Assessing Groundwater Quality for Sustainable Drinking and Irrigation: A GIS-Based Hydro-Chemical and Health Risk Study in Kovilpatti Taluk, Tamil Nadu
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Water Quality Index
3.2. Irrigation Water Quality
3.3. Spatial Analysis
3.4. Human Health Risk Assessment (HHRA)
4. Results and Discussion
4.1. Quality of Water for Drinking
4.2. Water Quality Index
4.2.1. Groundwater Suitability Assessment for Irrigation
4.2.2. Sodium Absorption Ratio
4.2.3. Sodium Percent (Na%)
4.2.4. Bicarbonate Hazard
4.2.5. Magnesium Hazard Ratio
4.3. Primary Elements Governing Groundwater Chemistry
4.3.1. Gibbs Plot
4.3.2. Piper Plot
4.3.3. Wilcox Plot
4.3.4. Box and Whisker Plot
4.3.5. Correlation Matrix
4.4. Human Health Risk Assessment (HHRA)
5. Conclusions
- As per the Water Quality Index (WQI), 5% of pre-monsoon and 9% of post-monsoon samples are unsuitable for human consumption.
- All Kovilpatti Taluk water samples meet irrigation quality indicators such as the sodium absorption ratio and sodium percent.
- Nonetheless, the Magnesium Hazard Ratio and Residual Sodium Carbonate values indicate that 29% of pre-monsoon samples and 59% of post-monsoon samples are unsuitable for irrigation, while 71% of pre-monsoon and 9% of post-monsoon samples meet the required criteria.
- The observed variation can be attributed to the interaction of alkaline earth elements with both rocks and water, which surpasses the influence of alkali elements, as demonstrated by the data from the Piper and Gibbs plots. Additionally, the correlation matrix reveals a positive correlation between TDS and EC with chloride, sodium, and sulfate.
- The Gibbs plots reveal a comparison between the pre- and post-monsoon seasons, indicating increased evaporation and decreased weathering, particularly in the case of Cl+HCO3 and Na+Ca, during the post-monsoon period. The majority of the samples, such as C1, C21, C3, and C4, fall within the S1 category.
- Box and whisker plots show more pre-monsoon values due to post-monsoon alterations from rainfall.
- Kovilpatti Taluk is moderate primarily for drinking and irrigation, with the pre-monsoon showing moderate to poor conditions due to industrialization.
- The post-monsoon improves due to precipitation. Due to high nitrate and fluoride pre-monsoon, Mooppanpatti, Illuppaiurani, and Vijayapuri pose serious health risks.
- Kadambu, Melparaipatti, Therkuilandhaikulam, and Vadakku Vandanam have low risks. With the post-monsoon, there are higher risks in Mooppanpatti and Illuppaiurani.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Modibo Sidibé, A.; Lin, X.; Koné, S. Assessing Groundwater Mineralization Process, Quality, and Isotopic Recharge Origin in the Sahel Region in Africa. Water 2019, 11, 789. [Google Scholar] [CrossRef]
- APHA Standard Methods for Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA,, 2012; p. 1360.
- BIS Indian Standard Drinking Water Specification; Bureau of Indian Standard: New Delhi, India, 2000.
- Knobeloch, L.; Salna, B.; Hogan, A.; Postle, J.; Anderson, H. Blue Babies and Nitrate-Contaminated Well Water. Environ. Health Perspect. 2000, 108, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Nishanthiny, S.C.; Thushyanthy, M.; Barathithasan, T.; Saravanan, S. Irrigation Water Quality Based on Hydro Chemical Analysis, Jaffna, Sri Lanka. Am.-Eurasian J. Agric. Environ. Sci. 2010, 7, 100–102. [Google Scholar]
- Chidambaram, S.; Kumar, G.S.; Prasanna, M.V.; Peter, A.J.; Ramanthan, A.; Srinivasamoorthy, K. A study on the hydrogeology and hydrogeochemistry of groundwater from different depths in a coastal aquifer: Annamalai Nagar, Tamilnadu, India. Environ. Geol. 2009, 57, 59–73. [Google Scholar] [CrossRef]
- Eaton, F.M. Significant carbonates in irrigation waters. Soil Sci. 1950, 69, 123–133. [Google Scholar] [CrossRef]
- Krishna Kumar, S.; Bharani, R.; Magesh, N.S.; Godson, P.S.; Chandrasekar, N. Hydrogeochemistry and groundwater quality appraisal of part of south Chennai coastal aquifers, Tamil Nadu, India using WQI and fuzzy logic method. Appl. Water Sci. 2014, 4, 341–350. [Google Scholar] [CrossRef]
- Venkatramanan, S.; Chung, S.Y.; Ramkumar, T.; Gnanachandrasamy, G.; Vasudevan, S.; Lee, S.Y. Application of GIS and hydrogeochemistry of groundwater pollution status of Nagapattinam district of Tamil Nadu, India. Environ. Earth Sci. 2015, 73, 4429–4442. [Google Scholar] [CrossRef]
- Jha, S.K.; Singh, R.K.; Damodaran, T.; Mishra, V.K.; Sharma, D.K.; Rai, D. Fluoride in Groundwater: Toxicological Exposure and Remedies. J. Toxicol. Environ. Health Part B 2013, 16, 52–66. [Google Scholar] [CrossRef]
- Wick, K.; Heumesser, C.; Schmid, E. Groundwater nitrate contamination: Factors and indicators environ manage. J. Environ. Manag. 2012, 111, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Kelly, W.P. Use of Saline Irrigation Water. Soil Sci. 1963, 95, 355–391. [Google Scholar] [CrossRef]
- Sundar, M.L.; Ragunath, S.; Hemalatha, J.; Vivek, S.; Mohanraj, M.; Sampathkumar, V.; Ansari, A.M.S.; Parthiban, V.; Manoj, S. Simulation of groundwater quality for Noyyal river basin of Coimbatore city, Tamilnadu using MODFLOW. J. Chemosphere 2022, 306, 135649. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.D.; Logesh, N.; Lakshumanan, C.; Sánchez-Zavala, J.L. Decadal-scale spatiotemporal changes in land use/land cover of El Potosi Basin at semi-arid northeast Mexico and evolution of peat fire between 1980-2020 CE. J. South Am. Earth Sci. 2021, 110, 103395. [Google Scholar] [CrossRef]
- Natarajan, L.; Usha, T.; Gowrappan, M.; Kasthuri, B.P.; Moorthy, P.; Chokkalingam, L. Flood Susceptibility Analysis in Chennai Corporation Using Frequency Ratio Model. J. Indian Soc. Remote Sens. 2021, 49, 1533–1543. [Google Scholar] [CrossRef]
- Dedzo, M.G.; Tsozué, D.; Mimba, M.E.; Teddy, F.; Nembungwe, R.M.; Linida, S. Importance of Rocks and Their Weathering Products on Groundwater Quality in Central-East Cameroon. Hydrology 2017, 4, 23. [Google Scholar] [CrossRef]
- Brella, D.; Belkhiri, L.; Tiri, A.; Salhi, H.; Lakouas, F.E.; Nouibet, R.; Amrane, A.; Merdoud, R.; Mouni, L. Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria. Hydrology 2023, 10, 171. [Google Scholar] [CrossRef]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jebari, S.; Bourrié, G. Water Quality Indices: Challenges and Application Limits in the Literature. Water 2019, 11, 361. [Google Scholar] [CrossRef]
- Jalali, M. Hydrogeochemistry of Groundwater and Its Suitability for Drinking and Agricultural Use in Nahavand, Western Iran. Nat. Resour. Res. 2011, 20, 65–73. [Google Scholar] [CrossRef]
- Kumar, K.N.; Reddy, A.G.S.; Reddy, R.M.; Varma, K.S. Preliminary Investigations of Ground Water Quality in Hyderabad City, Andhra Pradesh, India. Int. J. Chem. Sci. 2009, 7, 59–70. [Google Scholar]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water analyses. Eos Trans. Am. Geophys. Union 1953, 25, 914–928. [Google Scholar]
- Mammeri, A.; Tiri, A.; Belkhiri, L.; Salhi, H.; Brella, D.; Lakouas, E.; Tahraoui, H.; Amrane, A.; Mouni, L. Assessment of Surface Water Quality Using Water Quality Index and Discriminant Analysis Method. Water 2023, 15, 680. [Google Scholar] [CrossRef]
- Belkhiri, L.; Mouni, L. Geochemical modeling of groundwater in the El Eulma area, Algeria. Desalination Water Treat. 2013, 51, 1468–1476. [Google Scholar] [CrossRef]
- Roy, P.D.; Selvam, S.; Gopinath, S.; Logesh, N.; Sánchez-Zavala, J.L.; Lakshumanan, C. Geochemical evolution and seasonality of groundwater recharge at water-scarce southeast margin of the Chihuahuan Desert in Mexico. Environ. Res. 2022, 203, 111847. [Google Scholar] [CrossRef] [PubMed]
- Derdour, A.; Abdo, H.G.; Almohamad, H.; Alodah, A.; Al Dughairi, A.A.; Ghoneim, S.S.M.; Ali, E. Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments. Sustainability 2023, 15, 9687. [Google Scholar] [CrossRef]
- Alao, J.O.; Abdo, H.G.; Ayejoto, D.A.; Mohammed, M.A.; Danladi, E.; Saqr, A.M.; Almohamad, H.; Fahad, A. Evaluation of Groundwater contamination and the Health Risk Due to Landfills using integrated geophysical methods and Physiochemical Water Analysis. Case Stud. Chem. Environ. Eng. 2023, 100523. [Google Scholar] [CrossRef]
- Alao, J.O.; Fahad, A.; Abdo, H.G.; Ayejoto, D.A.; Almohamad, H.; Ahmad, M.S.; Nur, M.S.; Danjuma, T.T.; Yusuf, M.A.; Francis, O.T.; et al. Effects of dumpsite leachate plumes on surface and groundwater and the possible public health risks. Sci. Total Environ. 2023, 897, 165469. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Xu, Z.; Liu, Z.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. Impact of dam construction on precipitation: A regional perspective. Mar. Freshw. Res. 2022, 74, 877–890. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Liu, M.; Yin, Z.; Liu, X.; Yin, L.; Zheng, W. Remote sensing and geostatistics in urban water-resource monitoring: A review. Mar. Freshw. Res. 2023, 74, 747–765. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Keim, B.D.; Konsoer, K.; Yin, Z.; Liu, M.; Zheng, W. Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China. Ecol. Indic. 2023, 154, 110837. [Google Scholar] [CrossRef]
- Wilcox. Classification and Use of Irrigation Waters; US Department of Agriculture: Washington, DC, USA, 1955; p. 969. [Google Scholar]
- Raghunath, H.M. Groundwater, 2nd ed.; Wiley Eastern Ltd.: New Delhi, India, 1963; pp. 344–369. [Google Scholar]
- Sundararaj, P.; Madurai Chidambaram, S.K.; Sivakumar, V.; Natarajan, L. Groundwater quality assessment and its suitability for drinking and agricultural purpose, Dindigul taluk, Tamilnadu, India. J. Chem. Pap. 2022, 76, 6591–6605. [Google Scholar] [CrossRef]
- Ramakrishnaiah, C.R.; Sadashivaiah, C.; Ranganna, G. Assessment of Water Quality Index for the Groundwater in Tumkur Taluk, Karnataka State, India. E -J. Chem. 2009, 6, 523–530. [Google Scholar] [CrossRef]
- Richard, L.A. Diagnosis and Improvement of Saline and Alkali Soils; Agric. Handbook, 60; U.S. Department of Agriculture: Washington, DC, USA, 1954; p. 160. [Google Scholar]
- Adelagun, R.O.A.; Etim, E.E.; Godwin, O.E. Application of Water Quality Index for the Assessment of Water from Different Sources in Nigeria. Promis. Tech. Wastewater Treat. Water Qual. Assess. 2021, 267, 25. [Google Scholar] [CrossRef]
- Charoenlerkthawin, W.; Bidorn, K.; Panneerselvam, B.; Sriariyawat, A.; Otarawanna, S.; Bidorn, B. Monitoring of nature-based solution for stabilizing eroded muddy coastline of the Chao Phraya Delta, Thailand. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2023; Volume 1226, p. 012013. [Google Scholar]
- Paneerselvam, B.; Ravichandran, N.; Li, P.; Thomas, M.; Charoenlerkthawin, W.; Bidorn, B. Machine learning approach to evaluate the groundwater quality and human health risk for sustainable drinking and irrigation purposes in South India. Chemosphere 2023, 336, 139228. [Google Scholar] [CrossRef]
- Selvam, S.; Dar, F.A.; Magesh, N.S.; Singaraja, C.; Venkatramanan, S.; Chung, S.Y. 2016 Application of remote sensing and GIS for delineating groundwater recharge potential zones of Kovilpatti Municipality, Tamil Nadu using IF technique. Earth Sci. Inform. 2016, 9, 137–150. [Google Scholar] [CrossRef]
- Sreedevi, P.D.; Sreekanth, P.D.; Ahmed, S.; Reddy, D.V. Evaluation of groundwater quality for irrigation in a semi-arid region of South India. Sustain. Water Resour. Manag. 2019, 5, 1043–1056. [Google Scholar] [CrossRef]
- Shanmuharajan, M.B.; Aparna, S.B.; Vivek, S. Groundwater Vulnerability Assessment Phenomenon using DRASTIC & Modified DRASTIC Modeling validated with Nitrate Concentration. Glob. NEST J. 2023, 25, 153–163. [Google Scholar]
- Saravanan, S.; Abijith, D.; Reddy, N.M.; Parthasarathy, K.S.S.; Janardhanam, N.; Sathiyamurthi, S.; Sivakumar, V. Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India. Urban Clim. 2023, 49, 101503. [Google Scholar] [CrossRef]
- Sivakumar, V.; Sashik Kumar, M.C.; Natarajan, L.; Roy, P.D.; Chokkalingam, L. Vulnerability Assessment of Groundwater in Industrialized Tiruppur Area of South India using GIS-based DRASTIC model. J. Geol. Soc. India 2022, 98, 696–702. [Google Scholar] [CrossRef]
- Vivek, S.; Kumar, M.C. Hydro-Geochemical and Quality Assessment of Groundwater for Irrigation Purpose in Tirupur Taluk, Tamil Nadu, India. J. Environ. Prot. Ecol. 2021, 22, 1836–1850. [Google Scholar]
- Sivakumar, V.; Chidambaram, S.M.; Velusamy, S.; Rathinavel, R.; Shanmugasundaram, D.K.; Sundararaj, P.; Shanmugamoorthy, M.; Thangavel, R.; Balu, K. An integrated approach for an impact assessment of the tank water and groundwater quality in Coimbatore region of South India: Implication from anthropogenic activities. J. Environ. Monit. Assess. 2022, 195, 88. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking Water Quality, Recommendations, 3rd ed.; World Health Organization: Geneva, Switzerland, 2000; Volume 1, p. 515. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; ISBN 9789241548151. [Google Scholar]
- Ma, S.; Qiu, H.; Yang, D.; Wang, J.; Zhu, Y.; Tang, B.; Sun, K.; Cao, M. Surface multi-hazard effect of underground coal mining. Landslides 2023, 20, 39–52. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, H.; Ye, B.; Liu, Y.; Zhang, J.; Zhu, Y. Distribution and Recurrence of Warming-induced Retrogressive Thaw Slumps on the Central Qinghai-Tibet Plateau. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF007047. [Google Scholar] [CrossRef]
- Lin, X.; Lu, K.; Hardison, A.K.; Liu, Z.; Xu, X.; Gao, D.; Gong, J.; Gardner, W.S. Membrane inlet mass spectrometry method (REOX/MIMS) to measure 15N-nitrate in isotope-enrichment experiments. Ecol. Indic. 2021, 126, 107639. [Google Scholar] [CrossRef]
- Wu, B.; Quan, Q.; Yang, S.; Dong, Y. A social-ecological coupling model for evaluating the human-water relationship in basins within the Budyko framework. J. Hydrol. 2023, 619, 129361. [Google Scholar] [CrossRef]
- Li, W.; Zhu, J.; Fu, L.; Zhu, Q.; Xie, Y.; Hu, Y. An augmented representation method of debris flow scenes to improve public perception. Int. J. Geogr. Inf. Sci. 2021, 35, 1521–1544. [Google Scholar] [CrossRef]
- Fang, Y.-K.; Wang, H.-C.; Fang, P.-H.; Liang, B.; Zheng, K.; Sun, Q.; Li, X.-Q.; Zeng, R.; Wang, A.-J. Life cycle assessment of integrated bioelectrochemical-constructed wetland system: Environmental sustainability and economic feasibility evaluation. Resour. Conserv. Recycl. 2023, 189, 106740. [Google Scholar] [CrossRef]
- Yang, M.; Wang, H.; Hu, K.; Yin, G.; Wei, Z. IA-Net: An Inception–Attention-Module-Based Network for Classifying Underwater Images from Others. IEEE J. Ocean. Eng. 2022, 47, 704–717. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Ravichandran, N.; Kaliyappan, S.P.; Karuppannan, S.; Bidorn, B. Quality and Health Risk Assessment of Groundwater for Drinking and Irrigation Purpose in Semi-Arid Region of India Using Entropy Water Quality and Statistical Techniques. Water 2023, 15, 601. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Muniraj, K.; Pande, C.; Ravichandran, N.; Thomas, M.; Karuppannan, S. Geochemical evaluation and human health risk assessment of nitrate-contaminated groundwater in an industrial area of South India. Environ. Sci. Pollut. Res. 2022, 29, 86202–86219. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, L.; Zhong, X.; Yao, T.; Qi, J.; Wang, Y.; Xue, Y. Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau. Sci. Bull. 2022, 67, 474–478. [Google Scholar] [CrossRef]
- Qiu, D.; Zhu, G.; Bhat, M.A.; Wang, L.; Liu, Y.; Sang, L.; Lin, X.; Zhang, W.; Sun, N. Water use strategy of nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: Based on stable isotope data. J. Hydrol. 2023, 624, 129918. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, D.; Sheng, H.; Xia, J.; Kan, P.; Yao, Z.; Chen, H.; Li, G.; Zhu, D.Z.; Liu, H. Constructed wetlands as hotspots of antibiotic resistance genes and pathogens: Evidence from metagenomic analysis in Chinese rural areas. J. Hazard. Mater. 2023, 447, 130778. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, B.; Ravichandran, N.; Dumka, U.C.; Thomas, M.; Charoenlerkthawin, W.; Bidorn, B. A novel approach for the prediction and analysis of daily concentrations of particulate matter using machine learning. Sci. Total Environ. 2023, 897, 166178. [Google Scholar] [CrossRef]
- Sankar, K.; Karunanidhi, D.; Kalaivanan, K.; Subramani, T.; Shanthi, D.; Balamurugan, P. Integrated hydrogeophysical and GIS based demarcation of groundwater potential and vulnerability zones in a hard rock and sedimentary terrain of Southern India. Chemosphere 2023, 316, 137305. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Muniraj, K.; Duraisamy, K.; Pande, C.; Karuppannan, S.; Thomas, M. An integrated approach to explore the suitability of nitrate-contaminated groundwater for drinking purposes in a semiarid region of India. Environ. Geochem. Health 2023, 45, 647–663. [Google Scholar] [CrossRef]
- Madhavan, S.; Kolanuvada, S.R.; Sampath, V.; Roy, P.D.; Moorthy, P.; Natarajan, L.; Chokkalingam, L. Assessment of groundwater vulnerability using water quality index and solute transport model in Poiney sub-basin of south India. Environ. Monit. Assess. 2023, 195, 272. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.; Panneerselvam, B.; Kaliappan, S.P. Effect of high nitrate contamination of groundwater on human health and water quality index in semi-arid region, South India. Arab. J. Geosci. 2022, 15, 242. [Google Scholar] [CrossRef]
- Shunmugapriya, K.; Panneerselvam, B.; Muniraj, K.; Ravichandran, N.; Prasath, P.; Thomas, M.; Duraisamy, K. Integration of multi criteria decision analysis and GIS for evaluating the site suitability for aquaculture in southern coastal region, India. Mar. Pollut. Bull. 2021, 172, 112907. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, Z. Analysis for 3-D morphology structural changes for underwater topographical in Culebrita Island. Int. J. Remote Sens. 2023, 44, 2458–2479. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, G.; Zhou, X.; Xu, C.; Zhao, D.; Lin, J.; Liu, Z.; Zhang, H.; Wang, Q.; Xu, J.; et al. Adaptive model for the water depth bias correction of bathymetric LiDAR point cloud data. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103253. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Huang, W.; Tian, J.; Liu, S.; Yang, B.; Zheng, W. Haze Grading Using the Convolutional Neural Networks. Atmosphere 2022, 13, 522. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, Y.; Shi, P.; Jia, W.; Zhou, J.; Liu, Y.; Ma, X.; Pan, H.; Zhang, Y.; Zhang, Z.; et al. Stable water isotope monitoring network of different water bodies in Shiyang River basin, a typical arid river in China. Earth Syst. Sci. Data 2022, 14, 3773–3789. [Google Scholar] [CrossRef]
- Nong, X.; Lai, C.; Chen, L.; Shao, D.; Zhang, C.; Liang, J. Prediction modelling framework comparative analysis of dissolved oxygen concentration variations using support vector regression coupled with multiple feature engineering and optimization methods: A case study in China. Ecol. Indic. 2023, 146, 109845. [Google Scholar] [CrossRef]
Description | IR (L/day) | EF (day/year) | ED (year) | BW (kg) | AT (day) | SA (cm2) | ET (h/day) |
---|---|---|---|---|---|---|---|
Adults | 2 | 350 | 40 | 70 | 14,000 | 18,000 | 0.58 |
Children | 0.78 | 350 | 4 | 15 | 1400 | 6600 | 1 |
Pre-Monsoon | Post-Monsoon | |||||||
---|---|---|---|---|---|---|---|---|
Water Quality Parameters | Concentration | Avg | SD | Concentration | Avg | SD | ||
Max | Min | Max | Min | |||||
pH | 8.70 | 7.50 | 8.14 | 0.80 | 8.30 | 6.40 | 7.44 | 0.44 |
TDS | 2020.00 | 103.00 | 642.71 | 743.72 | 2240.0 | 70.00 | 733.33 | 836.53 |
EC | 4303.00 | 198.00 | 1290.33 | 1528.0 | 4670.0 | 144.00 | 1481.43 | 1694.88 |
ORP | −22.00 | −80.00 | −54.48 | 63.50 | 12.00 | −63.00 | −25.29 | 41.60 |
DO | 2.90 | 1.00 | 1.82 | 5.34 | 2.60 | 1.10 | 1.94 | 5.20 |
Cl | 1684.00 | 30.00 | 290.52 | 442.15 | 1853.0 | 6.00 | 501.71 | 663.87 |
Alkalinity | 1484.00 | 85.00 | 608.48 | 574.13 | 720.00 | 24.00 | 307.90 | 311.18 |
Total Hardness | 223.00 | 34.00 | 93.00 | 90.57 | 224.00 | 42.00 | 122.00 | 113.82 |
Calcium | 139.00 | 27.00 | 70.90 | 63.59 | 155.00 | 32.00 | 79.00 | 71.14 |
Magnesium | 98.00 | 5.00 | 22.86 | 26.22 | 129.00 | 7.00 | 43.00 | 43.64 |
Sodium | 95.00 | 5.00 | 28.62 | 33.01 | 98.00 | 3.00 | 28.95 | 34.05 |
Potassium | 22.00 | 1.00 | 6.86 | 5.32 | 25.00 | 1.00 | 7.62 | 6.19 |
Sulphate | 547.00 | 20.00 | 173.10 | 203.67 | 584.00 | 15.00 | 213.29 | 230.88 |
WQI | 418.00 | 48.00 | 132.10 | 147.75 | 436.09 | 27.15 | 156.51 | 170.53 |
Nitrate | 45 | 10 | 23.952 | 11.112 | 42 | 7 | 19.571 | 10.630 |
Fluoride | 1.47 | 0.9 | 1.244 | 0.170 | 1.26 | 0.7 | 1.109 | 0.139 |
Water Quality Parameters (mg/L) | WHO 2004 | % of the Sample Exceeds the Permitted Limit in the PRM | % of the Sample Exceeds the Permitted Limit in the POM | |
---|---|---|---|---|
Most Desirable Limits | Maximum Permissible Limit | |||
pH (no unit) | 6.5 | 8.5 | 4.76 | - |
TDS | 500 | 1500 | 9.52 | 4.76 |
EC (μS/cm) | - | 600 | 61.9 | 80.95 |
DO | 5 | - | - | - |
Cl | 250 | 1000 | 4.76 | 9.52 |
Alkalinity | 137 | 287 | 90.47 | 57.14 |
Total Hardness (mg/L) | 200 | 600 | - | - |
Calcium (mg/L) | 75 | 200 | - | - |
Magnesium (mg/L) | 30 | 150 | - | - |
Sodium (mg/L) | - | 200 | - | - |
Potassium (mg/L) | - | 10 | 23.8 | 14.28 |
Sulphate (mg/L) | 200 | 400 | 9.52 | 9.52 |
Nitrate (mg/L) | 10 | 45 | 10 | 6 |
Fluoride (mg/L) | 1.5 | 1 | 5 | 3 |
S.No | Station Name | Pre-Monsoon | Post-Monsoon | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SAR | %Na | MHR | KI | RSC | SAR | %Na | MHR | KI | RSC | ||
1 | Mooppanpatti | 0.9 | 20 | 56 | 0.24 | 15 | 0.8 | 18 | 50 | 0.22 | 1 |
2 | Illuppaiurani | 0.9 | 24 | 10 | 0.31 | 9 | 0.6 | 13 | 38 | 0.15 | −6 |
3 | Vijayapuri | 0.3 | 14 | 14 | 0.16 | 10 | 0.2 | 6 | 56 | 0.06 | −2 |
4 | Sivandhipatti | 0.2 | 7 | 59 | 0.07 | 4 | 0.1 | 2 | 59 | 0.02 | −2 |
5 | Theethampatti | 0.2 | 8 | 51 | 0.09 | 6 | 0.3 | 10 | 63 | 0.11 | 2 |
6 | VadakkuVandanam | 0.1 | 6 | 16 | 0.07 | 6 | 0.3 | 8 | 50 | 0.09 | −4 |
7 | Chokkalingapuram | 0.1 | 4 | 30 | 0.04 | 7 | 0.2 | 5 | 58 | 0.05 | −6 |
8 | Kadambur | 0.1 | 5 | 32 | 0.05 | 8 | 0.2 | 6 | 30 | 0.06 | −3 |
9 | Melparaipatti | 0.1 | 3 | 17 | 0.03 | −2 | 0.1 | 3 | 24 | 0.03 | −5 |
10 | Uttuppatti | 0.1 | 5 | 15 | 0.06 | 3 | 0.1 | 4 | 17 | 0.04 | −4 |
11 | Mandithoppu | 0.3 | 14 | 50 | 0.16 | −1 | 0.1 | 5 | 25 | 0.06 | −2 |
12 | Thalavaipuram | 0.2 | 10 | 39 | 0.11 | 3 | 0.3 | 8 | 68 | 0.09 | 3 |
13 | Idaiseval | 1.1 | 29 | 43 | 0.42 | 6 | 1.2 | 31 | 41 | 0.46 | −2 |
14 | Akilandapuram | 0.3 | 12 | 34 | 0.13 | −1 | 0.2 | 9 | 32 | 0.09 | −3 |
15 | Kayathar | 1.0 | 29 | 20 | 0.41 | 0 | 1.0 | 21 | 50 | 0.27 | −5 |
16 | Rajapuddukudi | 0.3 | 15 | 18 | 0.17 | 7 | 0.3 | 8 | 53 | 0.09 | 0 |
17 | Attikulam | 1.6 | 32 | 42 | 0.46 | 3 | 1.5 | 32 | 31 | 0.47 | −3 |
18 | Therkuilandhaikulam | 0.3 | 12 | 37 | 0.13 | 4 | 0.3 | 8 | 40 | 0.09 | −2 |
19 | Chidambarampatti | 1.4 | 39 | 16 | 0.64 | 1 | 0.9 | 17 | 66 | 0.21 | −7 |
20 | Kumarettiyapuram | 0.9 | 17 | 66 | 0.20 | −2 | 0.8 | 15 | 69 | 0.17 | −9 |
21 | Kalankaraippatti | 1.3 | 35 | 15 | 0.54 | 9 | 1.2 | 32 | 18 | 0.47 | 6 |
Parameters | Range | Water Classification | % of Water Samples | |
---|---|---|---|---|
PRM | POM | |||
MHR | <50 | Suitable | 81 | 41 |
>50 | Unsuitable | 19 | 49 | |
RSC | <1.25 | Good | 29 | 86 |
1.25–2.5 | Doubtful | - | 5 | |
>2.5 | Unsuitable | 71 | 9 | |
SAR | <10 | Too Good | 100 | 100 |
10–18 | Good | - | - | |
18–26 | Average | - | - | |
>26 | Bad | - | - | |
%Na | <20% | Too Good | 71 | 81 |
20–40% | Good | 29 | 19 | |
40–60% | Allowable | - | - | |
60–80% | Suspectful | - | - | |
>80% | Not Suitable | - | - | |
Kelly ratio | <1 | Suitable | 100 | 100 |
>1 | Unsuitable | - | - |
(a) | ||||||||||
pH | TDS | EC | Cl− | Alkalinity | Ca2+ | Mg2+ | Na+ | K+ | SO42− | |
pH | 1 | |||||||||
TDS | −0.167 | 1 | ||||||||
EC | −0.185 | 0.995 | 1 | |||||||
Cl− | −0.114 | 0.678 | 0.71 | 1 | ||||||
Alkalinity | −0.381 | 0.481 | 0.478 | 0.36 | 1 | |||||
Ca2+ | −0.346 | 0.461 | 0.437 | 0.548 | 0.328 | 1 | ||||
Mg2+ | 0.138 | 0.519 | 0.5 | 0.426 | 0.336 | 0.11 | 1 | |||
Na+ | −0.89 | 0.91 | 0.893 | 0.61 | 0.345 | 0.519 | 0.45 | 1 | ||
K+ | −0.33 | 0.786 | 0.784 | 0.635 | 0.158 | 0.383 | 0.218 | 0.82 | 1 | |
SO42− | −0.17 | 0.957 | 0.956 | 0.643 | 0.435 | 0.381 | 0.556 | 0.89 | 0.668 | 1 |
(b) | ||||||||||
pH | TDS | EC | Cl− | Alkalinity | Ca2+ | Mg2+ | Na+ | K+ | SO42− | |
pH | 1 | |||||||||
TDS | 0.5 | 1 | ||||||||
EC | −0.2 | 0.998 | 1 | |||||||
Cl− | −0.19 | 0.614 | 0.635 | 1 | ||||||
Alkalinity | 0.22 | 0.546 | 0.536 | 0.23 | 1 | |||||
Ca2+ | −0.19 | 0.564 | 0.559 | 0.32 | 0.24 | 1 | ||||
Mg2+ | 0.36 | 0.427 | 0.414 | 0.146 | 0.277 | 0.251 | 1 | |||
Na+ | −0.32 | 0.893 | 0.89 | 0.468 | 0.497 | 0.537 | 0.389 | 1 | ||
K+ | −0.139 | 0.771 | 0.773 | 0.653 | 0.229 | 0.371 | 0.212 | 0.818 | 1 | |
SO42− | −0.9 | 0.977 | 0.973 | 0.53 | 0.651 | 0.582 | 0.434 | 0.886 | 0.715 | 1 |
S.No | Station Name | Nitrate (NO3) | Fluoride (F) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ADDing | ADDder | HQing | HQder | HI | ADDing | ADDder | HQing | HQder | HI | ||
1 | Mooppanpatti | 0.6 | 0.0003 | 0.82 | 0.0059 | 0.82 | 1.89 | 0.0023 | 1.95 | 0.0009 | 1.98 |
2 | Illuppaiurani | 0.66 | 0.0004 | 0.79 | 0.0068 | 0.79 | 2.1 | 0.0025 | 1.25 | 0.0009 | 1.25 |
3 | Vijayapuri | 0.5 | 0.0003 | 0.81 | 0.0036 | 0.81 | 1.98 | 0.0255 | 1.5 | 0.0008 | 1.51 |
4 | Sivandhipatti | 0.4 | 0.0003 | 0.69 | 0.0056 | 0.69 | 1.45 | 0.0036 | 1.36 | 0.0006 | 1.36 |
5 | Theethampatti | 0.4 | 0.0004 | 0.59 | 0.0024 | 0.59 | 1.23 | 0.0142 | 1.25 | 0.0005 | 1.26 |
6 | VadakkuVandanam | 0.3 | 0.0002 | 0.45 | 0.0085 | 0.45 | 2.01 | 0.0223 | 1.15 | 0.0001 | 1.15 |
7 | Chokkalingapuram | 0.2 | 0.0001 | 0.32 | 0.0042 | 0.32 | 1.96 | 0.0012 | 1.26 | 0.0002 | 1.28 |
8 | Kadambur | 0.1 | 0.0002 | 0.42 | 0.0036 | 0.42 | 1.25 | 0.0023 | 1.34 | 0.0004 | 1.34 |
9 | Melparaipatti | 0.1 | 0.0003 | 0.25 | 0.0047 | 0.25 | 0.98 | 0.0015 | 1.75 | 0.0003 | 1.76 |
10 | Uttuppatti | 0.2 | 0.0002 | 0.36 | 0.0025 | 0.36 | 1.58 | 0.0215 | 1.23 | 0.0002 | 1.23 |
11 | Mandithoppu | 0.3 | 0.0001 | 0.25 | 0.0049 | 0.25 | 1.63 | 0.0123 | 0.98 | 0.0001 | 0.99 |
12 | Thalavaipuram | 0.2 | 0.0001 | 0.39 | 0.0036 | 0.39 | 1.42 | 0.0213 | 0.68 | 0.0003 | 0.68 |
13 | Idaiseval | 0.2 | 0.0001 | 0.12 | 0.0045 | 0.12 | 0.84 | 0.0021 | 0.96 | 0.0005 | 0.98 |
14 | Akilandapuram | 0.1 | 0.0003 | 0.25 | 0.0085 | 0.25 | 1.69 | 0.0036 | 0.97 | 0.0004 | 0.97 |
15 | Kayathar | 0.3 | 0.0002 | 0.36 | 0.0061 | 0.36 | 1.32 | 0.0021 | 0.99 | 0.0002 | 1.02 |
16 | Rajapuddukudi | 0.4 | 0.0001 | 0.46 | 0.0036 | 0.46 | 1.45 | 0.0034 | 1.36 | 0.0003 | 1.36 |
17 | Attikulam | 0.3 | 0.0001 | 0.45 | 0.0042 | 0.45 | 1.68 | 0.0003 | 1.02 | 0.001 | 1.03 |
18 | Therkuilandhaikulam | 0.5 | 0.0002 | 0.32 | 0.0074 | 0.32 | 0.94 | 0.0025 | 1.36 | 0.0002 | 1.38 |
19 | Chidambarampatti | 0.2 | 0.0002 | 0.12 | 0.0065 | 0.12 | 0.96 | 0.0041 | 1.96 | 0.0003 | 1.97 |
20 | Kumarettiyapuram | 0.1 | 0.0003 | 0.53 | 0.0035 | 0.53 | 2.3 | 0.0039 | 1.74 | 0.0002 | 1.75 |
21 | Kalankaraippatti | 0.3 | 0.0002 | 0.72 | 0.0014 | 0.72 | 1.23 | 0.0009 | 1.85 | 0.0001 | 1.85 |
Average | 0.302 | 0.0002 | 0.450 | 0.004 | 0.450 | 1.518 | 0.007 | 1.329 | 0.0004 | 1.338 | |
Minimum | 0.1 | 0.0001 | 0.12 | 0.0014 | 0.12 | 0.84 | 0.0003 | 0.68 | 0.0001 | 0.68 | |
Maximum | 0.66 | 0.0004 | 0.82 | 0.0085 | 0.82 | 2.3 | 0.0255 | 1.96 | 0.001 | 1.98 |
S.No | Station Name | Nitrate (NO3) | Fluoride (F) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ADDing | ADDder | HQing | HQder | HI | ADDing | ADDder | HQing | HQder | HI | ||
1 | Mooppanpatti | 0.63 | 0.0005 | 1.18 | 0.008 | 1.18 | 5.85 | 0.0276 | 3.51 | 0.0246 | 3.55 |
2 | Illuppaiurani | 0.69 | 0.0006 | 1.15 | 0.0089 | 1.15 | 6.06 | 0.0278 | 2.81 | 0.0246 | 2.85 |
3 | Vijayapuri | 0.53 | 0.0005 | 1.17 | 0.0057 | 1.17 | 5.94 | 0.0508 | 3.06 | 0.0245 | 3.10 |
4 | Sivandhipatti | 0.43 | 0.0005 | 1.05 | 0.0077 | 1.05 | 5.41 | 0.0289 | 2.92 | 0.0243 | 2.96 |
5 | Theethampatti | 0.43 | 0.0006 | 0.95 | 0.0045 | 0.95 | 5.19 | 0.0395 | 2.81 | 0.0242 | 2.85 |
6 | VadakkuVandanam | 0.33 | 0.0004 | 0.81 | 0.0106 | 0.81 | 5.96 | 0.0476 | 2.71 | 0.0238 | 2.75 |
7 | Chokkalingapuram | 0.23 | 0.0003 | 0.68 | 0.0063 | 0.68 | 5.92 | 0.0265 | 2.82 | 0.0239 | 2.86 |
8 | Kadambur | 0.13 | 0.0004 | 0.78 | 0.0057 | 0.78 | 5.21 | 0.0276 | 2.9 | 0.0241 | 2.94 |
9 | Melparaipatti | 0.13 | 0.0005 | 0.61 | 0.0068 | 0.61 | 4.94 | 0.0268 | 3.31 | 0.024 | 3.35 |
10 | Uttuppatti | 0.23 | 0.0004 | 0.72 | 0.0046 | 0.72 | 5.54 | 0.0468 | 2.79 | 0.0239 | 2.83 |
11 | Mandithoppu | 0.33 | 0.0003 | 0.61 | 0.007 | 0.61 | 5.59 | 0.0376 | 2.54 | 0.0238 | 2.58 |
12 | Thalavaipuram | 0.23 | 0.0003 | 0.75 | 0.0057 | 0.75 | 5.38 | 0.0466 | 2.24 | 0.024 | 2.28 |
13 | Idaiseval | 0.23 | 0.0003 | 0.48 | 0.0066 | 0.48 | 4.8 | 0.0274 | 2.52 | 0.0242 | 2.56 |
14 | Akilandapuram | 0.13 | 0.0005 | 0.61 | 0.0106 | 0.61 | 5.65 | 0.0289 | 2.53 | 0.0241 | 2.57 |
15 | Kayathar | 0.33 | 0.0004 | 0.72 | 0.0082 | 0.72 | 5.28 | 0.0274 | 2.55 | 0.0239 | 2.59 |
16 | Rajapuddukudi | 0.43 | 0.0003 | 0.82 | 0.0057 | 0.82 | 5.41 | 0.0287 | 2.92 | 0.024 | 2.96 |
17 | Attikulam | 0.33 | 0.0003 | 0.81 | 0.0063 | 0.81 | 5.64 | 0.0256 | 2.58 | 0.0247 | 2.62 |
18 | Therkuilandhaikulam | 0.53 | 0.0004 | 0.68 | 0.0095 | 0.68 | 4.9 | 0.0278 | 2.92 | 0.0239 | 2.96 |
19 | Chidambarampatti | 0.23 | 0.0004 | 0.48 | 0.0086 | 0.48 | 4.92 | 0.0294 | 3.52 | 0.024 | 3.56 |
20 | Kumarettiyapuram | 0.13 | 0.0005 | 0.89 | 0.0056 | 0.89 | 6.26 | 0.0292 | 3.3 | 0.0239 | 3.34 |
21 | Kalankaraippatti | 0.33 | 0.0004 | 1.08 | 0.0035 | 1.08 | 5.19 | 0.0262 | 3.41 | 0.0238 | 3.45 |
Average | 0.33 | 0.00 | 0.81 | 0.01 | 0.81 | 5.48 | 0.03 | 2.89 | 0.02 | 2.93 | |
Minimum | 0.130 | 0.0003 | 0.480 | 0.004 | 0.480 | 4.800 | 0.026 | 2.240 | 0.024 | 2.276 | |
Maximum | 0.690 | 0.001 | 1.180 | 0.011 | 1.180 | 6.260 | 0.051 | 3.520 | 0.025 | 3.556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivakumar, V.; Ramamoorthy, V.L.; Muthaiyan, U.M.; Kaliyappan, S.; Ravindiran, G.; Shanmugam, S.; Velusamy, P.; Natarajan, L.; Almohamad, H.; Al-Mutiry, M.; et al. Assessing Groundwater Quality for Sustainable Drinking and Irrigation: A GIS-Based Hydro-Chemical and Health Risk Study in Kovilpatti Taluk, Tamil Nadu. Water 2023, 15, 3916. https://doi.org/10.3390/w15223916
Sivakumar V, Ramamoorthy VL, Muthaiyan UM, Kaliyappan S, Ravindiran G, Shanmugam S, Velusamy P, Natarajan L, Almohamad H, Al-Mutiry M, et al. Assessing Groundwater Quality for Sustainable Drinking and Irrigation: A GIS-Based Hydro-Chemical and Health Risk Study in Kovilpatti Taluk, Tamil Nadu. Water. 2023; 15(22):3916. https://doi.org/10.3390/w15223916
Chicago/Turabian StyleSivakumar, Vivek, Venkada Lakshmi Ramamoorthy, Uma Maguesvari Muthaiyan, Shumugapriya Kaliyappan, Gokulan Ravindiran, Sethuraman Shanmugam, Priya Velusamy, Logesh Natarajan, Hussein Almohamad, Motrih Al-Mutiry, and et al. 2023. "Assessing Groundwater Quality for Sustainable Drinking and Irrigation: A GIS-Based Hydro-Chemical and Health Risk Study in Kovilpatti Taluk, Tamil Nadu" Water 15, no. 22: 3916. https://doi.org/10.3390/w15223916
APA StyleSivakumar, V., Ramamoorthy, V. L., Muthaiyan, U. M., Kaliyappan, S., Ravindiran, G., Shanmugam, S., Velusamy, P., Natarajan, L., Almohamad, H., Al-Mutiry, M., & Abdo, H. G. (2023). Assessing Groundwater Quality for Sustainable Drinking and Irrigation: A GIS-Based Hydro-Chemical and Health Risk Study in Kovilpatti Taluk, Tamil Nadu. Water, 15(22), 3916. https://doi.org/10.3390/w15223916