Land Cover Trajectories and Their Impacts on Rainfall-Triggered Landslide Occurrence in a Cultivated Mountainous Region of Western Japan
Abstract
:1. Introduction
2. Study Area
2.1. Omishima Island
2.2. The July 2018 Storm Event and Landslide Disaster
3. Methods
3.1. Land Cover Mapping
3.2. Landslide Mapping
3.3. Rainfall Analysis
3.4. Geospatial Analysis of Landslide Occurrence with Rainfall, Land Cover Change, and Topography
4. Results and Discussion
4.1. Patterns of Land Cover Change
4.2. Landslide Characteristics in the July 2018 Storm Event
4.3. Rainfall Distributions and Landslide Characteristics in the July 2018 Storm Event
4.4. Relationship between Land Cover Trajectory and Landslide Occurrence
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Rindfuss, R.R.; Walsh, S.J.; Turner, B.L.; Fox, J.; Mishra, V. Developing a science of land change: Challenges and methodological issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ochiai, H. Landslides: Processes, Prediction, and Land Use, Water Resources Monograph 18; American Geophysical Union: Washington, DC, USA, 2006; 312p. [Google Scholar]
- Stokes, A.; Douglas, G.B.; Fourcaud, T.; Giadrossich, F.; Gillies, C.; Hubble, T.; Kim, J.H.; Loades, K.W.; Mao, Z.; McIvor, I.R.; et al. Ecological mitigation of hillslope instability: Ten key issues facing researchers and practitioners. Plant Soil 2014, 377, 1–23. [Google Scholar] [CrossRef]
- Sidle, R.C. A theoretical model of the effects of timber harvesting on slope stability. Water Resour. Res. 1992, 28, 1897–1910. [Google Scholar] [CrossRef]
- Jakob, M. The impacts of logging on landslide activity at Clayoquot Sound, British Columbia. Catena 2000, 38, 279–300. [Google Scholar] [CrossRef]
- Guthrie, R.H. The effects of logging on frequency and distribution of landslides in three watersheds on Vancouver Island, British Columbia. Geomorphology 2002, 43, 273–292. [Google Scholar] [CrossRef]
- Brardinoni, F.; Hassan, M.A.; Slaymaker, H.O. Complex mass wasting response of drainage basins to forest management in coastal British Columbia. Geomorphology 2003, 49, 109–124. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Schmidt, K.M.; Greenberg, H.M.; Dietrich, W.E. Forest clearing and regional landsliding. Geology 2000, 28, 311–314. [Google Scholar] [CrossRef]
- Imaizumi, F.; Sidle, R.C.; Kamei, R. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf. Process. Landf. 2008, 33, 827–840. [Google Scholar] [CrossRef]
- Saito, H.; Murakami, W.; Daimaru, H.; Oguchi, T. Effect of forest clear-cutting on landslide occurrences: Analysis of rainfall thresholds at Mt. Ichifusa, Japan. Geomorphology 2017, 276, 1–7. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Nik, A.R.; Siew, R.; Turkelboom, F. Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- Grade, T. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena 2003, 51, 297–314. [Google Scholar] [CrossRef]
- Alcántara-Ayala, I.; Esteban-Chávez, O.; Parrot, J.F. Landsliding related to land-cover change: A diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. Catena 2006, 65, 152–165. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Alatorre, L.C.; Puigdefábregas, J. Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 2010, 124, 250–259. [Google Scholar] [CrossRef]
- Guns, M.; Vanacker, V. Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes. Environ. Earth Sci. 2013, 70, 2941–2952. [Google Scholar] [CrossRef]
- Constantin, M.; Bednarik, M.; Jurchescu, M.C.; Vlaicu, M. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ. Earth Sci. 2011, 63, 397–406. [Google Scholar] [CrossRef]
- Mousavi, S.Z.; Kavian, A.; Soleimani, K.; Mousavi, S.R.; Shirzadi, A. GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomat. Nat. Hazards Risk 2011, 2, 33–50. [Google Scholar] [CrossRef]
- Lusiana, N.; Shinohara, Y. The role of citrus groves in rainfall-triggered landslide hazards in Uwajima, Japan. Water 2022, 14, 2113. [Google Scholar] [CrossRef]
- Arrasyid, R.; Ihsan, H.M.; Ruhimat, M.; Pratama, A.R. Suitability evaluation of land use/land cover (LULC) towards landslide prone areas in structural and volcano landform. Int. J. Geoinform. 2023, 19, 61–75. [Google Scholar] [CrossRef]
- Roering, J.J.; Schmidt, K.M.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can. Geotech. J. 2003, 40, 237–253. [Google Scholar] [CrossRef]
- Schwarz, M.; Lehmann, P.; Or, D. Quantifying lateral root reinforcement in steep slopes—From a bundle of roots to tree stands. Earth Surf. Process. Landf. 2010, 35, 354–367. [Google Scholar] [CrossRef]
- Mao, Z.; Saint-André, L.; Bourrier, F.; Stokes, A.; Cordonnier, T. Modelling and predicting the spatial distribution of tree root density in heterogeneous forest ecosystems. Ann. Bot. 2015, 116, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, K.; Nanba, S. The function of tree roots upon landslide prevention presumed through the uprooting test. Bull. For. For. Prod. Res. Inst. 1981, 313, 175–208. [Google Scholar]
- Tsukamoto, Y. Evaluation of the effect of tree roots on slope stability. Bull. Exp. For. Tokyo Univ. Agric. Technol. 1987, 23, 65–124, (In Japanese with English Abstract). [Google Scholar]
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Global land cover trajectories and transitions. Sci. Rep. 2021, 11, 12814. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Current Status and Issues of Degraded Farmland. 2023. Available online: https://www.maff.go.jp/j/nousin/tikei/houkiti/attach/pdf/index-16.pdf (accessed on 10 October 2023). (In Japanese)
- Ehime Prefectural History Compilation Committee (Ed.) Ehime Prefectural History, Regional Geography II (Western Toyo Region); Ehime Prefecture: Matsuyama, Japan, 1986; 890p. (In Japanese)
- Tsubaki, S. Detail of securing manpower in large-scale farming in citrus area: A case study in Ehime Prefecture. Bull. Fac. Agric. Ehime Univ. 2018, 63, 8–15, (In Japanese with English Abstract). [Google Scholar]
- Makihara, Y. A method for improving radar estimates of precipitation by comparing data from radars and raingauges. J. Meteorol. Soc. Jpn. Ser. II 1996, 74, 459–480. [Google Scholar] [CrossRef]
- Makihara, Y.; Uekiyo, N.; Tabata, A.; Abe, Y. Accuracy of radar-AMeDAS precipitation. IEICE Trans. Commun. 1996, 79, 751–762. [Google Scholar]
- Shimpo, A. Radar/Raingauge-Analyzed Precipitation (I). Tenki 2001, 48, 579–583. (In Japanese) [Google Scholar]
- Shimpo, A. Radar/Raingauge-Analyzed Precipitation (II). Tenki 2001, 48, 777–784. (In Japanese) [Google Scholar]
- Suyari, K.; Iwasaki, M.; Suzuki, T. (Eds.) Regional Geology of Japan, Part 8 Shikoku; Kyoritsu Shuppan Co., Ltd.: Tokyo, Japan, 1991; 266p. (In Japanese) [Google Scholar]
- Geological Society of Japan (Ed.) Japanese Regional Geology 7 Shikoku Region; Asakura Publishing Co., Ltd.: Tokyo, Japan, 2016; 679p. (In Japanese) [Google Scholar]
- National Research Institute for Earth Science and Disaster Resilience (NIED). Characteristics of Cumulative Rainfall in WESTERN Japan during the Heavy Rain Event of July 2018. 2018. Available online: http://mizu.bosai.go.jp/key/RainJulyH30Accu (accessed on 10 October 2023). (In Japanese)
- Japan Meteorological Agency (JMA). Preliminary Report on Characteristics and Causes of Heavy Rains in “July 2018 Heavy Rains” and Their Causes. 2018. Available online: http://www.jma.go.jp/jma/press/1807/13a/gou20180713.pdf (accessed on 10 October 2023). (In Japanese)
- Ehime University Disaster Investigation Team of July 2018 Heavy Rain (EUDIT). Report on the Disaster in July 2018 Heavy Rain; Ehime University: Matsuyama, Japan, 2019; 379p. (In Japanese) [Google Scholar]
- Mori, S.; Ono, K. Landslide disasters in Ehime Prefecture resulting from the July 2018 heavy rain event in Japan. Soils Found. 2019, 59, 2396–2409. [Google Scholar] [CrossRef]
- Kimura, T.; Sato, G. Landslides on slopes of constructed agricultural land in Omishima, Geiyo Islands due to heavy rain in July 2018 and their causal factors. In Proceedings of the Japan Geoscience Union Meeting 2022, HDS09-06, Makuhari, Japan, 22 May 2022. (In Japanese with English Abstract). [Google Scholar]
- Kimura, T.; Sato, G.; Ozaki, T.; Thang, N.V.; Wakai, A. Landslide susceptibility in a highly-cultivated hilly region: Artificial slope construction in 1963–1979 and the subsequent 2018 landslide event in Omishima, western Japan. In Natural Geo-Disasters and Resiliency: Select Proceedings of CREST 2023; Hazarika, H., Haigh, S.K., Chaudhary, B., Murai, M., Manandhar, S., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2023; in press. [Google Scholar]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001; 208p. [Google Scholar]
- Gilleland, E.; Katz, R.W. extRemes 2.0: An Extreme Value Analysis Package in R. J. Stat. Softw. 2016, 72, 1–39. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E.; Torres, R.; Anderson, S.P.; Heffner, J.T.; Loague, K. Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resour. Res. 1997, 33, 91–109. [Google Scholar] [CrossRef]
- Tsuboyama, Y.; Sidle, R.C.; Noguchi, S.; Murakami, S.; Shimizu, T. A zero-order basin—Its contribution to catchment hydrology and internal hydrological processes. Hydrol. Process. 2000, 14, 387–401. [Google Scholar] [CrossRef]
- Rupke, J.; Huisman, M.; Kruse, H.M.G. Stability of man-made slopes. Eng. Geol. 2007, 91, 16–24. [Google Scholar] [CrossRef]
Year | Date | Type * | Scale ** | Acquired by |
---|---|---|---|---|
1962 | 31 May | MAP | 1:10,000 | Geospatial Information Authority of Japan |
1975 | 13 Feb. | CAP | 1:8,000 | Geospatial Information Authority of Japan |
1981 | 20 Oct. | CAP | 1:10,000 | Geospatial Information Authority of Japan |
2016 | 30 Apr. | CAP | 1:10,000 | Geospatial Information Authority of Japan |
2018 | 16 Jul. | OSI | (1.50-m res.) | Airbus Defence and Space |
2018 | 23 Sep. | CAPT | (0.25-m res.) | Forest Agency of Japan |
Rainfall | GEV Distribution Parameter * | Goodness-of-Fit ** | ||||
---|---|---|---|---|---|---|
Location, μ | Scale, σ | Shape, ξ | NLL | AIC | BIC | |
1-h max. | 22.53 ± 1.06 | 6.41 ± 0.77 | −0.01 ± 0.11 | 161.21 | 328.41 | 333.96 |
3-h max. | 41.46 ± 2.05 | 12.70 ± 1.45 | −0.25 ± 0.09 | 186.89 | 379.79 | 385.34 |
6-h max. | 52.77 ± 2.51 | 15.39 ± 1.78 | −0.08 ± 0.10 | 200.43 | 406.86 | 412.41 |
12-h max. | 65.46 ± 3.10 | 18.24 ± 2.35 | 0.06 ± 0.14 | 212.54 | 431.08 | 436.63 |
24-h max. | 80.01 ± 3.82 | 22.46 ± 3.11 | 0.22 ± 0.14 | 226.21 | 458.42 | 463.97 |
264-h max. | 184.36 ± 12.99 | 76.51 ± 9.89 | 0.05 ± 0.14 | 279.46 | 564.92 | 570.47 |
Rainfall | Return Level (mm) * | Observatory ** | RRAP Data ** | |||
---|---|---|---|---|---|---|
2-yr | 20-yr | 100-yr | Lowest | Highest | ||
1-h max. | 24.9 | 41.2 | 51.0 | 31.0 mm (4.3 yr) | 29.0 mm (3.3 yr) | 44.0 mm (31.6 yr) |
3-h max. | 45.9 | 68.0 | 76.0 | 69.5 mm (25.8 yr) | 60.0 mm (6.7 yr) | 80.0 mm (315.8 yr) |
6-h max. | 58.3 | 93.3 | 111.7 | 90.0 mm (15.4 yr) | 89.0 mm (14.2 yr) | 108.0 mm (71.1 yr) |
12-h max. | 72.2 | 125.0 | 162.7 | 146.0 mm (49.8 yr) | 147.0 mm (52.0 yr) | 198.0 mm (399.2 yr) |
24-h max. | 88.6 | 173.6 | 257.0 | 249.5 mm (88.3 yr) | 231.0 mm (64.0 yr) | 304.0 mm (203.9 yr) |
264-h max. | 212.7 | 429.5 | 580.4 | 446.5 mm (24.1 yr) | 415.0 mm (17.1 yr) | 552.0 mm (74.5 yr) |
Land Cover | Landslides Triggered by the July 2018 Storm Event | ||||||||
---|---|---|---|---|---|---|---|---|---|
Classification | Trajectory * | Area | Landslide population ** | Landslide size characteristics *** | |||||
TN | TA | LD | AR | Mean | Median | Range | |||
(4 types) | (8 patterns) | (km2) | (slides) | (km2) | (km–2) | (%) | (m2) | (m2) | (m2) |
Forest | 36.73 | 289 | 0.077 | 7.868 | 0.208 | 265 ± 748 | 125 | 13, 9279 | |
RFOR | 23.61 | 168 | 0.033 | 7.116 | 0.138 | 194 ± 211 | 138 | 13, 1811 | |
SFOR | 13.12 | 121 | 0.044 | 9.220 | 0.335 | 363 ± 1121 | 115 | 17, 9279 | |
Shrub | 3.50 | 23 | 0.006 | 6.574 | 0.176 | 267 ± 240 | 203 | 13, 1009 | |
RSHR | 1.54 | 7 | 0.001 | 4.561 | 0.080 | 175 ± 57 | 164 | 85, 290 | |
SSHR | 1.96 | 16 | 0.005 | 8.147 | 0.251 | 308 ± 275 | 232 | 13, 1009 | |
Farmland | 20.84 | 200 | 0.054 | 9.596 | 0.259 | 270 ± 711 | 112 | 6, 6034 | |
RFAR | 18.41 | 130 | 0.016 | 7.060 | 0.088 | 125 ± 126 | 85 | 6, 825 | |
CFAR | 2.43 | 70 | 0.038 | 28.827 | 1.551 | 538 ± 1142 | 151 | 16, 6034 | |
Developed land | 6.40 | 0 | 0 | 0 | 0 | -- | -- | -- | |
RDVL | 2.81 | 0 | 0 | 0 | 0 | -- | -- | -- | |
CDVL | 3.59 | 0 | 0 | 0 | 0 | -- | -- | -- | |
Study area | 67.48 | 512 | 0.137 | 7.588 | 0.202 | 267 ± 718 | 121 | 6, 9279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimura, T.; Sato, G.; Ozaki, T.; Van Thang, N.; Wakai, A. Land Cover Trajectories and Their Impacts on Rainfall-Triggered Landslide Occurrence in a Cultivated Mountainous Region of Western Japan. Water 2023, 15, 4211. https://doi.org/10.3390/w15244211
Kimura T, Sato G, Ozaki T, Van Thang N, Wakai A. Land Cover Trajectories and Their Impacts on Rainfall-Triggered Landslide Occurrence in a Cultivated Mountainous Region of Western Japan. Water. 2023; 15(24):4211. https://doi.org/10.3390/w15244211
Chicago/Turabian StyleKimura, Takashi, Go Sato, Takatsugu Ozaki, Nguyen Van Thang, and Akihiko Wakai. 2023. "Land Cover Trajectories and Their Impacts on Rainfall-Triggered Landslide Occurrence in a Cultivated Mountainous Region of Western Japan" Water 15, no. 24: 4211. https://doi.org/10.3390/w15244211
APA StyleKimura, T., Sato, G., Ozaki, T., Van Thang, N., & Wakai, A. (2023). Land Cover Trajectories and Their Impacts on Rainfall-Triggered Landslide Occurrence in a Cultivated Mountainous Region of Western Japan. Water, 15(24), 4211. https://doi.org/10.3390/w15244211