Simulating Potential Impacts of Solar MajiPump on the Economy and Nutrition of Smallholder Farmers in Sub-Humid Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Modelling Methods and Procedures
2.3.1. FARMSIM Model Description
2.3.2. Economic Analysis
2.3.3. Nutrition Analysis
2.4. Baseline and Alternative Scenarios
2.5. Assumptions
3. Results and Discussions
3.1. Economic Impacts
3.2. Simulation of Nutrition Impacts
3.3. Impacts of Technologies on Nutrition
3.4. Impacts of Technologies in Sub-Saharan Africa
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Appendix A. Summary Model Input Data for the Baseline and Alternative Scenarios
Crops | Baseline Scenario | |||||||||||
Average Yield (kg/ha) | Planted Area (ha) | Seed (ETB/ha) | Fertilizer (ETB/ha) | Chemicals (ETB/ha) | Land Preparation (ETB/ha) | Planting (ETB/ha) | Weeding (ETB/ha) | Irrigation (ETB/ha) | Harvest (ETB/ha) | Other (ETB/ha) | Average Price (ETB) | |
Maize | 2000 | 87 | 720 | 3120 | 1500 | 1491 | 1080 | 156 | 0 | 2000 | 103 | 12 |
Millet | 800 | 39 | 520 | 2350 | 560 | 3200 | 1280 | 144 | 0 | 2280 | 13 | 14 |
Teff | 600 | 10 | 1750 | 3256 | 600 | 4800 | 1280 | 300 | 0 | 2580 | 0 | 32 |
Onion | 2400 | 1 | 12,000 | 2400 | 923 | 6750 | 12,600 | 1354 | 0 | 778 | 11,965 | 19 |
Pepper | 2504 | 1 | 1600 | 2500 | 923 | 6750 | 10,600 | 1353 | 0 | 550 | 300 | 22 |
Crops | Alternative Scenario | |||||||||||
Average Yield (kg/ha) | Planted Area (ha) | Seed (ETB/ha) | Fertilizer (ETB/ha) | Chemicals (ETB/ha) | Land Preparation (ETB/ha) | Planting (ETB/ha) | Weeding (ETB/ha) | Irrigation (ETB/ha) | Harvest (ETB/ha) | Other (ETB/ha) | Average Price (ETB) | |
Maize | 2000 | 21 | 720 | 2920 | 1500 | 1491 | 1080 | 156 | 0 | 2000 | 103 | 12 |
Millet | 800 | 21 | 520 | 1560 | 560 | 3200 | 1280 | 144 | 0 | 2280 | 13 | 14 |
Teff | 600 | 4 | 1750 | 2950 | 600 | 4800 | 1280 | 300 | 0 | 2580 | 0 | 32 |
Onion | 3200 | 8 | 12,000 | 2400 | 923 | 6750 | 12,600 | 1354 | 968 | 778 | 11,965 | 19 |
Pepper | 3504 | 8 | 1600 | 2400 | 923 | 6750 | 10,600 | 1354 | 1000 | 590 | 450 | 22 |
Appendix B. Cumulative Distribution Function of the Net Present Value (ETB)
Appendix C. Household Dietary Diversity Score (HDDS) for Dengeshita
Food Groups | Examples | Food Group Consumption Score (Yes = 1 or No = 0) | |||||
Baseline Survey—2015 | Score | Endline Survey—2017 | |||||
Yes (%) | No (%) | Yes (%) | No (%) | Score | |||
Cereals/grains | Maize, rice sorghum, millet | 98 | 2 | 1 | 100 | 0 | 1 |
White roots and tubers | Potatoes, yam, cassava | 41 | 54 | 0 | 43 | 57 | 0 |
Vitamin-A-rich vegetables and tubers | Pumpkin, carrot, pepper, sweet pot | 10 | 90 | 0 | 15 | 85 | 0 |
Dark green leafy vegetables | Spinach, kale, amaranth | 15 | 84 | 0 | 9 | 90 | 0 |
Other vegetables | Tomatoes, onions, eggplants | 80 | 20 | 1 | 95 | 4 | 1 |
Vitamin-A-rich fruits | Mango, apricot, papaya, peach | 5 | 95 | 0 | 5 | 93 | 0 |
Other fruits | Apple, orange, grape | 0 | 100 | 0 | 2 | 98 | 0 |
Organ meat | Liver, kidney, heart | 0 | 100 | 0 | 1 | 99 | 0 |
Flesh meat | Beef, pork, lamb, goat | 0 | 100 | 0 | 1 | 98 | 0 |
Eggs | Eggs from chicken, duck | 1 | 98 | 0 | 2 | 98 | 0 |
Fish and seafood | Fresh or dried fish | 1 | 99 | 0 | 0 | 100 | 0 |
Legumes, nuts, and seeds | Beans, peas, lentils, nuts | 95 | 5 | 1 | 96 | 3 | 1 |
Milk and milk products | Milk, cheese, butter | 23 | 77 | 0 | 19 | 80 | 0 |
Oils and fat | Oils, fat, or butter | 60 | 40 | 1 | 95 | 5 | 1 |
Sweets | Sugar, honey, candies | 44 | 55 | 0 | 22 | 77 | 0 |
Spices, condiments, beverages | Pepper, salt, condiments, soda, coffee | 98 | 1 | 1 | 99 | 1 | 1 |
Total HDD score | 5 | 5 |
Appendix D
Appendix D.1. Cumulative Distribution Function of the Proteins Intake
Appendix D.2. Cumulative Distribution Function of the Iron Intake
Appendix D.3. Cumulative Distribution Function of the Vitamin a Intake
References
- Fan, S.; Teng, P.; Chew, P.; Smith, G.; Copeland, L. Food system resilience and COVID-19–Lessons from the Asian experience. Glob. Food Secur. 2021, 28, 100501. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.; Gourdji, S. The influence of climate change on global crop productivity. Plant Physiol. 2012, 112, 208298. [Google Scholar] [CrossRef] [PubMed]
- Worqlul, A.W.; Jeong, J.; Dile, Y.T.; Osorio, J.; Schmitter, P.; Gerik, T.; Srinivasan, R.; Clark, N. Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. Appl. Geogr. 2017, 85, 1–13. [Google Scholar] [CrossRef]
- Assefa, T.; Jha, M.; Reyes, M.; Srinivasan, R.; Worqlul, A.W. Assessment of suitable areas for home gardens for irrigation potential, water availability, and water-lifting technologies. Water 2018, 10, 495. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef]
- Assefa, T.; Jha, M.; Reyes, M.; Tilahun, S.; Worqlul, A.W. Experimental evaluation of conservation agriculture with drip irrigation for water productivity in Sub-Saharan Africa. Water 2019, 11, 530. [Google Scholar] [CrossRef]
- Thome, K.; Smith, M.D.; Daugherty, K.; Rada, N.; Christensen, C.; Meade, B. International Food Security Assessment, 2019–2029; Electronic Outlook Report from the Economic Research Service; USDA ERS: Washington, DC, USA, 2019.
- Uccello, E.; Kauffmann, D.; Calo, M.; Streissel, M. Nutrition-Sensitive Agriculture and Food Systems in Practice; FAO: Rome, Italy, 2017. [Google Scholar]
- Xie, H.; You, L.; Wielgosz, B.; Ringler, C. Estimating the potential for expanding smallholder irrigation in Sub-Saharan Africa. Agric. Water Manag. 2014, 131, 183–193. [Google Scholar] [CrossRef]
- Passarelli, S.; Mekonnen, D.; Bryan, E.; Ringler, C. Evaluating the pathways from small-scale irrigation to dietary diversity: Evidence from Ethiopia and Tanzania. Food Secur. 2018, 10, 981–997. [Google Scholar] [CrossRef]
- You, L.; Ringler, C.; Wood-Sichra, U.; Robertson, R.; Wood, S.; Zhu, T.; Nelson, G.; Guo, Z.; Sun, Y. What is the irrigation potential for Africa? A combined biophysical and socio-economic approach. Food Policy 2011, 36, 770–782. [Google Scholar] [CrossRef]
- Bacha, D.; Namara, R.; Bogale, A.; Tesfaye, A. Impact of small-scale irrigation on household poverty: Empirical evidence from the Ambo district in Ethiopia. Irrig. Drain. 2011, 60, 1–10. [Google Scholar] [CrossRef]
- Inocencio, A.B. Costs and Performance of Irrigation Projects: A Comparison of Sub-Saharan Africa and Other Developing Regions; IWMI: Colombo, Sri Lanka, 2007. [Google Scholar]
- Abebe, W.B.; Tilahun, S.A.; Moges, M.M.; Wondie, A.; Derseh, M.G.; Nigatu, T.A.; Mhiret, D.A.; Steenhuis, T.S.; Camp, M.V.; Walraevens, K.J.W. Hydrological foundation as a basis for a holistic environmental flow assessment of tropical highland rivers in Ethiopia. Water 2020, 12, 547. [Google Scholar] [CrossRef]
- Gowing, J.; Walker, D.; Parkin, G.; Forsythe, N.; Haile, A.T.; Ayenew, D.A. Can shallow groundwater sustain small-scale irrigated agriculture in sub-Saharan Africa? Evidence from NW Ethiopia. Groundw. Sustain. Dev. 2020, 10, 100290. [Google Scholar] [CrossRef]
- Cobbing, J.; Hiller, B. Waking a sleeping giant: Realizing the potential of groundwater in Sub-Saharan Africa. World Dev. 2019, 122, 597–613. [Google Scholar] [CrossRef]
- Tilahun, S.A.; Yilak, D.L.; Schmitter, P.; Zimale, F.A.; Langan, S.; Barron, J.; Parlange, J.Y.; Steenhuis, T.S. Establishing irrigation potential of a hillside aquifer in the African highlands. Hydrol. Process. 2020, 34, 1741–1753. [Google Scholar] [CrossRef]
- Nigussie, L.; Lefore, N.; Schmitter, P.S.; Nicol, A. Gender and Water Technologies: Water Lifting for Irrigation and Multiple Purposes in Ethiopia; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2017; Available online: https://core.ac.uk/download/pdf/132688965.pdf (accessed on 25 October 2021).
- IEA. Africa Energy Outlook: A Focus on Energy Prospects in Sub-Saharan Africa; Technical Report; IEA: Paris, France, 2014.
- Belete, B.; Melak, S. Impacts of small-scale irrigation technology on the nutritional well being of children in the Amhara national region of Ethiopia. Ethiop. J. Econ. 2018, 27, 29–56. [Google Scholar]
- Gurovich, L.; Oyarce, P. New approaches to agricultural land drainage: A review. Irrig. Drain. Sys Eng 2015, 4, 2. [Google Scholar]
- Colback, R.C.H.; Kolb, T. Handbook for Scaling Irrigation Systems; World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Biswas, S.; Iqbal, M.T. Dynamic modelling of a solar water pumping system with energy storage. J. Sol. Energy 2018, 2018, 8471715. [Google Scholar] [CrossRef]
- Gupta, E. The impact of solar water pumps on energy-water-food nexus: Evidence from Rajasthan, India. Energy Policy 2019, 129, 598–609. [Google Scholar] [CrossRef]
- Van de Zande, G.; Amrose, S.; Winter, A. Evaluating the potential for low energy emitters to facilitate solar-powered drip irrigation in sub-saharan Africa. In Proceedings of the Design Society: DESIGN Conference, Online, 26–29 October 2020; Cambridge University Press: Cambridge, UK, 2020; pp. 2177–2186. [Google Scholar]
- Bricca, D.; Bocci, E.; Santini, E. Technical and economic analysis of solar pumping irrigation system for rural areas in Ethiopia. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019; pp. 1–6. [Google Scholar]
- Otoo, M.; Lefore, N.; Schmitter, P.; Barron, J.; Gebregziabher, G. Business Model Scenarios and Suitability: Smallholder Solar Pump-Based Irrigation in Ethiopia. Agricultural Water Management–Making a Business Case for Smallholders; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2018. [Google Scholar]
- Schmitter, P.S.; Tegegne, D.; Adie, A.; Baudron, F.; Blümmel, M.; Lefore, N.; Barron, J. Evaluation of Suitable Water Lifting and On-Farm Water Management Technologies for the Irrigation of Vegetables and Fodder in Lemo District, Ethiopia. 2016. Available online: https://core.ac.uk/download/pdf/132691601.pdf (accessed on 25 October 2021).
- Bizimana, J.-C.; Richardson, J.W. Agricultural technology assessment for smallholder farms: An analysis using a farm simulation model (FARMSIM). Comput. Electron. Agric. 2019, 156, 406–425. [Google Scholar] [CrossRef]
- Assefa, T.T.; Adametie, T.F.; Yimam, A.Y.; Belay, S.A.; Degu, Y.M.; Hailemeskel, S.T.; Tilahun, S.A.; Reyes, M.R.; Prasad, P. Evaluating Irrigation and Farming Systems with Solar MajiPump in Ethiopia. Agronomy 2021, 11, 17. [Google Scholar] [CrossRef]
- Walker, D.; Parkin, G.; Schmitter, P.; Gowing, J.; Tilahun, S.A.; Haile, A.T.; Yimam, A.Y. Insights From a Multi-Method Recharge Estimation Comparison Study. Groundwater 2018, 57, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Yimam, A.Y.; Assefa, T.T.; Adane, N.F.; Tilahun, S.A.; Jha, M.K.; Reyes, M.R. Experimental evaluation for the impacts of conservation agriculture with drip irrigation on crop coefficient and soil properties in the sub-humid Ethiopian highlands. Water 2020, 12, 947. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Human Vitamin and Mineral Requirements: Report of a Joint FAO/WHO Expert Consultation; Food and Nutrition Division FAO: Rome, Italy, 2001; 303p. [Google Scholar]
- Food and Agriculture Organization (FAO). Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; FAO Food and Nutrition Technical Report Series 1; FAO: Rome, Italy, 2001; 96p. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef]
- Kennedy, E.H.; Krogman, N.; Krahn, H. Sustainable consumption and the importance of neighborhood: A central city/suburb comparison. Can. J. Sociol./Cah. Can. Sociol. 2013, 38, 359–382. [Google Scholar] [CrossRef]
- Bizimana, J.-C.; Richardson, J.W.; Clarke, N.P. Household Food Security and Nutrition Analysis Using a Farm Simulation Model (FARMSIM): Case Study of Robit in Amhara Region, Ethiopia. ES Food Agrofor. 2020, 2, 22–41. [Google Scholar] [CrossRef]
- Agueh, V.D.; Tugoué, M.F.; Sossa, C.; Métonnou, C.; Azandjemè, C.; Paraiso, N.M.; Ouendo, M.-E.; Ouédraogo, L.T.; Makoutodé, M. Dietary calcium intake and associated factors among pregnant women in southern Benin in 2014. Food Nutr. Sci. 2015, 6, 58729. [Google Scholar] [CrossRef]
- Southey, F. EAT-Lancet Diet: Increased Intake of Animal Source Foods Recommended by Researchers to Fill Micronutrient Gap. 31 March 2023. Available online: https://www.foodnavigator.com/article/2023/03/31/eat-lancet-diet-increased-intake-of-animal-source-foods-recommended-by-researchers-to-fill-micronutrient-gap?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright (accessed on 25 October 2021).
- Aseyehegn, K.; Yirga, C.; Rajan, S. Effect of Small-Scale Irrigation on the Income of Rural Farm Households: The Case of Laelay Maichew District, Central Tigray, Ethiopia. J. Agric. Sci. 2012, 7, 43–57. [Google Scholar] [CrossRef]
- Domènech, L.; Ringler, C. The Impact of Irrigation on Nutrition, Health, and Gender: A Review Paper with Insights for Africa South of the Sahara; IFPRI Discussion Paper 01259; International Food Policy Research Institute (IFPRI): Chicago, IL, USA, 2013. [Google Scholar]
Baseline | Alt.1_MP_CT | Alt.2_MP_CA | Alt.3_P_CT | |
---|---|---|---|---|
Averages values in Birr/family in year 3 | ||||
Net present value (5 years) | 195,580 | 255,592 | 269,258 | 241,449 |
Average net profit | 4760 | 15,477 | 17,250 | 8604 |
Percent change in profit: alt./baseline | 225% | 262% | 81% | |
Benefit–cost ratio: alt/baseline | 1.18 | 1.37 | 0.49 | |
Internal rate of return: alt/baseline | 0.17 | 0.25 | −0.04 |
Baseline | Alt.1_MajiP_CT | Alt.2_MajiP_CA | Alt.3_Pulley_CT | % Change in Nutrients: Base/Alt | ||
---|---|---|---|---|---|---|
Nutrients: Min req. | Average daily nutrients in Year 5 | Base/ Alt.2 | Base/ Alt.3 | |||
Energy (calories/AE): 2353 | 1838 | 2042 | 2078 | 1938 | 13 | 5 |
Proteins (g/AE): 41.2 | 42 | 48 | 49 | 45 | 15 | 7 |
Fat (g/AE): 51 | 32 | 41 | 43 | 37 | 35 | 16 |
Calcium (g/AE): 1 | 0.12 | 0.20 | 0.21 | 0.17 | 77 | 44 |
Iron (g/AE): 0.009 | 0.013 | 0.014 | 0.014 | 0.013 | 12 | 4 |
Vitamin A (µgRAE/AE): 600 | 340 | 945 | 1082 | 698 | 218 | 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizimana, J.-C.; Yalew, B.B.; Assefa, T.T.; Belay, S.A.; Degu, Y.M.; Mabhaudhi, T.; Reyes, M.R.; Prasad, P.V.V.; Tilahun, S.A. Simulating Potential Impacts of Solar MajiPump on the Economy and Nutrition of Smallholder Farmers in Sub-Humid Ethiopia. Water 2023, 15, 4003. https://doi.org/10.3390/w15224003
Bizimana J-C, Yalew BB, Assefa TT, Belay SA, Degu YM, Mabhaudhi T, Reyes MR, Prasad PVV, Tilahun SA. Simulating Potential Impacts of Solar MajiPump on the Economy and Nutrition of Smallholder Farmers in Sub-Humid Ethiopia. Water. 2023; 15(22):4003. https://doi.org/10.3390/w15224003
Chicago/Turabian StyleBizimana, Jean-Claude, Belainew B. Yalew, Tewodros T. Assefa, Sisay A. Belay, Yonas M. Degu, Tafadzwanashe Mabhaudhi, Manuel R. Reyes, P. V. Vara Prasad, and Seifu A. Tilahun. 2023. "Simulating Potential Impacts of Solar MajiPump on the Economy and Nutrition of Smallholder Farmers in Sub-Humid Ethiopia" Water 15, no. 22: 4003. https://doi.org/10.3390/w15224003
APA StyleBizimana, J. -C., Yalew, B. B., Assefa, T. T., Belay, S. A., Degu, Y. M., Mabhaudhi, T., Reyes, M. R., Prasad, P. V. V., & Tilahun, S. A. (2023). Simulating Potential Impacts of Solar MajiPump on the Economy and Nutrition of Smallholder Farmers in Sub-Humid Ethiopia. Water, 15(22), 4003. https://doi.org/10.3390/w15224003