Assessment of Microbiological Quality of Water Using Culture Methods, Flow Cytometry and Luminometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Methodology of Bacteriological Determinations
2.3. Statistical Analysis
3. Results and Discussion
3.1. Surface Water
- -
- the number of mesophilic bacteria on both tested agars,
- -
- RLU values and the number of psychrophilic bacteria on Agar A and R2A,
- -
- total number of bacteria determined and the RLU value.
3.2. Rainwater
- -
- the sum of all bacteria and psychrophilic bacteria on R2A AGAR,
- -
- the sum of all bacteria and mesophilic bacteria on R2A AGAR,
- -
- number of psychrophilic bacteria on AGAR A and AGAR R2A,
- -
- the number of psychrophilic bacteria on AGAR A, with the number of mesophilic bacteria on AGAR R2A,
- -
- number of mesophilic bacteria on AGAR A and R2A.
3.3. Groundwater
- -
- number of psychrophilic and mesophilic bacteria on both agars,
- -
- the number of mesophilic bacteria and the sum of all bacteria,
- -
- RLU value and the number of mesophilic bacteria on AGAR A,
- -
- RLU value and the number of mesophilic bacteria on R2A AGAR,
- -
- RLU value and the sum of all bacteria.
3.4. Tap Water
- -
- the number of psychrophilic bacteria on R2A AGAR and the sum of all bacteria,
- -
- the number of mesophilic bacteria on R2A AGAR and the sum of all bacteria.
4. Conclusions
- -
- In the case of surface water, the microbiological quality was highly dependent on the season during which the research was conducted. Low Pearson correlation coefficient factors indicate the lack of linear relationships for cytometric determinations with other microbiological water parameters examined. In the case of cytometric determinations, the obtained result should be correlated with autofluorescence.
- -
- The microbiological quality of rainwater is highly variable. Very strong correlations were found for the determination of the bacteria number performed with the use of culture methods. On the other hand, low values of linear correlation were obtained for the number of bacteria and the values obtained by cytometry and luminometry methods.
- -
- In the case of non-disinfected groundwater of very good microbiological quality, it is suggested to quickly measure and evaluate the microbiological quality using the luminometric method of ATP determination.
- -
- For tap water, no linear correlation was found between the number of bacteria obtained with the culture methods, the values of RLU, and the number of particles measured with the flow cytometer. Such a result indicates the presence of uniform microflora in the examined waters. On the other hand, the luminometric measurements may have been influenced by extracellular ATP, which was released from microbial cells during ozonation. This indicates the need to assess the concentration of extracellular ATP for disinfected tap water.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maier, R.M.; Pepper, I.L.; Gerba, C.P. Environmental Microbiology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Błaszczyk, M. Environmental Microbiology; PWN: Warszawa, Poland, 2010. [Google Scholar]
- Kalsoom, M.; Rehman, F.; Shafique, T.; Junaid, S.; Khalid, N.; Adnan, M.; Zafar, I.; Tariq, M.A.; Raza, M.A.; Zahra, A.; et al. Biological importance of microbes in agriculture, food and pharmaceutical industry: A review. Innovare J. Life Sci. 2020, 8, 1–4. [Google Scholar] [CrossRef]
- Fish, K.E.; Boxall, J.B. Biofilm microbiome (re) growth dynamics in drinking water distribution systems are impacted by chlorine concentration. Front. Microbiol. 2018, 9, 2519. [Google Scholar] [CrossRef]
- Mara, D.; Horan, N. Handbook of Water and Wastewater Microbiology; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Caggiano, G.; Diella, G.; Triggiano, F.; Bartolomeo, N.; Apollonio, F.; Carmen Campanale, C.; Lopuzzo, M.; Maria Montagna, M.T. Occurrence of Fungi in the Potable Water of Hospitals, A Public Health Threat. Pathogens 2020, 9, 783. [Google Scholar] [CrossRef]
- Zhao, H.X.; Zhang, T.Y.; Wang, H.; Hu, C.Y.; Tang, Y.L.; Xu, B. Occurrence of fungal spores in drinking water: A review of pathogenicity, odor, chlorine resistance and control strategies. Sci. Total Environ. 2022, 853, 158626. [Google Scholar] [CrossRef]
- Oliveira, B.R.; Crespo, M.B.; San Romão, M.V.; Benoliel, M.J.; Samson, R.A.; Pereira, V.J. New insights concerning the occurrence of fungi in water sources and their potential pathogenicity. Water Res. 2013, 47, 6338–6347. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.; Barbeau, B.; Bérubé, P. Nanofiltration and tight ultrafiltration membranes for natural organic matter removal—Contribution of fouling and concentration polarization to filtration resistance. Membranes 2017, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.R.; Pinto, E.; Torres, M.A.; Dörr, F.; Mazur-Marzec, H.; Szubert, K.; Tartaglione, L.; Dell’Aversano, C.; Miles, C.O.; Beach, D.G.; et al. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res. 2021, 196, 15. [Google Scholar] [CrossRef] [PubMed]
- Helmreich, B.; Horn, H. Opportunities in rainwater harvesting. Sci. Direct Desalination 2009, 248, 118–124. [Google Scholar] [CrossRef]
- Georgios, D.; Gikas Vassilios, A.; Tsihrintzis, A. Assessment of water quality of first-flush roof runoff and harvested rainwater. J. Hydrol. 2012, 466–467, 115–126. [Google Scholar]
- Proctor, C.R.; Hammes, F. Drinking water microbiology—From measurement to management. ScienceDirect. Curr. Opin. Biotechnol. 2015, 33, 87–94. [Google Scholar] [CrossRef]
- Jo, W.K.; Kang, J.H. Workplace exposure to bioaerosols in pet shop, pet clinics and flower garden. Chemosphere 2006, 65, 1755–1761. [Google Scholar] [CrossRef]
- Amin, M.T.; Han, M.Y. Improvement of solar based rainwater disinfection by using leman and vinegar as catalysts. Desalination 2011, 276, 416–424. [Google Scholar] [CrossRef]
- Cullimore, D.R. Practical Manual of Groundwater Microbiology; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780873712958. [Google Scholar]
- Bienz, K.; Eckert, J.; Kayser, F.; Zinkernagel, R. Medical Microbiology, Wydawnictwo Lekarskie; PZWL: Warszawa, Poland, 2007. [Google Scholar]
- Liu, S.; Grunawan, C.; Barraud, N.; Rice, S.A.; Harry, E.J.; Amal, R. Understanding, Monitoring and Controling Biofilm Growth in Drinking Water Distribution Systems. Environ. Sci. Technol. 2016, 50, 8954–8976. [Google Scholar] [CrossRef] [PubMed]
- Świderska-Bróż, M. The effects of the presence of biofilm in water distribution systems intended for human consumption. Ochr. Sr. 2012, 1, 9–14. [Google Scholar]
- Pierścieniak, M.; Trzcińska, N.; Słomczyński, T.; Wąsowski, J. The problem of secondary contamination of tap water. Ochr. Sr. I Zasobów Nat. 2009, 39, 29–32. [Google Scholar]
- Łebkowska, M.; Pajor, E.; Rutkowska-Narożniak, A.; Kwietniewski, M.; Wąsowski, J.; Kowalski, D. Research on the development of microorganisms in water supply pipes made of ductile iron with cement lining. Ochr. Sr. 2011, 33, 9–16. [Google Scholar]
- Liu, G.; Zhang, Y.; Knibbe, W.; Feng, C.; Liu, W.; Medema, G.; Meer, W. Potential impacts of changing supply-water quality on drinking water distribution: A review. Water Res. 2017, 116, 136–137. [Google Scholar] [CrossRef] [PubMed]
- Grabińska-Łoniewska, A.; Siński, E. Pathogenic and Potentially Pathogenic Microorganisms in Aquatic Ecosystems and Water Supply Networks; Wydawnictwo “Seidel-Przywecki” Sp. z o.o.: Warszawa, Poland, 2010. [Google Scholar]
- Cabral, J. Water Microbiology. Bacterial Pathogens and Water. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef]
- PN EN ISO 6222:2004; Water Quality–Enumeration of Culturable Microorganisms-Colony Count by Inoculation in a Nutrient Agar Culture Medium. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Hammes, F.; Berney, M.; Wang, Y.; Vital, M.; Köster, O.; Egli, T. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res. 2008, 42, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Farhat, N.; Hammes, F.; Prest, E.; Vrouwenvelder, J. A uniform bacterial growth potential assay for different water types. Water Res. 2018, 142, 227–235. [Google Scholar] [CrossRef]
- Hammes, F.; Egli, T. New Method for Assimilable Organic Carbon Determination Using Flow-Cytometric Enumeration and a Natural Microbial Consortium as Inoculum. Environ. Sci. Technol. 2005, 39, 3289–3294. [Google Scholar] [CrossRef]
- Velten, S.; Hammes, F.; Boller, M.; Egli, T. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination. Water Res. 2007, 41, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Velten, S.; Boller, M.; Köster, O.; Helbing, J.; Weilenmann, H.U.; Hammes, F. Development of biomass in a drinking water granular active carbon (GAC) filter. Water Res. 2011, 45, 6347–6354. [Google Scholar] [CrossRef] [PubMed]
- Elhadidy, A.M.; Van Dyke, M.I.; Peldszus, S.; Huck, P.M. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water. J. Microbiol. Methods 2016, 130, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Joachimsthal, E.L.; Ivanov, V.; Tay, J.-H.; Stephen, T. Flow cytometry and conventional enumeration of microorganisms in ships’ ballast water and marine samples. Mar. Pollut. Bull. 2003, 46, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Pinfold, J.; Nigel, V.; Horan, J. Measuring the effect of a hygiene behaviour intervention by indicators of behaviour and diarrhoeal disease. Trans. R. Soc. Trop. Med. Hyg. 1993, 90, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Uba, B.N.; Aghogho, O. Rainwater quality from different roof catchments in the Port Harcourt district, Rivers State, Nigeria, Journal of Water Supply. Res. Technol.-Aqua 2000, 49, 281–288. [Google Scholar]
- Handia, L.; Madalitso, J.; Tembo, J.; Mwiindwa, C. Potential of rainwater harvesting in urban Zambia. Phys. Chem. Earth Parts A/B/C 2003, 28, 893–896. [Google Scholar] [CrossRef]
- Despins, C.H.; Farahbakhsh, K.; Leidl, C.H. Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. J. Water Supply Res. Technol. AQUA 2009, 58, 117–135. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yang, J.-S.; Han, M.; Choi, J. Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources. Sci. Total Environ. 2010, 408, 896–905. [Google Scholar] [CrossRef]
- Polkowska, Ż.; Astel, A.; Walna, B.; Małek, S.; Mędrzycka, K.; Górecki, T.; Siepak, J.; Namieśnik, J. Chemometric analysis of rainwater and throughfall at several sites in Poland. Atmos. Environ. 2005, 39, 837–855. [Google Scholar] [CrossRef]
- Fewtrell, L.; Kay, D. Microbial quality of rainwater supplies in developed countries: A review. Urban Water J. 2007, 4, 253–260. [Google Scholar] [CrossRef]
- Melidis, P.; Akratos, C.S.; Tsihrintzis, V.A.; Trikilidou, E. Characterization of Rain and Roof Drainage Water Quality in Xanthi, Greece. Environ. Monit. Assess. 2007, 127, 15–27. [Google Scholar] [CrossRef]
- Sazakli, E.; Alexopoulos, A.; Leotsinidis, M. Rainwater harvesting, quality assessment and utilization in Kefalonia Island, Greece. Water Res. 2007, 41, 2039–2047. [Google Scholar] [CrossRef] [PubMed]
- Tsakovski, S.; Tobiszewski, M.; Simeonov, V.; Polkowska, Ż.; Namieśnik, J. Chemical composition of water from roofs in Gdansk. Poland. Environ. Pollut. 2010, 158, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.A.; Coombes, P.J.; Dunstan, R.H. Wind, rain and bacteria: The effect of weather on the microbial composition of roof-harvested rainwater. Water Res. 2006, 40, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Deininger, R.A.; Lee, J.Y. Rapid determination of bacteria in drinking water using an ATP assay. Field Anal. Chem. Technol. 2001, 5, 185–189. [Google Scholar] [CrossRef]
- Siebel, E.; Wang, Y.; Egli, T.; Hammes, F. Correlations between total cell concentration, total adenosine tri-phosphate concentration and heterotrophic plate counts during microbial monitoring of drinking water. Drink. Water Eng. Sci. 2008, 1, 1–6. [Google Scholar] [CrossRef]
- Vital, M.; Hammes, F.; Egli, T. Competition of Escherichia coli O157 with a drinking water bacterial community at low nutrient concentrations. Water Res. 2012, 46, 6279–6290. [Google Scholar] [CrossRef] [PubMed]
- Lautenschlager, K.; Hwang, C.H.; Liu, W.T.; Boon, N.; Köster, O.; Vrouwenvelder, H.; Egli, T.; Hammes, F. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Res. 2013, 47, 3015–3025. [Google Scholar] [CrossRef]
- Liu, G.; Van Der Mark, E.J.; Verberk, J.J.C.; Van Dijk, J.C. Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems. BioMed Res. Int. 2013, 2013, 595872. [Google Scholar] [CrossRef]
- Arroyo, M.G.; Ferreira, A.M.; Frota, O.P.; Rigotti, M.A.; de Andrade, D.; Brizzotti, N.S.; de Almeida, M.T.G. Effectiveness of ATP bioluminescence assay for presumptive identification of microorganisms in hospital water sources. BMC Infect. Dis. 2017, 17, 458. [Google Scholar] [CrossRef]
- Maki, J.S.; Lacroix, S.J.; Hopkins, B.S.; Staley, J.T. Recovery and diversity of heterotrophic bacteria from chlorinated drinking waters. Appl. Environ. Microbiol. 1986, 51, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Eydal, H.S.C.; Pedersen, K. Use of an ATP assay to determine viable microbial biomass in Fennoscandian Shield groundwater from depths of 3–1000 m. J. Microbiol. Methods 2007, 69A, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Hammes, F.; Egli, T. Cytometric methods for measuring bacteria in water: Ad-vanteges pitfalls and application. Anal. Bioanal. Chem. 2010, 397, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.; Köhler, D.; Göhde, R. Flow Cytometric enumeration of total bacterial cell count (TCC) in drinking water with the Partec Cyflow® Cube 6 flow cytometer. Görlitz 2013, 72, 12. [Google Scholar]
- Vang, Ó.K.; Corfitzen, C.B.; Smith, C.; Albrechtsen, H.J. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water. Water Res. 2014, 64, 309–320. [Google Scholar] [CrossRef]
Tested Parameter | Method/Standard |
---|---|
Total bacteria count at 22° (72 h) | Culture method on standard nutrient agar; PN-EN ISO 6222:2004 [25] |
Total bacteria count at 37 °C (48 h) | |
Enumeration of microorganisms | Partec Cube 6 flow cytometer |
ATP concentration | Luminometric determination; www.promega.com/protocols (accessed on 30 September 2023). |
Average | Psychrophilic Bacteria AGAR A | Psychrophilic Bacteria AGAR R2A | Mesophilic Bacteria AGAR A | Mesophilic Bacteria AGAR R2A | Sum | RLU | The Number of Particles SYBRGreen | |
---|---|---|---|---|---|---|---|---|
Psychrophilic bacteria AGAR A | 43,724 | 1.000 | 0.985 | 0.753 | 0.710 | 0.988 | 0.780 | 0.111 |
Psychrophilic bacteria AGAR R2A | 62,397 | - | 1.000 | 0.764 | 0.732 | 0.993 | 0.832 | 0.116 |
Mesophilic bacteria AGAR R2A | 85,326 | - | - | 1.000 | 0.951 | 0.820 | 0.647 | 0.126 |
Mesophilic bacteria AGAR R2A | 13,590 | - | - | - | 1.000 | 0.789 | 0.611 | 0.217 |
Sum | 128,235 | - | - | - | - | 1.000 | 0.813 | 0.128 |
RLU | 459,769 | - | - | - | - | - | 1.000 | 0.093 |
The number of particles SYBRGreen | 236,571 | - | - | - | - | - | - | 1.000 |
Average | Psychrophilic Bacteria AGAR A | Psychrophilic Bacteria AGAR R2A | Mesophilic Bacteria AGAR A | Mesophilic Bacteria AGAR R2A | Sum | RLU | The Number of Particles SYBR Green | |
---|---|---|---|---|---|---|---|---|
Psychrophilic bacteria AGAR A | 1834 | 1.000 | 0.994 | 0.981 | 0.982 | 0.997 | 0.532 | 0.389 |
Psychrophilic bacteria AGAR R2A | 2307 | - | 1.000 | 0.984 | 0.974 | 0.996 | 0.519 | 0.411 |
Mesophilic bacteria AGAR R2A | 823 | - | - | 1.000 | 0.982 | 0.991 | 0.491 | 0.419 |
Mesophilic bacteria AGAR R2A | 1361 | - | - | - | 1.000 | 0.988 | 0.458 | 0.375 |
Sum | 632 | - | - | - | - | 1.000 | 0.509 | 0.401 |
RLU | 41,687 | - | - | - | - | - | 1.000 | 0.725 |
The number of particles SYBR Green | 93,781 | - | - | - | - | - | - | 1.000 |
Average | Psychrophilic Bacteria AGAR A | Psychrophilic Bacteria AGAR R2A | Mesophilic Bacteria AGAR A | Mesophilic Bacteria AGAR R2A | Sum | RLU | The Number of Particles SYBR Green | |
---|---|---|---|---|---|---|---|---|
Psychrophilic bacteria AGAR A | 8 | 1.000 | 0.852 | 0.461 | 0.476 | 0.851 | 0.609 | 0.497 |
Psychrophilic bacteria AGAR R2A | 21 | - | 1.000 | 0.621 | 0.670 | 0.968 | 0.697 | 0.264 |
Mesophilic bacteria AGAR R2A | 3 | - | - | 1.000 | 0.766 | 0.738 | 0.842 | 0.270 |
Mesophilic bacteria AGAR R2A | 12 | - | - | - | 1.000 | 0.809 | 0.768 | 0.316 |
Sum | 44 | - | - | - | - | 1.000 | 0.798 | 0.361 |
RLU | 267 | - | - | - | - | - | 1.000 | 0.287 |
The number of particlesSYBR Green | 2069 | - | - | - | - | - | - | 1.000 |
Average | Psychrophilic Bacteria AGAR A | Psychrophilic Bacteria AGAR R2A | Mesophilic Bacteria Agar A | Mesophilic Bacteria AGAR R2A | Sum | RLU | The Number of Particles SYBR Green | |
---|---|---|---|---|---|---|---|---|
Psychrophilic bacteria AGAR A | 52 | 1.000 | 0.531 | 0.308 | 0.500 | 0.650 | 0.016 | 0.013 |
Psychrophilic bacteria AGAR R2A | 144 | - | 1.000 | 0.784 | 0.857 | 0.953 | 0.153 | −0.014 |
Mesophilic bacteria AGAR R2A | 54 | - | - | 1.000 | 0.721 | 0.802 | 0.110 | −0.025 |
Mesophilic bacteria AGAR R2A | 166 | - | - | - | 1.000 | 0.932 | 0.266 | −0.044 |
Sum | 416 | - | - | - | - | 1.000 | 0.184 | 0.003 |
RLU | 9291 | - | - | - | - | - | 1.000 | 0.053 |
The number of particles SYBR Green | 5308 | - | - | - | - | - | - | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamorska, J.; Karwowska, E.; Przystaś, W. Assessment of Microbiological Quality of Water Using Culture Methods, Flow Cytometry and Luminometry. Water 2023, 15, 4077. https://doi.org/10.3390/w15234077
Zamorska J, Karwowska E, Przystaś W. Assessment of Microbiological Quality of Water Using Culture Methods, Flow Cytometry and Luminometry. Water. 2023; 15(23):4077. https://doi.org/10.3390/w15234077
Chicago/Turabian StyleZamorska, Justyna, Ewa Karwowska, and Wioletta Przystaś. 2023. "Assessment of Microbiological Quality of Water Using Culture Methods, Flow Cytometry and Luminometry" Water 15, no. 23: 4077. https://doi.org/10.3390/w15234077
APA StyleZamorska, J., Karwowska, E., & Przystaś, W. (2023). Assessment of Microbiological Quality of Water Using Culture Methods, Flow Cytometry and Luminometry. Water, 15(23), 4077. https://doi.org/10.3390/w15234077