Towards Quantifying the Coastal Vulnerability due to Natural Hazards using the InVEST Coastal Vulnerability Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modeling Coastal Hazards
2.3. Data Input for Hazard Modeling
2.4. Habitat Scenarios
2.5. Quantifying Risk to Coastal Communities
3. Results and Discussion
3.1. Distribution and Drivers of Coastal Hazards
3.2. Comparison with Other Global Studies and Future Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model Input | Year | Extent | Resolution | Source | |
---|---|---|---|---|---|
Natural habitats | Coral Reef | 2009 | Global | 30 m | UNEP World Conservation Monitoring Centre (UNEP-WCMC). |
Seagrass | UN Environment Program World Conservation Monitoring Centre. | ||||
Mangrove | 2003 | The UN Environment Program World Conservation Monitoring Centre (UNEP-WCMC) | |||
Saltmarsh | 2015 | The UN Environment Program World Conservation Monitoring Centre (UNEP-WCMC) | |||
Relief | Digital elevation model (30 m) | 2014 | Global | 30 m | Shuttle Radar Topography Mission |
Wave exposure | 2005–2010 | Global | 50 km | National Oceanographic and Atmospheric Administration WaveWatch III | |
Shoreline type | Coastal geomorphology | 2020 | Oman | Vector | National Static and Information Center |
Surge potential | Continental shelf | 2005 | Global | Vector | Continental Margins Ecosystem (COMARGE) effort in conjunction with the Census of Marine Life |
Sea level rise | SLR | 2020 | Global | Vector | https://www.aviso.altimetry.fr/ (6 December 2021) |
References
- Tiggeloven, T.; De Moel, H.; Winsemius, H.C.; Eilander, D.; Erkens, G.; Gebremedhin, E.; Ward, P.J. Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures. Nat. Hazards Earth Syst. Sci. 2020, 20, 1025–1044. [Google Scholar] [CrossRef] [Green Version]
- Seas, U.R.; Plans, A. Percentage of Total Population Living in Coastal Areas. 2011. Available online: https://saimi.co.za/ (accessed on 6 December 2021).
- World Bank. Vulnerability, Risk Reduction and Adaptation to Climate Change: Ghana; The World Bank: Washington, DC, USA, 2011; Available online: http://sdwebx.worldbank.org/climateportalb/doc/GFDRRCountryProfiles/wb_gfdrr_climate_change_country_profile_for_GHA.pdf (accessed on 12 December 2021).
- Dube, K.; Nhamo, G.; Chikodzi, D. Flooding trends and their impacts on coastal communities of Western Cape Province, South Africa. GeoJournal 2022, 87, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T.; Wang, J.; Fang, Y.; Qin, Y.; Huang, L.; Chen, Y. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Sci. Total Environ. 2020, 708, 135153. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.; Vafeidis, A.T.; Lincke, D.; Marasmi, C.; Hinkel, J. Effects of Scale and Input Data on Assessing the Future Impacts of Coastal Flooding. Front. Mar. Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D., Poloczanska, E., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Chang, H.P. Cultural dimensions of risk perceptions: A case study on cross-strait driftage pollution in a coastal area of Taiwan. J. Environ. Manag. 2018, 206, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.; Fernandez-Manjarrés, J.F.; Walpole, M. Scenarios for global biodiversity in the 21st century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, H.J.; Yue, Q. China’s coastal wetlands: Ecological challenges, restoration, and management suggestions. Reg. Stud. Mar. Sci. 2020, 37, 101337. [Google Scholar] [CrossRef]
- O’Higgins, T.; Nogueira, A.A.; Lillebø, A.I. A simple spatial typology for assessment of complex coastal ecosystem services across multiple scales. Sci. Total Environ. 2019, 649, 1452–1466. [Google Scholar] [CrossRef]
- Yang, H.; Huang, J.; Liu, D. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Appl. Geogr. 2020, 115, 102135. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. In Resolution Adopted by the General Assembly on 25 September 2015. Seventieth Session, Agenda Items 15 and 116. A/RES/70/1. 2015. Available online: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 15 December 2021).
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Eisenhauer, N. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef]
- Sanderson Bellamy, A.; Galliford, H.J. Biodiversity and the Area-Based Approach in Wales: How Can the Sustainable Management of Natural Resources (SMNR) Framework Deliver Nature Recovery? Summary and Key Findings; Cardiff University: Cardiff, UK, 2018. [Google Scholar]
- Sievers, M.; Brown, C.J.; Tulloch, V.J.; Pearson, R.M.; Haig, J.A.; Turschwell, M.P.; Connolly, R.M. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 2019, 34, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Arkema, K.K.; Griffin, R.; Maldonado, S.; Silver, J.; Suckale, J.; Guerry, A.D. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities. Ann. N. Y. Acad. Sci. 2017, 1399, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.M.; Arkema, K.K.; Griffin, R.M.; Lashley, B.; Lemay, M.; Maldonado, S.; Verutes, G. Advancing coastal risk reduction science and implementation by accounting for climate, ecosystems, and people. Front. Mar. Sci. 2019, 6, 556. [Google Scholar] [CrossRef] [Green Version]
- Kropp, J.P.; Boettle, M.; Rybski, D. Quantifying the effect of sea level rise and flood defence–A point process perspective on coastal flood damage. Nat. Hazards Earth Syst. Sci. 2016, 16, 559–576. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, M.; Li, Y.; Tang, Z.; Cao, L.; Liu, X. Assessing hazard vulnerability, habitat conservation, and restoration for the enhancement of mainland China’s coastal resilience. Earth’s Future 2018, 6, 326–338. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.R.; Levin, L.A.; Hoover, D.J.; McMurtry, G.; Gage, J.D. Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2000, 47, 227–257. [Google Scholar] [CrossRef]
- Khvorov, S.A.; Al-Sinawi, M.N.; Al-Kharusi, L.H.; Mohammad, N. Catalogue of brachyuran crabs (Decapoda) of the Sultanate of Oman: Part I. The Arabian Sea coast (Dhofar, Al-Wusta, southern part of Sharqiya). Crustaceana 2012, 85, 1735–1744. [Google Scholar] [CrossRef] [Green Version]
- Mansour, S.; Al-Awhadi, T.; Al-Hatrushi, S. Geospatial based multi-criteria analysis for ecotourism land suitability using GIS & AHP: A case study of Masirah Island, Oman. J. Ecotourism 2020, 19, 148–167. [Google Scholar] [CrossRef]
- Deif, A.; Mohamed, A.M.; El-Hussain, I.; Al-Shijbi, Y.; El-Hady, S.; Al Habsi, Z. Site-specific seismic hazard levels at the economic zone of Duqm, Oman. J. Geophys. Eng. 2021, 18, 740–760. [Google Scholar] [CrossRef]
- Al-Yahyai, S.; Tan, C.S.; Yousef, A.H.; Al-Badi, A. Wind resource assessment over Al Duqm industrial area in Oman. Arab. J. Geosci. 2016, 9, 297. [Google Scholar] [CrossRef]
- Al-Yahyai, S.; Charabi, Y. Assessment of large-scale wind energy potential in the emerging city of Duqm (Oman). Renew. Sustain. Energy Rev. 2015, 47, 438–447. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Bierbower, W. InVEST+ VERSION+ User’s Guide. The Natural Capital Project; Stanford University: Stanford, CA, USA, 2018. [Google Scholar]
- Hammar-Klose, E.S.; Thieler, E.R. Coastal Vulnerability to Sea-Level Rise: A Preliminary Database for the U.S. Atlantic, Pacific, and Gulf of Mexico Coasts; U.S. Geological Survey: Reston, VA, USA, 2001.
- Roelvink, F.E.; Storlazzi, C.D.; Van Dongeren, A.R.; Pearson, S.G. Coral reef restorations can be optimized to reduce coastal flooding hazards. Front. Mar. Sci. 2021, 8, 440. [Google Scholar] [CrossRef]
- UNEP-WCMC; WorldFish Centre; WRI; TNC. Global Distribution of Coral Reefs, Compiled from Multiple Sources Including the Millennium Coral Reef Mapping Project; Version 4.1, updated by UNEP-WCMC. Includes contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001); UN Environment Programme World Conservation Monitoring Centre: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves, (version 3.1); A collaborative project of ITTO, ISME, FAO, UNEP-WCMC, UNESCO-MAB, UNU-INWEH and TNC; Earthscan: London, UK, 2010; 319p. [Google Scholar] [CrossRef]
- Green, E.P.; Short, F.T. World Atlas of Seagrasses; Prepared by UN Environment Programme World Conservation Monitoring Centre; University of California: Berkeley, CA, USA, 2003; 332p, Available online: https://archive.org/details/worldatlasofseag03gree (accessed on 17 December 2021). [CrossRef]
- National Center for Statistical Information (NCSI). Electronic Census of Population2020.Oman. 2020. Available online: https://unstats.un.org/unsd/demographic-social/census/documents/Oman/oman_e-census_2020_08.pdf (accessed on 17 December 2021).
- Corrales, X.; Vilas, D.; Piroddi, C.; Steenbeek, J.; Claudet, J.; Lloret, J.; Coll, M. Multi-zone marine protected areas: Assessment of ecosystem and fisheries benefits using multiple ecosystem models. Ocean. Coast. Manag. 2020, 193, 105232. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.N.; Calil, J.; Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayan, S.; Beck, M.W.; Wilson, P.; Thomas, C.J.; Guerrero, A.; Shepard, C.C.; Trespalacios, D. The value of coastal wetlands for flood damage reduction in the northeastern USA. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depietri, Y.; McPhearson, T. Integrating the grey, green, and blue in cities: Nature-based solutions for climate change adaptation and risk reduction. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Springer: Cham, Switzerland, 2017; pp. 91–109. [Google Scholar] [CrossRef]
- Kato, S.; Huang, W. Land use management recommendations for reducing the risk of downstream flooding based on a land use change analysis and the concept of ecosystem-based disaster risk reduction. J. Environ. Manag. 2021, 287, 112341. [Google Scholar] [CrossRef]
- Al Ruheili, A.M.; Boluwade, A. Quantifying Coastal Shoreline Erosion Due to Climatic Extremes Using Remote-Sensed Estimates from Sentinel-2A Data. Environ. Process. 2021, 8, 1121–1140. [Google Scholar] [CrossRef]
- de Vrees, L. Adaptive marine spatial planning in the Netherlands sector of the North Sea. Mar. Policy 2021, 132, 103418. [Google Scholar] [CrossRef]
- Ballesteros, C.; Esteves, L.S. Integrated Assessment of Coastal Exposure and Social Vulnerability to Coastal Hazards in East Africa. Estuaries Coasts 2021, 44, 2056–2072. [Google Scholar] [CrossRef]
- Wing, O.E.; Pinter, N.; Bates, P.D.; Kousky, C. New insights into US flood vulnerability revealed from flood insurance big data. Nat. Commun. 2020, 11, 1444. [Google Scholar] [CrossRef] [Green Version]
- Di Risio, M.; Bruschi, A.; Lisi, I.; Pesarino, V.; Pasquali, D. Comparative analysis of coastal flooding vulnerability and hazard assessment at national scale. J. Mar. Sci. Eng. 2017, 5, 51. [Google Scholar] [CrossRef]
Variable Ranks | Very Low Exposure 1 | Low 2 | Moderate 3 | High 4 | Very High Exposure 5 |
---|---|---|---|---|---|
Natural habitats | Coral Reefs, Mangroves, | Salt marsh | Seagrass | ||
Shoreline type | Rocky, Cliffs | Seawall, Medium cliff, small sea wall | Low cliff, rip-rap walls | Lagoons | Mud flat, sand |
Relief, wave exposure, surge potential | 0 to 20 Percentile | 21 to 40 Percentile | 41 to 60 Perecentile | 61 to 80 Perecentile | 81 to 100 Perecentile |
Sea-level change | 0–0.5 cm | 0.6–0.7 cm | 0.8–0.9 cm | 1.0–1.2 cm | 1.4–2.0 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Ruheili, A.; Boluwade, A. Towards Quantifying the Coastal Vulnerability due to Natural Hazards using the InVEST Coastal Vulnerability Model. Water 2023, 15, 380. https://doi.org/10.3390/w15030380
Al Ruheili A, Boluwade A. Towards Quantifying the Coastal Vulnerability due to Natural Hazards using the InVEST Coastal Vulnerability Model. Water. 2023; 15(3):380. https://doi.org/10.3390/w15030380
Chicago/Turabian StyleAl Ruheili, Amna, and Alaba Boluwade. 2023. "Towards Quantifying the Coastal Vulnerability due to Natural Hazards using the InVEST Coastal Vulnerability Model" Water 15, no. 3: 380. https://doi.org/10.3390/w15030380