. 2021, 2044, 012179. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, B. Numerical study of the process of tidal bore turning over the groin. Chin. J. Hydrodyn. 2003, 18, 671–678. (In Chinese) [Google Scholar]
- Xu, C.; Yin, M.; Pan, X. Field test and numerical simulation of tidal bore pressures on sheet-pile groin in Qiantang River. Mar. Georesour. Geotechnol. 2016, 34, 303–312. [Google Scholar] [CrossRef]
- Cai, Y.; Cao, Z.; Wang, Y.; Guo, Z.; Chen, R. Experimental and numerical study of the tidal bore impact on a newly-developed sheet-pile groin in Qiantang river. Appl. Ocean Res. 2018, 81, 106–115. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, C.; Chen, R.; Cai, Y. Three-dimensional numerical simulation of bore against on sheet-pile groin. J. Zhejiang Univ. (Eng. Sci.) 2014, 48, 504–513. (In Chinese) [Google Scholar]
- Zhou, M.; Huang, L.; Xiao, Z.; He, L. Stability analysis of geotube groin during construction. Hunan Commun. Sci. Technol. 2012, 38, 127–131. (In Chinese) [Google Scholar]
- Yang, H.; Wu, W.; Wang, W.; Huang, J. Experimental study on stability of sand ribbed soft mattress of dike head for macro-tidal estuary. J. Waterw. Harb. 2009, 30, 408–412. (In Chinese) [Google Scholar]
- Xiong, S. Design of physical sedimentation model for tidal estuaries. Chin. J. Hydrodyn. 1995, 10, 398–404. (In Chinese) [Google Scholar]
- Xiong, S.; Hu, Y. Theory and practice of movable bed model with suspended load for tidal estuary. J. Sediment Res. 1999, 1, 2–7. (In Chinese) [Google Scholar]
- JTS/T 231-2021; Technical Specification for Hydraulic Engineering Simulation Test. People’s Transportation Publishing Co., Ltd.: Beijing, China, 2021. (In Chinese)
Nomenclature of Scale Ratios | Symbols | Number |
---|---|---|
Planar scale ratio | λl | 80 |
Vertical scale ratio | λh | 80 |
Velocity scale ratio | λv | 8.94 |
Time scale ratio | λt | 8.94 |
Incipient velocity scale ratio | λvc | 8.94 |
Settling velocity scale ratio | λω | 8.94 |
Experiment Conditions | Experimental Flow Conditions | Representative Tidal Elevation Process | Tiered Tidal Elevation Process | Measurement Variables | Measurement Methodology |
---|---|---|---|---|---|
One | Neap tide inflow | Flood tide on 7 April | Figure 9 | Scouring at the head of the groin and sediment deposition downstream of the groin | High-precision topographic instrument; high-definition photography |
Two | Spring tide inflow | Flood tide on 1 April | Figure 10 |
Phase | Time Interval | Vp (m/s) | Hp (m) | Vm (cm/s) | Hm (cm) | T (min) | Q (L/s) |
---|---|---|---|---|---|---|---|
Pre-flood period | 15:00–15:51 | 1.2 | 3.5 | 13.4 | 4.4 | 6 | 18 |
Rapid high-tide period | 15:51–16:32 | 2.5 | 4.53 | 28 | 5.7 | 6 | 48 |
16:32–17:36 | 2 | 5.11 | 22.4 | 6.4 | 7 | 43 | |
Slack-water period | 17:36–18:27 | 0.5 | 5.17 | 5.6 | 6.5 | 7 | 11 |
Phase | Time Interval | Vp (m/s) | Hp (m) | Vm (cm/s) | Hm (cm) | T (min) | Q (L/s) |
---|---|---|---|---|---|---|---|
Pre-flood period | 12:00–12:30 | 1.5 | 4.76 | 16.8 | 5.9 | 4 | 30 |
Rapid high-tide period | 12:30–13:00 | 4 | 6.66 | 45 | 8.4 | 4 | 113.4 |
13:00–13:58 | 3 | 7.53 | 33.5 | 9.4 | 7 | 95 | |
Slack-water period | 13:58–15:00 | 0.8 | 7.9 | 8.9 | 10 | 7 | 26.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, X.; Gao, H.; Fan, K.; Xu, J.; Li, J.; Xia, C.; Pang, X. Comparative Experimental Study of Geotube Groins and Mixed Clay–Geotube Groins under Various Flow Conditions. Water 2023, 15, 3844. https://doi.org/10.3390/w15213844
Tu X, Gao H, Fan K, Xu J, Li J, Xia C, Pang X. Comparative Experimental Study of Geotube Groins and Mixed Clay–Geotube Groins under Various Flow Conditions. Water. 2023; 15(21):3844. https://doi.org/10.3390/w15213844
Chicago/Turabian StyleTu, Xiaobing, Hongxiang Gao, Kejie Fan, Jiahao Xu, Jianxiong Li, Chunchen Xia, and Xinjie Pang. 2023. "Comparative Experimental Study of Geotube Groins and Mixed Clay–Geotube Groins under Various Flow Conditions" Water 15, no. 21: 3844. https://doi.org/10.3390/w15213844
APA StyleTu, X., Gao, H., Fan, K., Xu, J., Li, J., Xia, C., & Pang, X. (2023). Comparative Experimental Study of Geotube Groins and Mixed Clay–Geotube Groins under Various Flow Conditions. Water, 15(21), 3844. https://doi.org/10.3390/w15213844