Ecosystem Service Value Evaluation of Saline—Alkali Land Development in the Yellow River Delta—The Example of the Huanghe Island
Abstract
:1. Introduction
2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area
2.1.1. Natural Resource Conditions
2.1.2. Development and Utilization Status
2.2. Data Sources
3. Research Methodology
3.1. Construction of Value Evaluation Index System
3.2. Value Evaluation Method Based on Ecological Economics
3.2.1. Selection of Value Evaluation Methods
3.2.2. Evaluation of Supply Service Value
Evaluation of Food Production Value
Evaluation of Raw Material Production Value
3.2.3. Evaluation of Adjustment Service Value
Evaluation of Gas Regulation Value
Evaluation of Water Sources Conservation Value
3.2.4. Evaluation of Support Service Value
Evaluation of Maintenance of Biodiversity
Evaluation of the Maintenance of Nutrient Cycling
3.2.5. Evaluation of Culture Service Value
Evaluation of Leisure and Entertainment Value
Evaluation of Research and Education Value
4. Results and Analysis
4.1. Comprehensive Analysis of the Total ESV of the Huanghe Island
4.2. Classification Analysis of ESV of the Huanghe Island
4.2.1. Supply Service Value Analysis
4.2.2. Adjustment Service Value Analysis
4.2.3. Support Service Value Analysis
4.2.4. Culture Service Value Analysis
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shan, W.D.; Hu, Y.M.; He, C.F.; Cao, X.S.; Huang, X.J.; Tong, X.; Wu, C.Y. Exploring Physical Process and Methods of Big Data Era for Land Use Planning. Sci. Geogr. Sin. 2016, 36, 1912–1919. [Google Scholar]
- Chen, S.; Jiang, G.H. Ecosystem Service Value Response to Different Irrigation and Drainage Practices in a Land Development Project in the Yellow River Delta. Water 2022, 14, 2985. [Google Scholar] [CrossRef]
- Wang, S.B.; Gao, P.L.; Zhang, Q.W.; Shi, Y.L.; Guo, X.L.; Lv, Q.X.; Wu, W.; Zhang, X.; Li, M.Z.; Meng, Q.M. Application of Biochar and Organic Fertilizer to Saline-alkali Soil in the Yellow River Delta: Effects on Soil Water, Salinity, Nutrients, and Maize Yield. Soil Use Manag. 2022, 38, 1679–1692. [Google Scholar] [CrossRef]
- Zuo, L.Y.; Jiang, Y.; Gao, J.B.; Du, F.J.; Zhang, Y.B. Quantitative Separation of Multi-dimensional Driving Forces of Ecosystem Services in the Ecological Conservation Red Line Area. Acta Geogr. Sin. 2022, 77, 2174–2188. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Li, Z.Z.; Cheng, X.Q.; Han, H.R. Future Impacts of Land Use Change on Ecosystem Services under Different Scenarios in the Ecological Conservation Area, Beijing, China. Forests 2020, 11, 584. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Liu, J.G. Progress in the Valuation of Ecosystem Services. Acta Sci. Circumstantiae 2011, 31, 1835–1842. [Google Scholar]
- Fu, B.J.; Zhang, L.W. Land-use Change and Ecosystem Services: Concepts, Methods and Progress. Prog. Geogr. 2014, 33, 441–446. [Google Scholar]
- Peng, J.; Hu, X.X.; Zhao, M.Y.; Liu, Y.X.; Tian, L. Research Progress on Ecosystem Service Trade-offs: From Cognition to Decision-making. Acta Geogr. Sin. 2017, 72, 960–973. [Google Scholar]
- Yin, N.; Wang, S.; Liu, Y.X. Ecosystem Service Value Assessment: Research Progress and Prospects. Chin. J. Ecol. 2021, 40, 233–244. [Google Scholar]
- Liu, Q.; Li, G.; Zhang, C.; Zhao, L.; Zhu, Y.M. Study on Dynamic Changes in Ecosystem Service Values in Qinglong County Based on Coefficient Correction. Chin. J. Eco-Agric. 2019, 27, 971–980. [Google Scholar]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological Assets Valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 02, 189–196. [Google Scholar]
- Xu, Y.Q.; Xiao, F.J. Assessing Changes in the Value of Forest Ecosystem Services in Response to Climate Change in China. Sustainability 2022, 14, 4773. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Zhang, J.Z.; Cao, S.X. Net Value of Grassland Ecosystem Services in Mainland China. Land Use Policy 2018, 79, 94–101. [Google Scholar] [CrossRef]
- Cao, S.X.; Zhang, J.Z.; Liu, Y.J.; Yu, Z.Q.; Liu, X. Net Value of Farmland Ecosystem Services in China. Land Degrad. Dev. 2018, 29, 2291–2298. [Google Scholar] [CrossRef]
- McInnes, R.J.; Simpson, M.; Lopez, B.; Hawkins, R.; Shore, R. Wetland Ecosystem Services and the Ramsar Convention: An Assessment of Needs. Wetlands 2017, 37, 123–134. [Google Scholar] [CrossRef]
- Appolloni, L.; Sandulli, R.; Vetrano, G.; Russo, G.F. A New Approach to Assess Marine Opportunity Costs and Monetary Values-in-use for Spatial Planning and Conservation, the Case Study of Gulf of Naples, Mediterranean Sea, Italy. Ocean Coast. Manag. 2018, 152, 135–144. [Google Scholar] [CrossRef]
- Balasubramanian, M. Economic Value of Regulating Ecosystem Services: A Comprehensive at the Global Level Review. Environ. Monit. Assess 2019, 191, 616. [Google Scholar] [CrossRef]
- Baba, C.A.K.; Hack, J. Economic Valuation of Ecosystem Services for the Sustainable Management of Agropastoral Dams. A Case Study of the Sakabansi Dam, Northern Benin. Ecol. Indic. 2019, 107, 105648. [Google Scholar] [CrossRef]
- Li, G.Z.; Cai, J. Spatial and Temporal Differentiation of Mountain Ecosystem Service Trade-Offs and Synergies: A Case Study of Jieshi Mountain, China. Sustainability 2022, 14, 4652. [Google Scholar] [CrossRef]
- Chen, M.Q.; Lu, Y.F.; Ling, L.; Wan, Y.; Luo, Z.J.; Huang, H.S. Drivers of Changes in Ecosystem Service Values in Ganjiang Upstream Watershed. Land Use Policy 2015, 47, 247–252. [Google Scholar] [CrossRef]
- Zhong, C.; Bei, Y.M.; Gu, H.L.; Zhang, P.F. Spatiotemporal Evolution of Ecosystem Services in the Wanhe Watershed Based on Cellular Automata (CA)-Markov and InVEST Models. Sustainability 2022, 14, 13302. [Google Scholar] [CrossRef]
- Liu, H.F.; Hou, L.L.; Kang, N.N.; Nan, Z.B.; Huang, J.K. The Economic Value of Grassland Ecosystem Services: A global Meta-Analysis. Grassl. Res. 2022, 1, 63–74. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Wang, S.; Chen, Z.P.; Tu, S.S. Research on the Response of Ecosystem Service Function to Landscape Pattern Changes Caused by Land Use Transition: A Case Study of the Guangxi Zhuang Autonomous Region, China. Land 2022, 11, 752. [Google Scholar] [CrossRef]
- Wang, Y.; Shataer, R.; Xia, T.T.; Chang, X.E.; Zhen, H.; Li, Z. Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change. Sustainability 2021, 13, 9679. [Google Scholar] [CrossRef]
- Tu, Z.S.; Chen, Z.L.; Ye, H.D.; Chen, S.Y.; Huang, J.L. Integrating Water Quality Restoration Cost with Ecosystem Service Flow to Quantify an Ecological Compensation Standard: A Case Study of the Taoxi Creek Watershed. Water 2022, 14, 1459. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing Changes in the Value of Ecosystem Services in Response to Land-use/land-cover Dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Cui, Y.; Lan, H.F.; Zhang, X.S.; He, Y. Confirmatory Analysis of the Effect of Socioeconomic Factors on Ecosystem Service Value Variation Based on the Structural Equation Model—A Case Study in Sichuan Province. Land 2022, 11, 483. [Google Scholar] [CrossRef]
- Tomscha, S.A.; Gergel, S.E. Ecosystem Service Trade-offs and Synergies Misunderstood without Landscape History. Ecol. Soc. 2016, 21, 43. [Google Scholar] [CrossRef] [Green Version]
- Armatas, C.A.; Campbell, R.M.; Watson, A.E.; Borrie, W.T.; Christensen, N.; Venn, T.J. An Integrated Approach to Valuation and Tradeoff Analysis of Ecosystem Services for National Forest Decision-making. Ecosyst. Serv. 2018, 33, 1–18. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Zhang, T.T.; Lyu, X.G.; Zou, Y.C.; Liu, J.P.; Jiang, M.; Xu, C.G.; Zhou, C.C.; Xu, C.; Xue, Z.S. Value Assessment of Wetland Ecosystem Services in the Da Hinggan Mountains, China. Chin. Geogr. Sci. 2022, 32, 302–311. [Google Scholar] [CrossRef]
- Zhang, X.Q.; He, S.Y.; Yang, Y. Evaluation of Wetland Ecosystem Services Value of the Yellow River Delta. Environ. Monit. Assess. 2021, 193, 353. [Google Scholar] [CrossRef]
- Lu, Q.; Hua, D.; Li, Y.J.; Wang, D.Z. Estimation of Water Resource Ecosystem Service Value in Tarim River Basin—From a Full Value Chain Perspective. Water 2022, 14, 2355. [Google Scholar] [CrossRef]
- Zhao, Q.J.; Wang, Q.Y. Water Ecosystem Service Quality Evaluation and Value Assessment of Taihu Lake in China. Water 2021, 13, 618. [Google Scholar] [CrossRef]
- Barrett-Lennard, E.G. Restoration of Saline Land through Revegetation. Agric. Water Manag. 2002, 53, 213–226. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Wang, L.X.; Sun, G.Y.; Yang, Y. Evaluation of Saline-Alkali Land Resource and Development Potential in Low Songnen Plains. Chin. J. Agric. Resour. Reg. Plann. 2013, 34, 7–12. [Google Scholar]
- Gao, M.X.; Wu, S.X. Countermeasures of Agricultural Green Development of Saline–Alkali Land in the Yellow River Delta under the Constraints of Resource and Environment. Chin. J. Popul. Resour. Environ. 2018, 28, 60–63. [Google Scholar]
- Shan, Q.H.; Zhang, J.F.; Shen, L.M.; Tang, H.J.; Luan, W.J.; Chen, G.C. Effects of Forestry Ecological Engineering on Herb Community in Coastal Saline-Alkali Land. Chin. J. Ecol. 2012, 31, 1411–1418. [Google Scholar]
- Fu, X.Y. Research on Improvement and Development of Saline Soil in Dezhou City. Resour. Dev. Mark. 2012, 28, 810–812+864. [Google Scholar]
- Du, Z.Y.; Liu, F.C.; Ma, B.Y.; Ma, H.L.; Xing, S.J. Evaluation of Ecosystem Service Value for Long-term Plantations in Saline-alkali Soils of the Yellow River Delt. Chin. Agric. Sci. Bull. 2013, 29, 17–23. [Google Scholar]
- Li, Y.T.; Du, Z.Y.; Wang, X.; Yang, Q.S.; Chen, Z.Q.; Sun, Y.Y.; Liu, D.X. Evaluation of Wetland Ecosystem Services in Yellow River Delta Nature Reserve. Mar. Environ. Sci. 2019, 38, 761–768. [Google Scholar]
- Ma, C.D. Ecological Economics; Shandong People’s Publishing House: Jinan, China, 1986. [Google Scholar]
- Xiang, C.; Yan, L.J.; Han, Y.C.; Wu, Z.X.; Yang, W.J. Evaluation of Ecosystem Services of the Thousand–Island Lake, Zhejiang, China. Chin. J. Appl. Ecol. 2019, 30, 3875–3884. [Google Scholar]
- Tang, X.M.; Pan, Y.X.; Liu, Y. Evaluation and Spatio-Temporal Analysis of Ecological Value of Cultivated Land in Beijing. Chin. J. Agric. Resour. Reg. Plann. 2018, 39, 132–140. [Google Scholar]
- Huang, X.H.; Tang, X.J.; Shao, C.L.; Zhu, X.L.; Liu, Y. Carbon Storage of Forest Vegetation and Its Geographical Distribution in Chongqing Municipality. J. Southwest China Norm. Univ. Nat. Sci. Ed. 2012, 37, 82–87. [Google Scholar]
- Ouyang, Z.Y.; Wang, X.K.; Miao, H. A Primary Study on Chinese Terrestrial Ecosystem Services and Their Ecological- economic Values. Acta Ecol. Sin. 1999, 19, 19–25. [Google Scholar]
- Liu, M.C.; Li, D.Q.; Wen, Y.M.; Luan, X.F. Function and Value of Water-holding in Sanjiangyuan Region. Resour. Environ. Yangtze Basin 2006, 15, 405–408. [Google Scholar]
- Wang, Y.F.; Ye, A.Z.; Qiao, F.; Li, Z.S.; Miu, C.Y.; Di, Z.H.; Gong, W. Review on Connotation and Estimation Method of Water Conservation. South-to-North Water Transfers Water Sci. Technol. 2021, 19, 1041–1071. [Google Scholar]
- Compilation Group of the National Research Report on Biodiversity in China. A National Research Report on Biodiversity in China; China Environmental Press: Beijing, China, 1998. [Google Scholar]
- Miao, J.Q.; Sun, S.; Wang, Z.Q.; Huang, G.Q. Evaluating the Ecosystem Services of Gaotianyan Nature Reserve in Lianhua County, Jiangxi Province. Acta Ecol. Sin. 2017, 37, 6422–6430. [Google Scholar]
- Zuo, D.P.; Xu, Z.X.; Liu, Z.F. Comparison of Temperature-based Methods for Estimating Potential Evapotranspiration in the Arid Region of Northwest China. J. Arid Land Resour. Environ. 2009, 23, 123–131. [Google Scholar]
- Xie, Z.J.; He, Y.Q.; Xu, C.X. Appraisal on Ecological Services from Chinese Milk Vetch-Early Rice-Late Rice Cropping Ecosystem. J. Nat. Resour. 2018, 33, 735–746. [Google Scholar]
- Chinese Society of Soil Science. Methods for Agricultural Chemical Analysis of Soil; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Hou, Y.Z. Research on Forest Resource Accounting in China; China Forestry Publishing House: Beijing, China, 1995. [Google Scholar]
- Ma, J.J.; Yao, H.; Zhang, L.; Zhang, S.L. Eco-capital Dynamic Assessment and Forecasts for Forest Ecosystems in Built-up Area of Langfang City. For. Resour. Manag. 2010, 5, 70–76. [Google Scholar]
- Yu, X.X.; Qin, Y.S.; Chen, L.H.; Liu, S. The Forest Ecosystem Services and Their Valuation of Beijing Mountain Areas. Acta Ecol. Sin. 2002, 22, 783–786. [Google Scholar]
- Qin, X.; Si, Y.S.; Deng, L.B. Research on Maintenance Cost Standard of Big City of Forest Park- A case study of Forest Parks in Beijing. J. Cent. South Univ. For. Technol. (Soc. Sci. Ed.) 2017, 11, 49–54. [Google Scholar]
- Yu, L.X.; Yang, J.C.; Bu, K.; Liu, T.X.; Jiao, Y.; Li, G.S.; Pu, L.M.; Zhang, S.W. Impacts of Saline-Alkali Land Improvement on Regional Climate: Process, Mechanisms, and Implications. Remote Sens. 2021, 13, 3407. [Google Scholar] [CrossRef]
- Qu, Y.K.; Tang, J.; Zhou, Z.H.; Liu, B.; Duan, Y.C.; Wang, J.J.; Wang, S.N.; Li, Y.F.; Li, Z.Y. The Development and Utilization of Saline–Alkali Land in Western Jilin Province Promoted the Sequestration of Organic Carbon Fractions in Soil Aggregates. Agronomy 2021, 11, 2563. [Google Scholar] [CrossRef]
- Xia, J.B.; Ren, J.Y.; Zhang, S.Y.; Wang, Y.H.; Fang, Y. Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China. Geoderma 2019, 349, 25–35. [Google Scholar] [CrossRef]
- Cui, L.J.; Pang, B.L.; Li, W.; Ma, M.Y.; Sun, B.D.; Zhang, Y.Q. Evaluation of Ecosystem Services in the Zhalong Wetland. Acta Ecol. Sin. 2016, 36, 828–836. [Google Scholar]
- Wang, Q.X. Assessment of Yellow Sea Ecosystem Services; Ocean University of China: Qingdao, China, 2009. [Google Scholar]
- Su, Z.M.; Sun, Y.F.; Song, Y.P.; Liao, D.J.; Song, B.H.; Du, X. Multiscale Time Series Analysis of Yellow River Delta Area Based on GEE and GIS. Adv. Mar. Sci. 2022, 40, 90–101. [Google Scholar]
- Xu, Y.M. Studying on the Value of Wetland Ecosystem Services in the Yellow River Delta. Ph.D. Thesis, Shandong Normal University, Jinan, China, 2006. [Google Scholar]
Land Use Type | Area (km2) | Percent (%) | Land Type | Area (km2) | Percent (%) |
---|---|---|---|---|---|
Woodland | 1.34 | 5.04 | Grassland | 3.41 | 12.81 |
Mixed forest and grass | 4.22 | 15.86 | Water surface | 11.37 | 42.73 |
Farmland | 0.17 | 0.64 | Ditch | 4.03 | 15.14 |
Garden | 0.02 | 0.08 | Construction land | 2.05 | 7.70 |
Lowest-Level Indicators | Connotation | |
---|---|---|
V11 | Food Production | The function and value of saline–alkali land directly providing edible animal and plant products for human beings |
V12 | Raw Material Production | The function and value of saline–alkali land providing people with building raw materials, animal feed, and other products |
V21 | Gas Regulation | The function and value of plants in saline–alkali land fixing CO2 and releasing O2 through photosynthesis to maintain the dynamic balance of CO2 and O2 in the atmosphere, so as to realize the function and value of mitigating the greenhouse effect and regulating gas and climate |
V22 | Conservation of Water Sources | The function and value of saline–alkali land intercepting, absorbing, and storing precipitation through plants, soil layers, and water surfaces, thus playing the valuable role of conserving soil moisture and supplementing surface fresh water and groundwater |
V31 | Maintenance of Biodiversity | Saline–alkali land is an important genetic source, evolutionary base, and habitat of wild animals and plants, and it has the function and value of maintaining biodiversity |
V32 | Maintenance of Nutrient Cycling | Saline–alkali land has the function and value of maintaining material exchange and nutrient cycling between organisms and the environment, with soil organic matter, nitrogen, phosphorus, and potassium as the main cycling substances |
V41 | Leisure and Entertainment | Saline–alkali land can provide functions and values of leisure tourism, cultural activities, and landscape appreciation |
V42 | Research and Education | Saline–alkali land can provide the function and value of the site for related scientific research, education, and teaching |
Land Use Type | Arable Land | High Coverage Forest Land | Low Coverage Forest Land | Bush Wood | Grassland | Artificial Land Use | Other Land Use |
---|---|---|---|---|---|---|---|
Values of ω | 0.5 | 2.0 | 1.0 | 1.0 | 0.5 | 0.1 | 0.1 |
The Number | Shannon–Wiener Index H | Class of Biodiversity | Unit Value Sk(CNY/hm2*a) |
---|---|---|---|
1 | <1 | 7 | 3000 |
2 | [1,2) | 6 | 5000 |
3 | [2,3) | 5 | 10,000 |
4 | [3,4) | 4 | 20,000 |
5 | [4,5) | 3 | 30,000 |
6 | [5,6) | 2 | 40,000 |
7 | ≥6 | 1 | 50,000 |
Land Type | Organic Matter (g/kg) | Nitrogen (mg/kg) | Phosphorus (mg/kg) | Potassium (mg/kg) | Soil Bulk Density (g/cm3) |
---|---|---|---|---|---|
Grassland | 9.01 | 16.53 | 7.81 | 83.97 | 1.51 |
Forest land | 9.31 | 14.69 | 6.10 | 107.80 | 1.50 |
Mixed planting of forest and grass | 14.37 | 44.14 | 6.14 | 180.62 | 1.49 |
Farmland | 8.54 | 22.74 | 4.83 | 339.85 | 1.53 |
Garden | 6.91 | 15.33 | 5.00 | 90.97 | 1.55 |
First-Level Indicators | Value (×104 CNY) | Percent (%) | Second-Level Indicators | Value (×104 CNY) | Percent (%) | Lowest-Level Indicators | Value (×104 CNY) | Percent (%) |
---|---|---|---|---|---|---|---|---|
Economic Value | 8015.05 | 60.00 | Supply Service | 8015.05 | 60.00 | Food Production | 7679.29 | 57.49 |
Raw Material Production | 335.76 | 2.51 | ||||||
Ecological Value | 3807.00 | 28.50 | Adjustment Service | 1917.50 | 14.35 | Gas Regulation | 795.98 | 5.96 |
Conservation of Water Sources | 1121.52 | 8.40 | ||||||
Support Service | 1889.50 | 14.15 | Maintenance of Biodiversity | 341.18 | 2.55 | |||
Maintenance of Nutrient Cycling | 1548.32 | 11.59 | ||||||
Social Value | 1536.56 | 11.50 | Culture Service | 1536.56 | 11.50 | Leisure and Entertainment | 1166.89 | 8.73 |
Research and Education | 369.67 | 2.77 | ||||||
Sum Value | 13,358.60 | 100.00 | Sum | 13,358.60 | 100.00 | Sum | 13,358.60 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Chen, X.; Chen, W.; Zhang, Y.; Wang, A.; Zheng, Y. Ecosystem Service Value Evaluation of Saline—Alkali Land Development in the Yellow River Delta—The Example of the Huanghe Island. Water 2023, 15, 477. https://doi.org/10.3390/w15030477
Liu J, Chen X, Chen W, Zhang Y, Wang A, Zheng Y. Ecosystem Service Value Evaluation of Saline—Alkali Land Development in the Yellow River Delta—The Example of the Huanghe Island. Water. 2023; 15(3):477. https://doi.org/10.3390/w15030477
Chicago/Turabian StyleLiu, Jian, Xue Chen, Weifeng Chen, Yong Zhang, Ailing Wang, and Yanfeng Zheng. 2023. "Ecosystem Service Value Evaluation of Saline—Alkali Land Development in the Yellow River Delta—The Example of the Huanghe Island" Water 15, no. 3: 477. https://doi.org/10.3390/w15030477
APA StyleLiu, J., Chen, X., Chen, W., Zhang, Y., Wang, A., & Zheng, Y. (2023). Ecosystem Service Value Evaluation of Saline—Alkali Land Development in the Yellow River Delta—The Example of the Huanghe Island. Water, 15(3), 477. https://doi.org/10.3390/w15030477