Removing Norfloxacin from Aqueous Solutions Using Biochar Derived from Waste Disposable Bamboo Chopsticks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Preparation of BB
2.3. Adsorption Experiments
2.4. Characterization of BB
3. Results and Discussion
3.1. Effect of Pyrolysis Temperature on the NOR Adsorption by BB
3.2. Effect of Dosage and pH on the Performance of BB-700 for NOR Adsorption
3.3. Adsorption Isotherm and Kinetics Studies
3.4. Effects of the Ionic Strength and Used in Different Types of Water
3.5. Characterization of BB-700
3.6. Comparison of the NOR Adsorption Properties of Other Biomass
3.7. Assumptions and Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.; Cheng, H.; Pan, D.; Zhang, L.; Li, W.; Song, Y.; Bian, Y.; Jiang, X.; Han, J. Potassium hydroxide-modified algae-based biochar for the removal of sulfamethoxazole: Sorption performance and mechanisms. J. Environ. Manag. 2021, 293, 112912. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Zhao, C.W.; Zhou, Z.Y.; Kong, Y.L.; Ma, J.Y. Hydrochloric acid-modified fungi-microalgae biochar for adsorption of tetracycline hydrochloride: Performance and mechanism. Bioresour. Technol. 2023, 383, 129224. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.J.; Wang, Z.; Gao, C.L.; Sun, Q.Q.; Liu, J.; She, D. Synthesis of honeycomb lignin-based biochar and its high-efficiency adsorption of norfloxacin. Bioresour. Technol. 2023, 369, 128402. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, Y.; Zhang, S.; Chen, Y.D.; Wang, R.; Ho, S.H. Tailoring a novel hierarchical cheese-like porous biochar from algae residue to boost sulfathiazole removal. Environ. Sci. Ecotechnol. 2022, 10, 100168. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, J.; Wan, L.; Sun, S.; MacIsaac, H.J.; Drouillard, K.G.; Chang, X. Norfloxacin pollution alters species composition and stability of plankton communities. J. Hazard. Mater. 2020, 385, 121625. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.Q.; Hua, S.; Jiao, H.; Chen, Y.L.; Ding, D.H. Sewage sludge derived magnetic biochar effectively activates peroxymonosulfate for the removal of norfloxacin. Sep. Purif. Technol. 2023, 314, 123674. [Google Scholar] [CrossRef]
- Karimnezhad, H.; Navarchian, A.H.; Tavakoli Gheinani, T.; Zinadini, S. Amoxicillin removal by Fe-based nanoparticles immobilized on polyacrylonitrile membrane: Effects of input parameters and optimization by response surface methodology. Chem. Eng. Process. Process Intensif. 2020, 147, 107785. [Google Scholar] [CrossRef]
- Zhao, K.; Kang, S.-X.; Yang, Y.-Y.; Yu, D.-G. Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review. Polymers 2021, 13, 226. [Google Scholar] [CrossRef]
- Ding, D.; Yang, S.; Chen, L.; Cai, T. Degradation of norfloxacin by CoFe alloy nanoparticles encapsulated in nitrogen doped graphitic carbon (CoFe@N-GC) activated peroxymonosulfate. Chem. Eng. J. 2020, 392, 123725. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Chang, J.; Fu, B.; Wang, H. Insight into advanced oxidation processes for the degradation of fluoroquinolone antibiotics: Removal, mechanism, and influencing factors. Sci. Total Environ. 2023, 857, 159172. [Google Scholar] [CrossRef]
- El Azzouzi, L.; El Aggadi, S.; Ennouhi, M.; Ennouari, A.; Kabbaj, O.K.; Zrineh, A. Removal of the Amoxicillin antibiotic from aqueous matrices by means of an adsorption process using Kaolinite clay. Sci. Afr. 2022, 18, e01390. [Google Scholar] [CrossRef]
- Yan, J.; Zuo, X.; Yang, S.; Chen, R.; Cai, T.; Ding, D. Evaluation of potassium ferrate activated biochar for the simultaneous adsorption of copper and sulfadiazine: Competitive versus synergistic. J. Hazard. Mater. 2020, 424, 127435. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Zhang, L.; Zhang, X.; Li, J.; Li, Y.; Peng, Y.; Luo, Y.; Li, R.; Gao, B.; Hamouda, M.A.; et al. Bioassembled MgO-coated tea waste biochar efficiently decontaminates phosphate from water and kitchen waste fermentation liquid. Biochar 2023, 5, 5–22. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M. Adsorption Characteristics and Mechanism of Bisphenol A by Magnetic Biochar. Int. J. Environ. Res. Public Health 2020, 17, 1075. [Google Scholar] [CrossRef] [PubMed]
- Salihi, E.C.; Wang, J.; Kabacaoglu, G.; Kirkulak, S.; Siller, L. Graphene oxide as a new generation adsorbent for the removal of antibiotics from waters. Sep. Sci. Technol. 2021, 56, 453–461. [Google Scholar] [CrossRef]
- Zhuang, S.; Liu, Y.; Wang, J. Covalent organic frameworks as efffcient adsorbent for sulfamerazine removal from aqueous solution. J. Hazard. Mater. 2020, 383, 121126. [Google Scholar] [CrossRef]
- Zhao, R.; Ma, T.; Zhao, S.; Rong, H.; Tian, Y.; Zhu, G. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water. Chem. Eng. J. 2020, 382, 122893. [Google Scholar] [CrossRef]
- Maia, R.A.; Louis, B.; Baudron, S.A. Deep eutectic solvents for the preparation and post-synthetic modification of metal- and covalent organic frameworks. Cryst. Eng. Comm. 2021, 23, 5016–5032. [Google Scholar] [CrossRef]
- Yang, R.; Pan, C.; Song, K.X.; Nam, J.C.; Wu, F.; You, Z.X.; Hao, Z.P.; Li, J.J.; Zhang, Z.S. Bamboo-derived hydrophobic porous graphitized carbon for adsorption of volatile organic compounds. Chem. Eng. J. 2023, 461, 141979. [Google Scholar]
- Hien, T.T.T.; Tsubota, T.; Taniguchi, T.; Shinogi, Y. Enhancing soil water holding capacity and provision of a potassium source via optimization of the pyrolysis of bamboo biochar. Biochar 2021, 3, 51–61. [Google Scholar] [CrossRef]
- Zheng, Q.Y.; Wang, W.J.; Wen, J.; Wu, R.H.; Wu, J.F.; Zhang, W.Y.; Zhang, M.Y. Non-additive effects of bamboo-derived biochar and dicyandiamide on soil greenhouse gas emissions, enzyme activity and bacterial community. Ind. Crop. Prod. 2023, 194, 116385. [Google Scholar] [CrossRef]
- Chen, G.; Viengvilay, K.; Yu, W.; Mao, T. Effect of Different Modification Methods on the Adsorption of Manganese by Biochar from Rice Straw, Coconut Shell, and Bamboo. ACS Omega 2023, 8, 28467–28474. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Bi, C.; Zhou, X.; Wu, D.; Wang, D. Preparation of Bamboo-Based Activated Carbon via Steam Activation for Efficient Methylene Blue Dye Adsorption: Modeling and Mechanism Studies. Langmuir 2023, 39, 14119–14129. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zimmerman, A.R.; Chen, H.; Gao, B. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater. Environ. Pollut. 2020, 258, 113809. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.J.; Zhang, M.; Li, J.Y.; Zhao, W. Optimization of preparation conditions for biochar derived from water hyacinth by using response surface methodology (RSM) and its application in Pb2+ removal. J. Environ. Chem. Eng. 2020, 8, 104198. [Google Scholar] [CrossRef]
- Atugoda, T.; Gunawardane, C.; Ahmad, M.; Vithanage, M. Mechanistic interaction of ciproffoxacin on zeolite modiffed seaweed (Sargassum crassifolium) derived biochar: Kinetics, isotherm and thermodynamics. Chemosphere 2021, 281, 130676. [Google Scholar] [CrossRef]
- Liu, H.; Xu, G.; Li, G. The characteristics of pharmaceutical sludge-derived biochar and its application for the adsorption of tetracycline. Sci. Total Environ. 2020, 747, 141492. [Google Scholar] [CrossRef]
- Quesada, H.B.; Cusioli, L.F.; de O Bezerra, C.; Baptista, A.T.; Nishi, L.; Gomes, R.G.; Bergamasco, R. Acetaminophen adsorption using a low-cost adsorbent prepared from modified residues of Moringa oleifera Lam. seed husks. J. Chem. Technol. Biotechnol. 2019, 94, 3147–3157. [Google Scholar] [CrossRef]
- Zelaya, S.M.E.; Flores, F.M.; Torres, S.R.M.; Fernández, M.A. Norfloxacin adsorption on montmorillonite and carbon/montmorillonite hybrids: pH effects on the adsorption mechanism, and column assays. J. Environ. Sci. Health Part A 2020, 56, 113–122. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Zhen, D.W.; Liu, F.M.; Chen, R.; Peng, Q.R.; Wang, Z.Y. An achieved strategy for magnetic biochar for removal of tetracyclines and fluoroquinolones: Adsorption and mechanism studies. Bioresour. Technol. 2023, 369, 128440. [Google Scholar] [CrossRef]
- Priya, S.; Manish, S.; Harshita, L.; Ragini, G.; Madhu, A. Non-toxic and biodegradable κ-carrageenan/ZnO hydrogel for adsorptive removal of norfloxacin: Optimization using response surface methodology. Int. J. Biol. Macromol. 2023, 238, 124145. [Google Scholar]
- Lei, H.; Muhammad, Y.; Wang, K.; Yi, M.; He, C.; Wei, Y.; Fujita, T. Facile fabrication of metakaolin/slag-based zeolite microspheres (M/SZMs) geopolymer for the efficient remediation of Cs+ and Sr2+ from aqueous media. J. Hazard. Mater. 2021, 406, 124292. [Google Scholar] [CrossRef]
- Li, Y.; Shang, H.; Cao, Y.; Yang, C.; Feng, Y.; Yu, Y. High performance removal of sulfamethoxazole using large specific area of biochar derived from corncob xylose residue. Biochar 2022, 4, 11. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Wang, F.; Yang, H.; Liu, L. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation. Chemosphere 2021, 265, 129133. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, H.; Liu, X.; Wan, Y.; Han, X.; Zou, W. Preparation of magnetic biochar obtained from one-step pyrolysis of salix mongolica and investigation into adsorption behavior of sulfadimidine sodium and norfloxacin in aqueous solution. J. Dispers. Sci. Technol. 2020, 41, 214–226. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Vo, T.D.H.; Nguyen, T.B.; Nguyen, D.D.; Bui, T.H.; Nguyen, X.C.; Tran, T.; Le, T.N.C.; Duong, T.G.H.; Bui, M.H.; et al. Adsorption of norffoxacin from aqueous solution on biochar derived from spent coffee ground: Master variables and response surface method optimized adsorption process. Chemosphere 2022, 288, 132577. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Q.; Wang, T.S.; Liu, Y.Y.; Tang, W.; Geng, S.Y.; Chen, J.W. Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar. Chemosphere 2023, 303, 135264. [Google Scholar] [CrossRef]
- Ashiq, A.; Vithanage, M.; Sarkar, B.; Kumar, M.; Bhatnagar, A.; Khan, E.; Xi, Y.; Ok, Y.S. Carbon-based adsorbents for fluoroquinolone removal from water and wastewater: A critical review. Environ. Res. 2021, 197, 111091. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Wang, Y.; Li, R.X.; Cao, H.L.; Li, Y.F.; Lü, J. Impacts of temperatures and phosphoric-acid modification to the physicochemical properties of biochar for excellent sulfadiazine adsorption. Biochar 2022, 4, 14. [Google Scholar] [CrossRef]
- Yang, F.; Jin, C.; Wang, S.; Wang, Y.J.; Wei, L.; Zheng, L.H.; Gu, H.P.; Lam, S.S.; Naushad, M.; Li, C.; et al. Bamboo-based magnetic activated carbon for efficient removal of sulfadiazine: Application and adsorption mechanism. Chemosphere 2023, 323, 138245. [Google Scholar] [CrossRef]
- Kooh, M.R.R.; Dahri, M.K. Removal of methyl violet 2B dye from aqueous solution using Nepenthes rafflesiana pitcher and leaves. Appl. Water. Sci. 2017, 7, 3859–3868. [Google Scholar] [CrossRef]
- Wu, F.; Tseng, R.L.; Huang, S.C.; Juang, R.S. Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review. Chem. Eng. J. 2009, 151, 1–9. [Google Scholar] [CrossRef]
Samples | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
Raw biomass | 2.76 | 0.012 | 4.695 |
BB-300 | 18.97 | 0.003 | 3.703 |
BB-500 | 52.83 | 0.003 | 6.159 |
BB-600 | 278.01 | 0.029 | 3.326 |
BB-700 | 576.76 | 0.042 | 3.748 |
BB-800 | 574.70 | 0.099 | 3.735 |
Models | Parameters | Temperatures (°C) | ||
---|---|---|---|---|
25 | 35 | 45 | ||
Langmuir | Ka | 0.0093 | 0.0108 | 0.0074 |
Qmax (mg/g) | 76.1681 | 77.2239 | 105.1881 | |
R2 | 0.9679 | 0.9585 | 0.9480 | |
Freundlich | KF | 2.7369 | 3.3342 | 8.4439 |
n | 1.7822 | 1.8896 | 1.7039 | |
R2 | 0.9355 | 0.9931 | 0.9799 |
Models | Parameters | Concentrations (mg/L) | ||
---|---|---|---|---|
20 | 50 | 100 | ||
Pseudo-first-order | k1 | 0.1673 | 0.1769 | 0.1719 |
qe(mg/g) | 8.4439 | 14.6351 | 23.8837 | |
R2 | 0.5351 | 0.4114 | 0.5344 | |
Pseudo-second-order | k2 | 0.0419 | 0.0246 | 0.0155 |
qe (mg/g) | 8.7616 | 15.2113 | 24.7588 | |
R2 | 0.8487 | 0.7858 | 0.8729 |
Biochar | Removal Rate (%) | Adsorption Capacity ~(mg/g) | Preparation Conditions | Adsorption Conditions |
---|---|---|---|---|
BB-700 | 99.71 | 13.29 | 700 °C, 2 h, 5 °C/min | 15 mg biochar, 10 mg/L NOR, 20 mL solutions, 180 min, 150 rpm/min |
Peanut shell | 88.07 | 11.74 | ||
Rape straw | 89.91 | 11.99 | ||
Wheat straw | 80.63 | 10.75 | ||
Corn stalk | 86.05 | 11.47 | ||
Rice straw | 93.82 | 12.51 | ||
Soybean straw | 85.67 | 11.42 | ||
Eichhornia crassipes | 74.13 | 9.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Shao, S.; Li, P.; Zhou, R. Removing Norfloxacin from Aqueous Solutions Using Biochar Derived from Waste Disposable Bamboo Chopsticks. Water 2023, 15, 4306. https://doi.org/10.3390/w15244306
Zhang M, Shao S, Li P, Zhou R. Removing Norfloxacin from Aqueous Solutions Using Biochar Derived from Waste Disposable Bamboo Chopsticks. Water. 2023; 15(24):4306. https://doi.org/10.3390/w15244306
Chicago/Turabian StyleZhang, Ming, Shuai Shao, Penghui Li, and Runjuan Zhou. 2023. "Removing Norfloxacin from Aqueous Solutions Using Biochar Derived from Waste Disposable Bamboo Chopsticks" Water 15, no. 24: 4306. https://doi.org/10.3390/w15244306
APA StyleZhang, M., Shao, S., Li, P., & Zhou, R. (2023). Removing Norfloxacin from Aqueous Solutions Using Biochar Derived from Waste Disposable Bamboo Chopsticks. Water, 15(24), 4306. https://doi.org/10.3390/w15244306