Impacts of Extreme Rainfalls on Sewer Overflows and WSUD-Based Mitigation Strategies: A Review
Abstract
:1. Introduction
2. Overview of Reviewed Studies
3. Sewer Overflow Mitigation Strategies
3.1. Conventional Strategies to Mitigate Sewer Overflows
3.2. WSUD Strategies to Mitigate Sewer Overflows
3.2.1. Permeable Pavements
3.2.2. Green Roofs
3.2.3. Raingardens/Bio-Retention Cells
3.2.4. Rainwater Tanks
3.2.5. Swales
3.2.6. Wetlands
3.2.7. Urban Trees
3.2.8. Infiltration Trenches
3.2.9. Detention Ponds
3.2.10. Soakaway Retrofits
3.3. Performance Evaluation of WSUD Strategies
4. Application of WSUD Modelling Tools
5. Further Discussion
5.1. Hybrid Scenario of Green-Gray Strategies
5.2. Improving Sewer Overflow Mitigation with RTC Systems
5.3. Lack of Modelling at Larger Scales
5.4. Developing a Suitable Sewer Overflow Mitigation Strategy
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.; Kim, R.; Choi, J.; Kim, S. The applicability of LID facilities as an adaptation strategy of urban CSOs management for climate change. Water Supply 2022, 22, 75–88. [Google Scholar] [CrossRef]
- Gamerith, V.; Olsson, J.; Camhy, D.; Hochedlinger, M.; Kutschera, P.; Schlobinski, S.; Gruber, G. Assessment of Combined Sewer Overflows under Climate Change-Urban Drainage Pilot Study Linz; IWA World Congress on Water, Climate and Energy: Dublin, Ireland, 2012; Available online: http://www.smhi.se/polopoly_fs/1.24829.1347460676!/Paper_WCE_Dublin_Gamerith_etal.pdf (accessed on 9 August 2022).
- Willems, P.; Arnbjerg-Nielsen, K.; Olsson, J.; Nguyen, V.T.V. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmos. Res. 2012, 103, 106–118. [Google Scholar] [CrossRef]
- Berggren, K.; Olofsson, M.; Viklander, M.; Svensson, G.; Gustafsson, A.M. Hydraulic impacts on urban drainage systems due to changes in rainfall caused by climatic change. J. Hydrol. Eng. 2011, 17, 92–98. [Google Scholar] [CrossRef]
- Hou, X.; Qin, L.; Xue, X.; Xu, S.; Yang, Y.; Liu, X.; Li, M. A city-scale fully controlled system for stormwater management: Consideration of flooding, non-point source pollution and sewer overflow pollution. J. Hydrol. 2021, 603, 127155. [Google Scholar] [CrossRef]
- Yazdanfar, Z.; Sharma, A.K. Urban Drainage System Planning and Design- Challenges with Climate Change and Urbanization: A Review. Water Sci. Technol. 2015, 72, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Huong, H.T.L.; Pathirana, A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci. 2013, 17, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Willems, P. Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. J. Hydrol. 2013, 496, 166–177. [Google Scholar] [CrossRef]
- Semadeni-Davies, A.; Hernebring, C.; Svensson, G.; Gustafsson, L.G. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system. J. Hydrol. 2008, 350, 100–113. [Google Scholar] [CrossRef]
- Howe, C.; Jones, R.N.; Maheepala, S.; Rhodes, B. Implications of Potential Climate Change for Melbourne’s Water Resources. In Melbourne Water Climate Change Study; CSIRO, Victorian Government and Melbourne Water: Melbourne, Australia, 2005. [Google Scholar] [CrossRef]
- Balmforth, D. The Pollution Aspects of Storm-Sewage Overflows. Water. Environ. J. 1990, 4, 219–226. [Google Scholar] [CrossRef]
- Boyd, L. Controlling Combined Sewer Overflows with Rainwater Harvesting in Olympia, Washington. Master’s Thesis, Evergreen State College, Olympia, WA, USA, 2011. Available online: https://archives.evergreen.edu/masterstheses/Accession86-10MES/Boyd_LMESthesis2011.pdf (accessed on 24 October 2022).
- Nasrin, T.; Tran, H.D.; Muttil, N. Modelling impact of extreme rainfall on sanitary sewer system by predicting rainfall derived infiltration/inflow. In MODSIM2013, 20th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand; Piantadosi, J., Anderssen, R.S., Boland, J., Eds.; Modelling and Simulation Society of Australia and New Zealand, Australian National University: Canberra, Australia, 2013; pp. 2827–2833. Available online: https://www.mssanz.org.au/modsim2013/L12/nasrin.pdf (accessed on 24 August 2022).
- Joshi, P.; Leitão, J.P.; Maurer, M.; Bach, P.M. Not all SuDS are created equal: Impact of different approaches on combined sewer overflows. Water Res. 2021, 191, 116780. [Google Scholar] [CrossRef]
- Nasrin, T.; Sharma, A.K.; Muttil, N. Impact of short duration intense rainfall events on sanitary sewer network performance. Water 2017, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- Pawlowski, C.W.; Rhea, L.; Shuster, W.D.; Barden, G. Some factors affecting inflow and infiltration from residential sources in a core urban area: Case study in a Columbus, Ohio, neighborhood. J. Hydraul. Eng. 2013, 140, 105–114. [Google Scholar] [CrossRef]
- Karuppasamy, E.; Inoue, T. Application of USEPA SSOAP Software to Sewer System Modeling. In Proceedings of the ASCE’s World Environmental and Water Resources Congress 2012, Crossing Boundaries, ASCE, Albuquerque, NM, USA, 20–24 May 2012; pp. 3494–3504. [Google Scholar] [CrossRef]
- Zhang, Z. Estimating rain derived inflow and infiltration for rainfalls of varying characteristics. J. Hydraul. Eng. 2007, 133, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Lin, R.; Wei, Z.; Xiao, Y.; Shang, G.H.; Song, Y. Effects of low impact development on the stormwater runoff and pollution control. Sci. Total Environ. 2022, 805, 150404. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Tan, Q.; Zhu, S. Characteristics of combined sewer overflows in Shanghai and selection of drainage systems. Water Environ. J. 2010, 24, 74–82. [Google Scholar] [CrossRef]
- Riechel, M.; Matzinger, A.; Pallasch, M.; Joswig, K.; Pawlowsky-Reusing, E.; Hinkelmann, R.; Rouault, P. Sustainable urban drainage systems in established city developments: Modelling the potential for CSO reduction and river impact mitigation. J. Environ. Manag. 2020, 274, 111207. [Google Scholar] [CrossRef]
- Pennino, M.J.; McDonald, R.I.; Jaffe, P.R. Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Sci. Total Environ. 2016, 565, 1044–1053. [Google Scholar] [CrossRef] [Green Version]
- Casal-Campos, A.; Fu, G.; Butler, D.; Moore, A. An integrated environmental assessment of green and gray infrastructure strategies for robust decision making. Environ. Sci. Technol. 2015, 49, 8307–8314. [Google Scholar] [CrossRef]
- Chaosakul, T.; Koottatep, T.; Irvine, K. Low Impact Development Modeling to Assess Localized Flood Reduction in Thailand. J. Water Manag. Model. 2013, 21, R246-18. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.M. Green Infrastructure and the Law. Plan. Environ. Law 2013, 65, 4–7. [Google Scholar] [CrossRef]
- Samples, I.F.; Zhang, Z. Controlling sanitary sewer overflows by preventive maintenance—A battle against nature. Environmetrics 2000, 11, 449–462. [Google Scholar] [CrossRef]
- Ghodsi, S.H.; Zhu, Z.D.; Gheith, H.; Rabideau, A.J.; Torres, M.N.; Meindl, K. Modeling the effectiveness of rain barrels, cisterns, and downspout disconnections for reducing combined sewer overflows in a City-scale watershed. Water Resour. Manag. 2021, 35, 2895–2908. [Google Scholar] [CrossRef]
- Hernes, R.R.; Gragne, A.S.; Abdalla, E.M.H.; Braskerud, B.C.; Alfredsen, K.; Muthanna, T.M. Assessing the effects of four SUDS scenarios on combined sewer overflows in Oslo, Norway: Evaluating the low-impact development module of the Mike Urban model. Hydrol. Res. 2020, 51, 1437–1454. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Gitau, M.W.; Engel, B.A.; Flanagan, D.C.; Harbor, J.M. Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. Sci. Total Environ. 2019, 665, 69–79. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gardner, T.; Begbie, D. Approaches to Water Sensitive Urban Design. Potential, Design, Ecological Health, Urban Greening, Economics, Policies, and Community Perceptions; Sharma, A., Gardner, T., Begbie, D., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Talebi, L.; Pitt, R. Water Sensitive Urban Design Approaches in Sewer System Overflow Management. In Approaches to Water Sensitive Urban Design; Sharma, A.K., Gardner, T., Begbie, D., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 139–161. [Google Scholar]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, Y.; Yu, L.; Li, J.; Pan, X.; Shen, Z.; Xu, X.; Qiu, Q. Effectiveness analysis of systematic combined sewer overflow control schemes in the sponge city pilot area of Beijing. Int. J. Environ. Res. Public Health 2019, 16, 1503. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.L.; Zhang, G.Q.; Wu, Z.H.; He, Y.; Chen, H. Combined sewer overflow control with LID based on SWMM: An example in Shanghai. Water Sci. Technol. 2015, 71, 1136–1142. [Google Scholar] [CrossRef]
- Shamsi, U.M. Modeling Rain Garden LID Impacts on Sewer Overflows. CHI J. Water Manag. Model. 2012, 20, 113–126. [Google Scholar] [CrossRef]
- Cahill, T.H. Low Impact Development and Sustainable Stormwater Management; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Perez, T.; Radford, G.; Schultz, C.; Sands, K.; Shafer, K. Milwaukee’s Green Roofs: Sowing the Seeds of Prosperity for People and the Planet. Proc. Water Environ. Fed. 2010, 2010, 78–85. [Google Scholar] [CrossRef]
- Kloss, C. Managing wet weather with green infrastructure. In US EPA’s Municipal Handbook: Rainwater Harvesting Policies; EPA-833-F-08-010; US Environmental Protection Agency: Washington, DC, USA, 2008; pp. 1–12. Available online: https://mostcenter.umd.edu/managing-wet-weather-green-infrastructure-municipal-handbook (accessed on 16 June 2022).
- Coffman, L.; Clar, M.; Weinstein, N. Low impact development management strategies for wet weather flow (WWF) control. In Proceedings of the 2000 Joint Conference on Water Resources Engineering and Water Resources Planning and Management, Minneapolis, MN, USA, 30 July–2 August 2000. [Google Scholar] [CrossRef]
- Locatelli, L.; Gabriel, S.; Mark, O.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Taylor, H.; Bockhorn, B.; Larsen, H.; Kjølby, M.J.; Steensen Blicher, A.; et al. Modelling the impact of retention–detention units on sewer surcharge and peak and annual runoff reduction. Water Sci. Technol. 2015, 71, 898–903. [Google Scholar] [CrossRef] [Green Version]
- Myers, B.; Pezzaniti, D.; Kemp, D.; Chavoshi, S.; Montazeri, M.; Sharma, A.; Chacko, P.; Hewa, G.A.; Tjandraatmadja, G.; Cook, S. Water Sensitive Urban Design Impediments and Potential: Contributions to the Urban Water Blueprint (Phase 1). Goyder Institute for Water Research Technical Report Series, (14/19). 2014. Available online: http://www.goyderinstitute.org/uploads/GoyderWSUD-Task-3-Final-report_FINAL-web.pdf (accessed on 28 September 2015).
- Walsh, T.C.; Pomeroy, C.A.; Burian, S.J. Hydrologic modeling analysis of a passive, residential rainwater harvesting program in an urbanized, semi-arid watershed. J. Hydrol. 2014, 508, 240–253. [Google Scholar] [CrossRef]
- Rahman, A.; Keane, J.; Imteaz, M.A. Rainwater Harvesting in Greater Sydney: Water Savings, Reliability and Economic Benefits. Resour. Conserv. Recycl. 2012, 61, 16–21. [Google Scholar] [CrossRef]
- Roldin, M.; Fryd, O.; Jeppesen, J.; Mark, O.; Binning, P.J.; Mikkelsen, P.S.; Jensen, M.B. Modelling the impact of soakaway retrofits on combined sewage overflows in a 3km2 urban catchment in Copenhagen, Denmark. J. Hydrol. 2012, 452, 64–75. [Google Scholar] [CrossRef]
- Khastagir, A.; Jayasuriya, L.N.N. Impacts of using rainwater tanks on stormwater harvesting and runoff quality. Water Sci. Technol. 2010, 62, 324–329. [Google Scholar] [CrossRef]
- De Sousa, M.R.; Montalto, F.A.; Spatari, S. Using life cycle assessment to evaluate green and grey combined sewer overflow control strategies. J. Ind. Ecol. 2012, 16, 901–913. [Google Scholar] [CrossRef]
- Eulogi, M.; Ostojin, S.; Skipworth, P.; Kroll, S.; Shucksmith, J.D.; Schellart, A. Optimal positioning of RTC actuators and SuDS for sewer overflow mitigation in urban drainage systems. Water 2022, 14, 3839. [Google Scholar] [CrossRef]
- Foster, J.; Lowe, A.; Winkelman, S. The Value of Green Infrastructure for Urban Climate Adaptation; Center for Clean Air Policy: Washington, DC, USA, 2011; Volume 750, pp. 1–52. [Google Scholar]
- Keeley, M.; Koburger, A.; Dolowitz, D.P.; Medearis, D.; Nickel, D.; Shuster, W. Perspectives on the use of green infrastructure for stormwater management in Cleveland and Milwaukee. Environ. Manag. 2013, 51, 1093–1108. [Google Scholar] [CrossRef]
- Kloss, C.; Calarusse, C. Rooftops to Rivers: Green Strategies for Controlling Stormwater and Combined Sewer Overflows; Natural Resources Defense Council: New York, NY, USA, 2006; Available online: https://www.nrdc.org/sites/default/files/rooftops.pdf (accessed on 12 August 2022).
- MMSD. Determining the Potential of Green Infrastructure to Reduce Overflows in Milwaukee; Report Prepared for the Milwaukee Metropolitan Sewerage District: Milwaukee, WI, USA, 2011; p. 53204. Available online: https://www.mmsd.com/application/files/1214/8779/7231/MMSDGIDocLowRes.pdf (accessed on 18 September 2022).
- Montalto, F.; Behr, C.; Alfredo, K.; Wolf, M.; Arye, M.; Walsh, M. Rapid assessment of the cost-effectiveness of low impact development for CSO control. Landsc. Urban Plan. 2007, 82, 117–131. [Google Scholar] [CrossRef]
- Myers, D.R.; Maimone, M.; Smullen, J.; Marengo, B. Simulation of urban wet weather best management practices at the watershed scale. CHI J. Water Manag. Model. 2004, 12, 237–256. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, A.S.; Hare, J.T.; Jobes, T.; Medina, D. Analyzing potential benefits of low impact development in reducing combined sewers overflows. In Impacts of Global Climate Change; World Water and Environmental Resources Congress; ASCE: Anchorage, AL, USA, 2005; pp. 1–10. [Google Scholar] [CrossRef]
- Pickering, N.; Wood, J.; Hsia, S. Controlling combined sewer overflows in Chelsea, MA: Analysis of green vs. gray infrastructure. In A Report Prepared by the Charles River Watershed Association for City of Chelsea; Charles River Watershed Association: Weston, MA, USA, 2012. Available online: https://www.mass.gov/doc/controlling-combined-sewer-overflows-in-chelsea-ma-analysis-of-green-vs-gray-infrastructure (accessed on 18 September 2022).
- Podolsky, L. Green Cities, Great Lakes: Using Green Infrastructure to Reduce Combined Sewer Overflows. Ecojustice Canada. Available online: https://ecojustice.ca/wp-content/uploads/2014/11/Green-Cities-Great-Lakes-2008.pdf (accessed on 24 September 2022).
- Ptomey, P. Rethinking Rainfall: Exploring Opportunities for Sustainable Stormwater Management Practices in Turkey Creek Basin and Downtown Kansas City. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2013. Available online: https://krex.k-state.edu/dspace/handle/2097/15775 (accessed on 18 August 2022).
- Quigley, M.; Brown, C. Transforming Our Cities: High-Performance Green Infrastructure; IWA Publishing: London, UK, 2015; p. 120. [Google Scholar] [CrossRef]
- Raucher, R.; Clements, J. A triple bottom line assessment of traditional and green infrastructure options for controlling CSO events in Philadelphia’s watersheds. Proc. Water Environ. Fed. 2010, 9, 6776–6804. [Google Scholar] [CrossRef]
- Roseboro, A.; Torres, M.N.; Zhu, Z.; Rabideau, A.J. The impacts of climate change and porous pavements on combined sewer overflows: A case study of the City of Buffalo, New York, USA. Front. Water 2021, 3, 725174. [Google Scholar] [CrossRef]
- Sample, D.; Lucas, W.; Janeski, T.; Roseen, R.; Powers, D.; Freeborn, J.; Fox, L. Greening Richmond, USA: A sustainable urban drainage demonstration project. Proc. Inst. Civ. Eng. 2014, 167, 88. [Google Scholar] [CrossRef]
- Smullen, J.T.; Myers, R.D.; Reynolds, S.K. A green approach to combined sewer overflow control: Source control implementation on a watershed scale. Proc. Water Environ. Fed. 2008, 6, 714–725. [Google Scholar] [CrossRef]
- Spatari, S.; Yu, Z.; Montalto, F.A. Life cycle implications of urban green infrastructure. Environ. Pollut. 2011, 159, 2174–2179. [Google Scholar] [CrossRef]
- Stovin, V.R.; Moore, S.L.; Wall, M.; Ashley, R.M. The potential to retrofit sustainable drainage systems to address combined sewer overflow discharges in the Thames Tideway catchment. Water. Environ. J. 2013, 27, 216–228. [Google Scholar] [CrossRef]
- Struck, S.D.; Field, R.I.; Pitt, R.; O’Bannon, D.; Schmitz, E.; Ports, M.A.; Jacobs, T.; Moore, G. Green infrastructure for CSO control in Kansas City, Missouri. In Low Impact Development: Redefining Water in the City; ASCE: Reston, VA, USA, 2010; pp. 264–275. [Google Scholar] [CrossRef]
- Tackett, T.; Mills, A. Moving Green Stormwater Infrastructure into Seattle’s CSO Control Program. In Low Impact Development: Redefining Water in the City; ASCE: Reston, VA, USA, 2010; pp. 1664–1674. [Google Scholar] [CrossRef]
- Wang, R.; Eckelman, M.J.; Zimmerman, J.B. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems. Environ. Sci. Technol. 2013, 47, 11189–11198. [Google Scholar] [CrossRef] [PubMed]
- Wise, S. Green infrastructure rising. Planning 2008, 74, 14–19. [Google Scholar]
- Banting, D.; Doshi, H.; Li, J.; Missios, P. Report on the Environmental Benefits and Costs of Green Roof Technology for the City of Toronto; Ryerson University: Toronto, ON, Canada, 2005; Available online: https://mpra.ub.uni-muenchen.de/70526/ (accessed on 16 June 2022).
- Fryd, O.; Backhaus, A.; Birch, H.; Fratini, C.; Ingvertsen, S.T.; Jeppesen, J.; Petersen, T.E.P.; Roldin, M.K.; Dam, T.; Torgard, R.W.; et al. Potentials and limitations for Water Sensitive Urban Design in Copenhagen: A multidisciplinary case study. In Proceedings of the WSUD 2012: Water Sensitve Urban Design; Building the Water Sensitive Community; 7th International Conference on Water Sensitive Urban Design, Melbourne, Australia, 21–23 February 2012; Engineers Australia: Barton, Australia, 2012; pp. 686–693. Available online: https://search.informit.org/doi/abs/10.3316/informit.827479862344753 (accessed on 8 July 2022).
- Gao, H.; Sage, S.H. From Gray to Green, Onondaga County’s Green Strategy Addressing CSOs. In Low Impact Development Technology: Design Methods and Case Studies; Clar, M., Traver, R., Clark, S., Lucas, S., Lichten, K., Ports, M., Poretsky, A., Eds.; EWRI, ASCE: Reston, VA, USA, 2015; pp. 170–181. [Google Scholar] [CrossRef]
- Hartman, D.M. A Geographic Approach to Modeling the Impact of Green Roofs on Combined Sewer Overflows in the Bronx. Ph.D. Thesis, Rutgers University-Graduate School-New Brunswick, New Brunswick, NJ, USA, 2008. Available online: https://rucore.libraries.rutgers.edu/rutgers-lib/24339/ (accessed on 18 October 2022).
- Li, J. Modeling the Stormwater Benefits of Green Roofs in the City of Toronto. CHI J. Water Manag. Model. 2008, 16, R228-17. [Google Scholar] [CrossRef] [Green Version]
- Lucas, W.C.; Sample, D.J. Reducing combined sewer overflows by using outlet controls for Green Stormwater Infrastructure: Case study in Richmond, Virginia. J. Hydrol. 2015, 520, 473–488. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Semadeni-Davies, A.; Bengtsson, L. Inner city stormwater control using a combination of best management practices. Ecol. Eng. 2004, 22, 279–298. [Google Scholar] [CrossRef]
- Wise, S.; Braden, J.; Ghalayini, D.; Grant, J.; Kloss, C.; MacMullan, E.; Morse, S.; Montalto, F.; Nees, D.; Nowak, D.; et al. Integrating valuation methods to recognize green infrastructure’s multiple benefits. In Low Impact Development: Redefining Water in the City; ASCE: Reston, VA, USA, 2010; pp. 1123–1143. [Google Scholar] [CrossRef] [Green Version]
- Abi Aad, M.P.; Suidan, M.T.; Shuster, W.D. Modeling techniques of best management practices: Rain barrels and rain gardens using EPA SWMM-5. J. Hydrol. Eng. 2009, 15, 434–443. [Google Scholar] [CrossRef]
- Autixier, L.; Mailhot, A.; Bolduc, S.; Madoux-Humery, A.S.; Galarneau, M.; Prévost, M.; Dorner, S. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water. Sci. Total Environ. 2014, 499, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Colwell, S.; Tackett, T. Ballard Roadside Raingardens, Phase 1–Lessons Learned. In Low Impact Development Technology: Design Methods and Case Studies; Clar, M., Traver, R., Clark, S., Lucas, S., Lichten, K., Ports, M., Poretsky, A., Eds.; EWRI, ASCE: Reston, VA, USA, 2015; pp. 70–80. [Google Scholar] [CrossRef]
- Muhandes, S.; Dobson, B.; Mijic, A. The value of aggregated city scale models to rapidly assess SuDS in combined sewer systems. Front. Water 2022, 3, 773974. [Google Scholar] [CrossRef]
- Shamsi, U. Modeling to Quantify the Benefits of LID for CSO Reduction. In Low Impact Development Technology, Design Methods and Case Studies; Clar, M., Traver, R., Clark, S., Lucas, S., Lichten, K., Ports, M., Poretsky, A., Eds.; EWRI, ASCE: Reston, VA, USA, 2015; pp. 136–140. [Google Scholar] [CrossRef]
- Nasrin, T.; Muttil, N.; Sharma, A. WSUD strategies to minimise the impacts of climate change and urbanisation on urban sewerage systems: Quantifying the effectiveness of rainwater tanks in reducing sanitary sewage overflows in a case study in Melbourne, Victoria. AWA Water e-J. 2016, 1, 1–7. Available online: https://vuir.vu.edu.au/id/eprint/31265 (accessed on 12 August 2022).
- Petrucci, G.; Deroubaix, J.F.; Gouvello, B.; Deutsch, J.C.; Bompard, P.; Tassin, B. Rainwater harvesting to control stormwater runoff in suburban areas. An experimental case-study. Urban Water J. 2012, 9, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Pitt, R.; Voorhees, J. Modeling green infrastructure components in a combined sewer area. CHI J. Water Manag. Model. 2011, 19, 8. [Google Scholar] [CrossRef] [Green Version]
- Tavakol-Davani, H.; Burian, S.J.; Devkota, J.; Apul, D. Performance and cost-based comparison of green and gray infrastructure to control combined sewer overflows. J. Sustain. Built Environ. 2016, 2, 04015009. [Google Scholar] [CrossRef]
- Vaes, G.; Berlamont, J. The impact of rainwater reuse on CSO emissions. Water Sci. Technol. 1999, 39, 57–64. [Google Scholar] [CrossRef]
- Meyer, D.; Molle, P.; Esser, D.; Troesch, S.; Masi, F.; Dittmer, U. Constructed Wetlands for Combined Sewer Overflow Treatment—Comparison of German, French and Italian Approaches. Water 2013, 5, 1–12. [Google Scholar] [CrossRef]
- Quaranta, E.; Fuchs, S.; Liefting, H.J.; Schellart, A.; Pistocchi, A. Costs and benefits of combined sewer overflow management strategies at the European scale. J. Environ. Manag. 2022, 318, 115629. [Google Scholar] [CrossRef]
- Tao, W.; Bays, J.S.; Meyer, D.; Smardon, R.C.; Levy, Z.F. Constructed wetlands for treatment of combined sewer overflow in the US: A review of design challenges and application status. Water 2014, 6, 3362–3385. [Google Scholar] [CrossRef]
- Tao, J.; Li, Z.; Peng, X.; Ying, G. Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control. Front. Environ. Sci. Eng. 2017, 11, 11. [Google Scholar] [CrossRef]
- Field, R.; Struzeski, E.J., Jr. Management and control of combined sewer overflows. J. Water Pollut. Control Fed. 1972, 44, 1393–1415. Available online: https://www.jstor.org/stable/25037548 (accessed on 18 August 2022).
- Rossman, L.A. Storm Water Management Model User’s Manual, Version 5.0; National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA): Cincinnati, OH, USA, 2010.
- Szeląg, B.; Łagód, G.; Musz-Pomorska, A.; Widomski, M.K.; Stránský, D.; Sokáč, M.; Pokrývková, J.; Babko, R. Development of Rainfall-Runoff Models for Sustainable Stormwater Management in Urbanized Catchments. Water 2022, 14, 1997. [Google Scholar] [CrossRef]
- Jia, Y.; Zheng, F.; Maier, H.R.; Ostfeld, A.; Creaco, E.; Savic, D.; Langeveld, J.; Kapelan, Z. Water quality modeling in sewer networks: Review and future research directions. Water Res. 2021, 202, 117419. [Google Scholar] [CrossRef]
- Elliott, A.H.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Environ. Model. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W.M. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air Soil Pollut. 2014, 225, 2055. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Liang, Q.; Ming, X.; Hou, J. An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations. Water Resour. Res. 2017, 53, 3730–3759. [Google Scholar] [CrossRef]
- Adeogun, A.G.; Daramola, M.O.; Pathirana, A. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters. Water Sci. 2015, 29, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wu, W.M. A two dimensional hydrodynamic and sediment transport model for dam break based on finite volume method with quadtree grid. Appl. Ocean Res. 2011, 33, 297–308. [Google Scholar] [CrossRef]
- Platz, M.; Simon, M.; Tryby, M. Testing of the storm water management model low impact development modules. J. Am. Water Resour. Assoc. 2020, 56, 283–296. [Google Scholar] [CrossRef]
S. No. | Strategies Used | Type of Sewer System | Country of Application | Application Type | Authors, Year |
---|---|---|---|---|---|
1. | Permeable pavements | Combined Sewer Sanitary Sewer | United Kingdom, USA, Canada, Sweden, Belgium, Portugal, China, Switzerland | Reduce CSO and SSO volumes, events, stormwater runoff volume, peak runoff, CO2 emissions, nutrients, pollutants. | Cahill, 2012 [36] Casal-Campos, et al., 2015 [23] Chen et al., 2019 [29] De Sousa et al., 2012 [46] Eulogi et al., 2022 [47] Foster et al., 2011 [48] Hansen, 2013 [25] Hou et al., 2021 [5] Joshi et al., 2021 [14] Keeley et al., 2013 [49] Kloss, 2008 [38] Kloss and Calarusse 2006 [50] MMSD, 2011 [51] Montalto et al., 2007 [52] Myers et al., 2004 [53] Patwardhan et al., 2005 [54] Pickering et al., 2012 [55] Podolsky, 2008 [56] Ptomey, 2013 [57] Quigley and Brown, 2015 [58] Raucher and Clements, 2010 [59] Roseboro et al., 2021 [60] Sample et al., 2014 [61] Semadeni-Davies et al., 2008 [9] Smullen et al., 2008 [62] Spatari et al., 2011 [63] Stovin et al., 2013 [64] Struck et al., 2010 [65] Tackett and Mills, 2010 [66] Talebi and Pitt, 2018 [31] Wang et al., 2013 [67] Wise, 2008 [68] |
2. | Green roofs | Combined Sewer Sanitary Sewer | USA, Canada, Denmark, Sweden, United Kingdom, Norway, Switzerland, Germany | Reduce stormwater runoff volume, peak runoff, CSO and SSO volumes, events, peak overflows, frequency, pollutants, direct energy consumption, urban heat island effect, improve air, water quality and urban aesthetics. | Banting et al., 2005 [69] Cahill, 2012 [36] Chen et al., 2019 [29] Foster et al., 2011 [48] Fryd et al., 2012 [70] Gao and Sage, 2015 [71] Hansen, 2013 [25] Hartman, 2008 [72] Hernes et al., 2020 [28] Joshi et al., 2021 [14] Keeley et al., 2013 [49] Kloss, 2008 [38] Li, 2008 [73] Lucas and Sample, 2015 [74] Montalto et al., 2007 [52] Patwardhan et al., 2005 [54] Pennino et al., 2016 [22] Perez et al., 2010 [37] Podolsky, 2008 [56] Quigley and Brown, 2015 [58] Raucher and Clements, 2010 [59] Riechel et al., 2020 [21] Sample et al., 2014 [61] Semadeni-Davies et al., 2008 [9] Smullen et al., 2008 [62] Stovin et al., 2013 [64] Tackett and Mills, 2010 [66] Talebi and Pitt, 2018 [31] Villarreal et al., 2004 [75] Wang et al., 2013 [67] Wise et al., 2010 [76] |
3. | Raingardens | Combined Sewer Sanitary Sewer | USA, Canada, United Kingdom, Denmark, Sweden. Norway, China, Switzerland, Korea | Reduce stormwater runoff volume, peak runoff, CSO and SSO volumes, events, peak overflows, frequency, nutrients, pollutants, CO2 emissions, improve water quality. | Abi Aad et al., 2009 [77] Autixier et al., 2014 [78] Casal-Campos, et al., 2015 [23] Cahill, 2012 [36] Chen et al., 2019 [29] Colwell and Tackett, 2015 [79] De Sousa et al., 2012 [46] Foster et al., 2011 [48] Fryd et al., 2012 [70] Hernes et al., 2020 [28] Hou et al., 2021 [5] Joshi et al., 2021 [14] Keeley et al., 2013 [49] Kim et al., 2022 [1] Kloss, 2008 [38] Kloss and Calarusse, 2006 [50] MMSD, 2011 [51] Muhandes et al., 2022 [80] Pennino et al., 2016 [22] Pickering et al., 2012 [55] Podolsky, 2008 [56] Ptomey, 2013 [57] Semadeni-Davies et al., 2008 [9] Shamsi, 2012 [35] Shamsi 2015 [81] Struck et al., 2010 [65] Tackett and Mills, 2010 [66] Talebi and Pitt, 2018 [31] Wise, 2008 [68] Wise et al., 2010 [76] |
4. | Rainwater tanks | Combined Sewer Sanitary Sewer | USA, Thailand, China, Australia, Canada, Belgium, Switzerland, France | Reduce stormwater runoff volume, peak runoff, CSO and SSO volumes, events, peak flows overflow hours, demand of potable water. | Abi Aad et al., 2009 [77] Boyd, 2011 [12] Chaosakul et al., 2013 [24] Chen et al., 2019 [29] De Sousa et al., 2012 [46] Foster et al., 2011 [48] Gao and Sage, 2015 [71] Ghodsi et al., 2021 [27] Hou et al., 2021 [5] Joshi et al., 2021 [14] Keeley et al., 2013 [49] Kloss, 2008 [38] Kloss and Calarusse, 2006 [50] Liao et al., 2015 [34] Myers et al., 2004 [53] Nasrin et al., 2016 [82] Patwardhan et al., 2005 [54] Petrucci et al., 2012 [83] Pitt and Voorhees, 2011 [84] Podolsky, 2008 [56] Ptomey, 2013 [57] Quigley and Brown, 2015 [58] Struck et al., 2010 [65] Tackett and Mills, 2010 [66] Talebi and Pitt, 2018 [31] Tavakol-Davani et al., 2016 [85] Vaes and Berlamont, 1999 [86] Wise, 2008 [68] Wise et al., 2010 [76] |
5. | Swales | Combined Sewer | USA, Denmark, China | Reduce stormwater runoff volume, peak runoff, CSO volumes, events, nutrient, pollutants | Foster et al., 2011 [48] Fryd et al., 2012 [70] Hansen, 2013 [25] Hou et al., 2021 [5] Keeley et al., 2013 [49] Kloss, 2008 [38] Kloss and Calarusse, 2006 [50] Myers et al., 2004 [53] Pennino et al., 2016 [22] Ptomey, 2013 [57] Struck et al., 2010 [65] Wise, 2008 [68] Wise et al., 2010 [76] |
6. | Wetlands | Combined Sewer Sanitary Sewer | USA, United Kingdom, Germany, France, Italy | Reduce stormwater runoff volume, peak runoff, CSO and SSO volumes, events, peak overflows, nutrients, pollutants, improve water quality. | Foster et al., 2011 [48] Hansen, 2013 [25] Kloss, 2008 [38] Kloss and Calarusse, 2006 [50] Montalto et al., 2007 [52] Meyer et al., 2013 [87] Myers et al., 2004 [53] Ptomey, 2013 [57] Quaranta et al., 2022 [88] Quigley and Brown, 2015 [58] Tao et al., 2014 [89] Wise et al., 2010 [76] |
7. | Urban trees | Combined Sewer | USA, Germany | Reduce stormwater runoff volume, peak runoff, CSO volumes, events, peak overflows, air pollutants, urban heat island effect, direct energy consumption. | Foster et al., 2011 [48] Hansen, 2013 [25] Keeley et al., 2013 [49] Pickering et al., 2012 [55] Raucher and Clements, 2010 [59] Riechel et al., 2020 [21] Spatari et al., 2011 [63] Tackett and Mills, 2010 [66] Tao et al., 2017 [90] |
8. | Infiltration trenches | Combined Sewer | Denmark, China, USA | Reduce stormwater runoff volume, CSO volumes, peak overflows, pollutants, | Fryd et al., 2012 [70] Hou et al., 2021 [5] Liao et al., 2015 [34] Lucas and Sample, 2015 [74] Myers et al., 2004 [53] Ptomey, 2013 [57] Sample et al., 2014 [61] Tao et al., 2017 [90] |
9. | Detention ponds | Combined Sewer | USA, Sweden, China | Reduce stormwater runoff volume, peak runoff, CSO volumes, events, peak overflows, nutrients, pollutants | Hou et al., 2021 [5] Pennino et al., 2016 [22] Ptomey, 2013 [57] Semadeni-Davies et al., 2008 [9] Villarreal et al., 2004 [75] |
10. | Soakaway retrofits | Combined Sewer | Denmark, United Kingdom | Reduce stormwater runoff volume, CSO volumes, events. | Fryd et al., 2012 [70] Roldin et al., 2012 [44] Stovin et al., 2013 [64] |
S. No. | WSUD Strategies Used | Overflow Volume Reduction | Overflow Frequency Reduction | Peak Flow Reduction | Runoff Volume Reduction | Pollutant Reduction | Authors, Year |
---|---|---|---|---|---|---|---|
1. | Rainwater tanks, Raingardens | - | - | - | 38% | - | Abi Aad et al., 2009 [77] |
2. | Raingardens | 31% | 15% | 26% | 19.4% | - | Autixier et al., 2014 [78] |
3. | Green Roofs | 18.8% | - | - | 65% | - | Banting et al., 2005 [69] |
4. | Rainwater tanks | - | - | - | 33% | - | Boyd, 2011 [12] |
5. | Rainwater tanks, Bio-retention cells | 41% | - | - | - | 40% | Chaosakul et al., 2013 [24] |
6. | Permeable pavements, Raingardens, Green roofs, Rain barrels | 0.2–23.5% | - | - | - | - | Chen et al., 2019 [29] |
7. | Raingardens | 6.3% | - | - | - | - | Colwell and Tackett, 2015 [79] |
8. | Permeable pavements | 11–45% | - | - | - | - | Eulogi et al., 2022 [47] |
9. | Green roofs, Permeable pavements, Rainwater tanks, Raingardens, Swales, Urban trees, Wetlands | 22–36% | 6–15% | 5–36% | 50–60% | - | Foster et al., 2011 [48] |
10. | Raingardens, Swales, Infiltration trenches, Green roofs, Soakaway retrofits | 20% | - | - | - | - | Fryd et al., 2012 [70] |
11. | Rainwater tanks, Urban trees, Green roofs, | 6.3% | - | - | - | - | Gao and Sage, 2015 [71] |
12. | LID at source | 35–49% | 22% | - | - | - | Gong et al., 2019 [33] |
13. | Green Roofs | 31% | 73% | - | - | - | Hartman, 2008 [72] |
14. | Raingardens, Green roofs | 100% | 50% | - | - | - | Hernes et al., 2020 [28] |
15. | Permeable pavements, Raingardens, Rainwater tanks, Swales, Infiltration trenches, Detention ponds | 47.02% | - | - | - | - | Hou et al., 2021 [5] |
16. | Permeable pavement s, Raingardens, Rainwater tanks, Green roofs | 50–92.3% | - | - | - | - | Joshi et al., 2021 [14] |
17. | Bio-retention cells | 70% | - | - | - | - | Kim et al., 2022 [1] |
18. | Green roofs, Raingardens, Swales, Rainwater tanks, Wetlands, Permeable pavement | 12–38% | 14.7% | 5–36% | 26% | - | Kloss and Calarusse, 2006 [50] |
19. | Rainwater tanks, Bio-retention cells, Infiltration trenches | 15.5% | - | 16.2% | - | - | Liao et al., 2015 [34] |
20. | Green Roofs | 18.8% | 2.3% | - | - | - | Li, 2008 [73] |
21. | Bio-retention cells, Green roofs, Infiltration trenches, Permeable pavements | 74% | - | 53% | 65.1% | - | Lucas and Sample, 2015 [74] |
22. | Constructed wetlands | 42% | Meyer et al., 2013 [87] | ||||
23. | Raingardens, Rainwater tanks, Permeable pavements | 33% | 29% | 27% | 50% | 36% | MMSD, 2011 [51] |
24. | Green roofs, Permeable pavements, Wetlands | - | - | 40% | - | - | Montalto et al., 2007 [52] |
25. | Raingardens | 20.3% | - | - | - | - | Muhandes et al., 2022 [80] |
26. | Rainwater tanks | 33% | - | - | - | - | Nasrin et al., 2016 [82] |
27. | Bio-retention cells, Permeable pavements, Green roofs | - | 46% | - | 37% | - | Patwardhan et al., 2005 [54] |
28. | Porous pavements, Bio-retention cells, Urban trees | 90.3% | - | - | - | 84.8% | Pickering et al., 2012 [55] |
29. | Raingardens, Rainwater tanks, Permeable pavements, Green roofs, Swales, Infiltration trenches, Wetlands, Detention ponds | 54% | - | - | 20% | - | Ptomey, 2013 [57] |
30. | Constructed wetlands | 46.3% | - | - | - | - | Quaranta et al., 2022 [88] |
31. | Green roofs, tree trenches, stormwater harvesting | 45–58% | - | 31–48% | 28–39% | - | Riechel et al., 2020 [21] |
32. | Soakaways Retrofits | 55% | 48% | - | - | - | Roldin et al., 2012 [44] |
33. | Permeable pavements | 2–31% | - | - | - | - | Roseboro et al., 2021 [60] |
34. | Raingardens | 85% | 64% | 49% | - | - | Shamsi, 2012 [35] |
35. | Raingardens | 3.5% | - | - | - | - | Shamsi, 2015 [81] |
36. | Green Roofs, Permeable pavements | 61% | - | - | 50% | - | Smullen et al., 2008 [62] |
37. | Green roofs, Soakaways Retrofits, Permeable pavements | 54% | 31% | - | - | - | Stovin et al., 2013 [64] |
38. | Raingardens, Rainwater tanks, Permeable pavements, Green roofs, Urban trees | 83% | - | - | - | - | Tackett and Mills, 2010 [66] |
39. | Green Roofs, Permeable pavements, Rainwater tanks Bio-retention cells | - | 50% | - | 20–80% | - | Talebi and Pitt, 2018 [31] |
40. | Infiltration trenches, tree trenches, Stormwater bumpout | 95.85% | - | - | - | - | Tao et al., 2017 [90] |
41. | Green roofs, Detention ponds | - | - | - | 21% | - | Villarreal et al., 2004 [75] |
42. | Rainwater tanks, Raingardens, Green roofs, Swales, Wetlands | - | - | - | 50% | 58% | Wise et al., 2010 [76] |
S. No. | Modelling Tools | WSUD Strategy | Authors, Year |
---|---|---|---|
1. | Stormwater Management Model (SWMM); PCSWMM (advanced modelling software for SWMM) | Permeable pavements, green roofs, Raingardens, Rainwater tanks, Swales, Wetlands, Urban trees, Infiltration trenches, Detention ponds, Soakaway retrofits | Abi Aad et al., 2009 [77] Autixier et al., 2014 [78] Cahill, 2012 [36] Casal-Campos et al., 2015 [23] Chaosakul et al., 2013 [24] Colwell and Tackett, 2015 [79] De Sousa et al., 2012 [46] Eulogi et al., 2022 [47] Gong et al., 2019 [33] Hartman, 2008 [72] Hou et al., 2021 [5] Joshi et al., 2021 [14] Kim et al., 2022 [1] Liao et al., 2015 [34] Lucas and Sample, 2015 [74] MMSD, 2011 [51] Montalto et al., 2007 [52] Myers et al., 2004 [53] Nasrin et al., 2016 [82] Petrucci et al., 2012 [83] Pitt and Voorhees, 2011 [84] Quigley and Brown, 2015 [58] Roseboro et al., 2021 [60] Shamsi, 2012 [35] Shamsi, 2015 [81] Smullen et al., 2008 [62] Stovin et al., 2013 [64] Struck et al., 2010 [65] Tao et al., 2017 [90] Tavakol-Davani et al., 2016 [85] Wang et al., 2013 [67] |
2. | Source Loading and Management Model for Windows (WinSLAMM) | Permeable pavements, Green roofs, Raingardens, Rainwater tanks, Swales | Cahill, 2012 [36] Pitt and Voorhees, 2011 [84] Struck et al., 2010 [65] |
3. | MOUSE (Model of Urban Sewers) | Permeable pavements, Green roofs, Raingardens, Detention ponds, Soakaway retrofits | Roldin et al., 2012 [44] Semadeni-Davies et al., 2008 [9] |
4. | Analytical probabilistic model, SUDS | Green roofs | Banting et al., 2005 [69] Li, 2008 [73] |
5. | CityWatStorm | Raingardens | Muhandes et al., 2022 [80] |
6. | InfoWorks | Green roofs | Hartman, 2008 [72] |
7. | Hydrus 2D model | Wetlands | Meyer et al., 2013 [87] |
8. | LIFE™ Model (physically-based hydrologic and water quality simulation tool) | Bio-retention cells, permeable pavements, green roofs | Patwardhan et al., 2005 [54] |
9. | Low Impact Development Rapid Assessment (LIDRA 2.0) | Permeable pavements, Urban trees | Spatari et al., 2011 [63] |
10. | L-THIA-LID 2.1 | Permeable pavements, Green roofs, Raingardens, Rainwater tanks | Chen et al., 2019 [29] |
11. | Mike Urban model | Green roofs, Raingardens | Hernes et al., 2020 [28] |
12. | PondPack (Surface Stormwater Modelling Program) | Green roofs, Detention ponds | Villarreal et al., 2004 [75] |
13. | System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN) model | Permeable pavements, Raingardens | MMSD, 2011 [51] |
14. | SIMBA 6.0 | Permeable pavements, Raingardens | Casal-Campos et al., 2015 [23] |
15. | RAINMAN | Green roofs | Hartman, 2008 [72] |
16. | MATLAB and USGS FORTRAN program LOADEST | Green roofs, Raingardens, Swales, Detention ponds | Pennino et al., 2016 [22] |
17. | The Reservoir Modelling System | Rainwater tanks | Vaes and Berlamont, 1999 [86] |
18. | Microsoft Excel simulation model | Rainwater tanks | Boyd, 2011 [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muttil, N.; Nasrin, T.; Sharma, A.K. Impacts of Extreme Rainfalls on Sewer Overflows and WSUD-Based Mitigation Strategies: A Review. Water 2023, 15, 429. https://doi.org/10.3390/w15030429
Muttil N, Nasrin T, Sharma AK. Impacts of Extreme Rainfalls on Sewer Overflows and WSUD-Based Mitigation Strategies: A Review. Water. 2023; 15(3):429. https://doi.org/10.3390/w15030429
Chicago/Turabian StyleMuttil, Nitin, Tasnim Nasrin, and Ashok K. Sharma. 2023. "Impacts of Extreme Rainfalls on Sewer Overflows and WSUD-Based Mitigation Strategies: A Review" Water 15, no. 3: 429. https://doi.org/10.3390/w15030429
APA StyleMuttil, N., Nasrin, T., & Sharma, A. K. (2023). Impacts of Extreme Rainfalls on Sewer Overflows and WSUD-Based Mitigation Strategies: A Review. Water, 15(3), 429. https://doi.org/10.3390/w15030429