Groundwater Fluctuation of a Meliorated Forest Catchment in Connection with the Climate and the Growth of Forest Stands—30 Years of Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Measurement and Analysis
2.3. Data Processing
3. Results
3.1. Weather—Climate during the Observed Period
3.2. Outflow, Stand Development and Weather
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nožička, J. Přehled vývoje našich lesů; Státní Zemědělské Nakladatelství: Prague, Czech Republic, 1957; 459p. (In Czech) [Google Scholar]
- Skaggs, R.W.; Tian, S.; Chescheir, G.M.; Amatya, D.M.; Youssef, M.A. Forest drainage. In Forest Hydrology: Processes, Management and Assessment; Amatya, D., Williams, T., Bren, L., De Jong, C., Eds.; CABI Publishers: Wallingford, UK, 2016; pp. 124–140. [Google Scholar]
- Babikov, B.V.; Subota, M.B. Hydromelioration in forestry: History of research. Russ. For. J. 2022, 3, 103–118. [Google Scholar] [CrossRef]
- Paavilainen, E.; Päivänen, J. Forest drainage. In Peatland Forestry; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 1995; Volume 111, pp. 103–124. [Google Scholar]
- Kociecka, J.; Liberacki, D. Planning of small retention in forests based on natural factors that increase water resources. Rocz. Ochr. Srodowiska 2018, 20, 1302–1317. [Google Scholar]
- Niinemets, U.; Valladares, F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol. Monogr. 2006, 4, 521–547. [Google Scholar] [CrossRef]
- Glenz, C.; Schlaepfer, R.; Iorgulescu, I.; Kienast, F. Flooding tolerance of Central European tree and shrub species. For. Ecol. Manag. 2006, 235, 1–13. [Google Scholar] [CrossRef]
- Pilas, I.; Planinsek, S. The reconstruction of the water regime in lowland forests in support of sustainable management. Šumar. List 2011, 135, 138–148. [Google Scholar]
- Nieminen, M.; Piirainen, S.; Sikstrom, U.; Lofgren, S.; Marttila, H.; Sarkkola, S.; Lauren, A.; Finer, L. Ditch network maintenance in peat-dominated boreal forests: Review and analysis of water quality management options. Ambio 2018, 5, 535–545. [Google Scholar] [CrossRef]
- Sikström, U.; Hökkä, H. Interactions between soil water conditions and forest stands in boreal forests with implications for ditch network maintenance. Silva Fenn. 2016, 50, 1416. [Google Scholar] [CrossRef] [Green Version]
- Jourgholami, M.; Labelle, E.R. Effects of plot length and soil texture on runoff and a sediment yield occurring on machine-trafficked soils in a mixed deciduous forest. Ann. For. Sci. 2020, 77, 19. [Google Scholar] [CrossRef]
- Mohr, C.H.; Coppus, R.; Iroumé, A.; Huber, A.; Bronstert, A. Runoff generation and a soil erosion processes after clear cutting. J. Geophys. Res. Earth Surf. 2013, 118, 814–831. [Google Scholar] [CrossRef]
- Strohmenger, L.; Ackerer, P.; Belfort, B.; Pierret, M.C. Local and seasonal climate change and its influence on the hydrological cycle in a mountainous forested catchment. J. Hydrol. 2022, 610, 127914. [Google Scholar] [CrossRef]
- Raisanen, J. Probabilistic forecasts of near-term climate change: Verification for temperature and precipitation changes from years 1971–2000 to 2011–2020. Clim. Dyn. 2022, 59, 1175–1188. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.; Arsenault, R. Uncertainty of gridded precipitation and temperature reference datasets in climate change impact studies. Hydrol. Earth Syst. Sci. 2021, 6, 3331–3350. [Google Scholar] [CrossRef]
- Vrac, M.; Thao, S.; Yiou, P. Changes in temperature-precipitation correlations over Europe: Are climate models reliable? Clim. Dyn. 2022. [Google Scholar] [CrossRef]
- Jones, J.; Ellison, D.; Ferraz, S.; Lara, A.; Wei, X.H.; Zhang, Z.Q. Forest restoration and hydrology. For. Ecol. Manag. 2022, 520, 120342. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Environment. EU Policy Document on Natural Water Retention Measures; Technical Report 2014–082; Publications Office: Luxembourg, 2015. [Google Scholar] [CrossRef]
- Bieroza, M.Z.; Bol, R.; Glendell, M. What is the deal with the Green Deal: Will the new strategy help to improve European freshwater quality beyond the Water Framework Directive? Sci. Total Environ. 2021, 791, 148080. [Google Scholar] [CrossRef] [PubMed]
- Černohous, V. Hladina podzemní vody a půdní vláha v zamokřeném povodí po imisních těžbách [Groundwater table and soil moisture in a mountain forest catchment waterlogged after immission logging]. Rep. For. Res. 1996, 41, 5–8. (In Czech) [Google Scholar]
- Černohous, V.; Švihla, V.; Šach, F.; Kacálek, D. Influence of drainage system maintenance on storm runoff from a reforested, waterlogged mountain catchment. Soil Water Res. 2014, 9, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Opletal, M.; Domečka, K. (Eds.) Synoptic Geological Map of the Orlické Hory Mts; Scale 1:100 000; Geological Survey: Prague, Czech Republic, 1983.
- Černohous, V.; Dušek, D.; Šach, F. Změny hladiny podzemní vody pod vlivem hydromelioračního zásahu a odrůstání obnovených lesních porostů [Influence of drainage treatment and growing of renewed forest stands on changes in groundwater table]. Rep. For. Res. 2011, 56, 1–8. (In Czech) [Google Scholar]
- Černohous, V. Vliv evapotranspirace na odtok z povodí [Influence of evapotranspiration on outflow from basin]. Rep. For. Res. 2002, 47, 144–145. (In Czech) [Google Scholar]
- Černohous, V.; Švihla, V.; Šach, F. Projevy sucha ve smrkové tyčovině v létě 2015 [Manifestation of drought in spruce pole-stage stand in summer 2015]. Rep. For. Res. 2018, 63, 10–19. (In Czech) [Google Scholar]
- Sach, F.; Cernohous, V.; Erbanova, E.; Kacalek, D. Trend of nitrogen load affecting the special-interest region of the Orlicke Hory Mts. (Czech Republic). Rep. For. Res. 2018, 63, 222–235. [Google Scholar]
- Petrash, D.A.; Buzek, F.; Novak, M.; Cejkova, B.; Kram, P.; Chuman, T.; Curik, J.; Veselovsky, F.; Stepanova, M.; Myska, O.; et al. Spatially resolved soil solution chemistry in a central European atmospherically polluted high-elevation catchment. Soil 2019, 2, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Novak, M.; Farkas, J.; Kram, P.; Hruska, J.; Stepanova, M.; Veselovsky, F.; Curik, J.; Andronikov, A.V.; Sebek, O.; Simecek, M.; et al. Controls on delta(26) Mg variability in three Central European headwater catchments characterized by contrasting bedrock chemistry and contrasting inputs of atmospheric pollutants. PLoS ONE 2020, 15, e0242915. [Google Scholar] [CrossRef] [PubMed]
- Abbasian, P.; Attarod, P.; Sadeghi, S.M.M.; Van Stan, J.T.; Hojjati, S.M. Throughfall nutrients in a degraded indigenous Fagus orientalis forest and a Picea abies plantation in the North of Iran. For. Syst. 2015, 24, e035. [Google Scholar] [CrossRef] [Green Version]
- Panahandeh, T.; Attarod, P.; Sadeghi, S.M.M.; Bayramzadeh, V.; Tang, Q.H.; Liu, X.C. The performance of the reformulated Gash rainfall interception model in the Hyrcanian temperate forests of northern Iran. J. Hydrol. 2022, 612, 128092. [Google Scholar] [CrossRef]
- Viville, D.; Biron, P.; Granier, A.; Dambrine, E.; Probst, A. Interception in a Mountainous Declining Spruce Stand in the Strengbach Catchment (Vosges, France). J. Hydrol. 1993, 144, 273–282. [Google Scholar] [CrossRef]
- Dohnal, M.; Černý, T.; Votrubová, J.; Tesař, M. Rainfall interception and spatial variability of throughfall in spruce stand. J. Hydrol. Hydromech. 2014, 62, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Thiessen, A.H. Precipitation for large areas. Mon. Weather Rev. 1911, 39, 1082–1084. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 18 January 2022).
- Marcotte, P.; Roy, V.; Plamondon, A.P.; Auger, I. Ten-year water table recovery after clearcutting and draining boreal forested wetlands of eastern Canada. Hydrol. Process. 2008, 22, 4163–4172. [Google Scholar] [CrossRef]
- Klempířová, B.; Dragoun, L.; Marušák, R. Impact of soil drainage to the radial stem growth of Norway spruce (Picea abies L. Karst.) in peatland forests. For. J. 2013, 59, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Sutmoller, J.; Meesenburg, H. Impact of forest stand development and climate change on the water budget of the Lange Bramke basin, Harz Mountains, Germany. Hydrol. Wasserbewirtsch. 2018, 3, 184–198. [Google Scholar]
- Mauer, O.; Houšková, K. Zpevňující funkce smrku ztepilého. In Soil Improving and Stabilising Functions of Forest Trees; Kacálek, D., Mauer, O., Podrázský, V., Slodičák, M., Eds.; Lesnická Práce: Kostelec nad Černými lesy, Czech Republic, 2017; pp. 78–87. (In Czech) [Google Scholar]
- Černohous, V.; Kovář, P. Forest watershed runoff changes determined using the unit hydrograph method. J. For. Sci. 2009, 55, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Černohous, V.; Šach, F.; Kacálek, D. Effects of drainage treatment and stand growth on changes in runoff components from a forested watershed. J. For. Sci. 2010, 56, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.; Nicoll, B.C. The effect of soil water-table depth on root-plate development and stability of Sitka spruce. Forestry 1998, 71, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Sarkkola, S.; Hökkä, H.; Ahti, E.; Koivusalo, H.; Nieminen, M. Depth of water table prior to ditch network maintenance is a key factor for tree growth response. Scand. J. For. Res. 2012, 27, 649–658. [Google Scholar] [CrossRef]
- Leppa, K.; Korkiakoski, M.; Nieminen, M.; Laiho, R.; Hotanen, J.P.; Kieloaho, A.J.; Korpela, L.; Laurila, T.; Lohila, A.; Minkkinen, K.; et al. Vegetation controls of water and energy balance of a drained peatland forest: Responses to alternative harvesting practices. Agric. For. Meteorol. 2020, 295, 108198. [Google Scholar] [CrossRef]
- Duncker, P.S.; Raulund-Rasmussen, K.; Gundersen, P.; Katzensteiner, K.; De Jong, J.; Ravn, H.P.; Smith, M.; Eckmüllner, O.; Spiecker, H. How forest management affects ecosystem services, including timber production and economic return: Synergies and trade-offs. Ecol. Soc. 2012, 17, 50. [Google Scholar] [CrossRef] [Green Version]
- Aguilos, M.; Sun, G.; Noormets, A.; Domec, J.-C.H.; Mcnulty, S.; Gavazzi, M.; Minick, K.; Mitra, B.; Prajapati, P.; Yang, Y.; et al. Effects of land-use change and drought on decadal evapotranspiration and water balance of natural and managed forested wetlands along the southeastern US lower coastal plain. Agric. For. Meteorol. 2021, 303, 108381. [Google Scholar] [CrossRef]
- Wright, S.N.; Novakowski, K.S. Numerical analysis of midwinter infiltration along the soil-rock interface: A pathway for enhanced bedrock recharge. Adv. Water Resour. 2022, 166, 104261. [Google Scholar] [CrossRef]
- Černohous, V.; Šach, F. Daily baseflow variations and forest evapotranspiration. Ekológia 2008, 27, 189–195. [Google Scholar]
- Švihla, V.; Černohous, V.; Kulhavý, Z.; Šach, F. říspěvek k hydrologické analýze povodí U Dvou louček v Orlických horách [Contribution to a hydrology analysis of “U Dvou louček” experimental forest catchment in the Orlické hory Mts.]. In Soil and Water, Scientific Studies 4/2005; Výzkumný ústav meliorací a ochrany půdy: Prague, Czech Republic, 2005; pp. 95–105. (In Czech) [Google Scholar]
- Shen, R.; Pennell, K.G.; Suuberg, E.M. Influence of soil moisture on soil gas vapor concentration for vapor intrusion. Environ. Eng. Sci. 2013, 30, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Švihla, V.; Šach, F.; Černohous, V. Příspěvek k řešení problému vzlínání podzemní vody na povodí U Dvou louček v Orlických horách [Contribution to solving problem of capillary rise of groundwater on the catchment U Dvou louček in the Orlické hory Mts]. Rep. For. Res. 2005, 50, 53–57. (In Czech) [Google Scholar]
- ČSN 75 4200; Hydromeliorace. Úprava vodního režimu zemědělských půd odvodněním [Amelioration. Control of Sub-Surface Water Management of Agricultural Lands by Draining]. Český normalizační institut: Prague, Czech Republic, 1993.
1992–1995 | 1996–2001 | 2002–2004 | 2006–2009 | 2010–2014 | 2016–2021 | |
---|---|---|---|---|---|---|
p | <0.001 | <0.001 | 0.03 | <0.001 | <0.001 | <0.001 |
(Intercept) | −69 | −1202.6 | 2136.7 | 3073.6 | 2414.2 | 3736.5 |
SE | 47.1 | 61.6 | 158.4 | 85.8 | 178.4 | 165.8 |
Precipitation sum | 0.39 | 0.84 | 0.36 | 0.30 | 0.36 | 0.27 |
SE | 0.03 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 |
Statistical group | bc | a | bc | bc | b | c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Špulák, O.; Kacálek, D.; Černohous, V. Groundwater Fluctuation of a Meliorated Forest Catchment in Connection with the Climate and the Growth of Forest Stands—30 Years of Monitoring. Water 2023, 15, 432. https://doi.org/10.3390/w15030432
Špulák O, Kacálek D, Černohous V. Groundwater Fluctuation of a Meliorated Forest Catchment in Connection with the Climate and the Growth of Forest Stands—30 Years of Monitoring. Water. 2023; 15(3):432. https://doi.org/10.3390/w15030432
Chicago/Turabian StyleŠpulák, Ondřej, Dušan Kacálek, and Vladimír Černohous. 2023. "Groundwater Fluctuation of a Meliorated Forest Catchment in Connection with the Climate and the Growth of Forest Stands—30 Years of Monitoring" Water 15, no. 3: 432. https://doi.org/10.3390/w15030432