A New Horizon-Scanning Tool to Identify Potential Aquatic Invasive Alien Species Introduced into the Baltic Sea by Shipping
Abstract
:1. Introduction
2. Horizon-Scanning Approach
- Step 1. List of species in regions climatically matched those in the Baltic Sea Region
- Step 2. Shipping as possible introduction pathways of potential IAS to the Baltic Sea
- Step 3. Selecting possible aquatic habitats of potential IAS to the Baltic Sea
- Step 4. Selecting the taxonomic groups of potential IAS in the Baltic Sea
- Step 5. Alien species were then screened using the criteria in [24]: only aquatic alien species that have not been recorded in the Baltic Sea or Baltic inland waters but are potentially able to reproduce in the target waters.
- Step 6. Inventory of the origin and environments of the species on the list of potential IAS for the target sea. The potential IAS are categorized according to the origin and environment.
Prioritization of the List of Potential IAS
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ricciardi, A. Tracking marine alien species by ship movements. Proc. Natl. Acad. Sci. USA 2016, 113, 5470–5471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saebi, M.; Xu, J.; Grey, E.K.; Lodge, D.M.; Corbett, J.J.; Chawla, N. Higher-order patterns of aquatic species spread through the global shipping network. PLoS ONE 2020, 15, e0220353. [Google Scholar] [CrossRef]
- Cupak, J.; Hałupka, M.; Gruszka, P. Porastanie kadłubów małych statków jako sposób rozprzestrzeniania się makrozoobentosu. Inż. Ekol. 2014, 37, 72–79. [Google Scholar] [CrossRef]
- Leppäkoski, E.; Gollasch, S.; Gruszka, P.; Ojaveer, H.; Olenin, S.; Panov, V. The Baltic—A sea of invaders. Can. J. Fish. Aquat. Sci. 2002, 59, 1175–1188. [Google Scholar] [CrossRef]
- Seebens, H.; Schwartz, N.; Schupp, P.J.; Blasius, B. Predicting the spread of marine species introduced by global shipping. Proc. Natl. Acad. Sci. USA 2016, 113, 5646–5651. [Google Scholar] [CrossRef] [Green Version]
- Lipinskaya, T.; Semenchenko, V.; Minchin, D. A pathways risk assessment of aquatic non-indigenous macroinvertebrates passing to, and through, the Central European invasion corridor. Manag. Biol. Invasions 2020, 11, 525–540. [Google Scholar] [CrossRef]
- Roy, H.E.; Adriaens, T.; Aldridge, D.C.; Bacher, S.; Bishop, J.D.D.; Blackburn, T.M.; Branquart, E.; Brodie, J.; Carboneras, C.; Cook, E.J.; et al. Invasive Alien Species—Prioritising Prevention Efforts through Horizon Scanning; ENV.B.2/ETU/2014/0016; European Commission: Brussels, Belgium, 2015; p. 227.
- CBD. Convention on Biological Diversity. 1993. Available online: http://www.cbd.int/ (accessed on 2 October 2022).
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Diagne, C.; Leroy, B.; Gozlan, R.E.; Vaissière, A.-C.; Assailly, C.; Nuninger, L.; Roiz, D.; Jourdain, F.; Jarić, I.; Courchamp, F. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 2020, 7, 277. [Google Scholar] [CrossRef]
- Kouba, A.; Oficialdegui, F.J.; Cuthbert, R.N.; Kourantidou, M.; South, J.; Tricarico, E.; Gozlan, R.E.; Courchamp, F.; Haubrock, P.J. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Sci. Total Environ. 2022, 813, 152325. [Google Scholar] [CrossRef]
- Colautti, R.I.; Bailey, S.A.; Van Overdijk, C.D.A.; Amundsen, K.; MacIsaac, H.J. Characterised and projected costs of nonindigenous species in Canada. Biol. Invasions 2006, 8, 45–59. [Google Scholar] [CrossRef]
- Vilà, M.; Basnou, C.; Pyšek, P.; Josefsson, M.; Genovesi, P.; Gollasch, S.; Nentwig, W.; Olenin, S.; Roques, A.; Roy, D.; et al. How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front. Ecol. Environ. 2010, 8, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Sinden, J.; Gong, W.; Jones, R. Estimating the costs of protecting native species from invasive animal pests in New South Wales, Australia. Environ. Resour. Econ. 2011, 50, 203–226. [Google Scholar] [CrossRef]
- Shirley, S.M.; Kark, S. Amassing efforts against alien invasive species in Europe. PLoS Biol. 2006, 4, e279. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P.; Hulme, P.E. Spatio-temporal dynamics of plant invasions: Linking pattern to process. Ecoscience 2005, 12, 302–315. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 2014, 317, 35–55. [Google Scholar]
- Leung, B.; Lodge, D.M.; Finnoff, D.; Shogren, J.F.; Lewis, M.A.; Lamberti, G. An ounce of prevention or a pound of cure: Bioeconomic risk analysis of invasive species. Proc. R. Soc. B Biol. Sci. 2002, 269, 2407–2413. [Google Scholar] [CrossRef] [Green Version]
- García-Berthou, E.; Alcaraz, C.; Pou-Rovira, Q.; Zamora, L.; Coenders, G.; Feo, C. Introduction pathways and establishment rates of invasive aquatic species in Europe. Can. J. Fish. Aquat. Sci. 2005, 62, 453–463. [Google Scholar] [CrossRef]
- Shine, C.; Kettunen, M.; Genovesi, P.; Essl, F.; Gollasch, S.; Rabitsch, W.; Scalera, R.; Starfinger, U.; Ten Brink, P. Assessment to Support Continued Development of the EU Strategy to Combat Invasive Alien Species; Final Report for the European Commission; Institute for European Environmental Policy (IEEP): Brussels, Belgium, 2010; p. 297. [Google Scholar]
- Williamson, M.H. Biological Invasions; Chapman & Hall: London, UK, 1996; p. 244. [Google Scholar]
- NOBANIS. Invasive Alien Species Pathway Analysis and Horizon Scanning for Countries in Northern Europe; TemaNord 2015:517; Nordic Council of Ministers: Copenhagen, Denmark, 2015; p. 229. Available online: https://www.nobanis.org/globalassets/nobanis-projects/invasive-alien-species---pathway-analysis-and-horizon-scanning-for-countries-in-northern-europe.pdf (accessed on 21 November 2022).
- Roy, H.E.; Bacher, S.; Essl, F.; Adriaens, T.; Aldridge, D.C.; Bishop, J.D.D.; Blackburn Tim, M.; Branquart, E.; Brodie, J.; Carboeras, C.; et al. Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Glob. Chang. Biol. 2019, 25, 1032–1048. [Google Scholar] [CrossRef] [Green Version]
- Parrott, D.; Roy, S.; Baker, R.; Cannon, R.; Eyre, D.; Hill, M.; Wagner, M.; Preston, C.; Roy, H.; Beckmann, B.; et al. Horizon Scanning for New Invasive Non-Native Animal Species in England; Natural England: Sheffield, UK, 2009; p. 111.
- CABI. Horizon Scanning Tool. 2022. Available online: https://www.cabi.org/horizonscanningtool (accessed on 20 January 2022).
- CABI. CABI Compendium; CAB International: Wallingford, UK, 2023; Available online: https://www.cabidigitallibrary.org/journal/cabicompendium (accessed on 20 January 2022).
- WoRMS. World Register of Marine Species. 2022. Available online: https://www.marinespecies.org/ (accessed on 2 October 2022).
- Venice System. The Venice system for the classification of marine waters according to salinity. Limnol. Oceanogr. 1958, 3, 245–352. [Google Scholar]
- AquaNIS. Information System on Aquatic Non-Indigenous and Cryptogenic Species. 2020. Available online: http://www.corpi.ku.lt/databases/index.php/aquanis (accessed on 2 October 2022).
- EUSBSR. EU Strategy for the Baltic Sea Region. 2009. Available online: https://www.euro-access.eu/regions/eusbsr_-_baltic_sea_region (accessed on 20 January 2022).
- UNEP. Pathways of Introduction of Invasive Species, Their Prioritization and Management. 2014. Available online: https://www.cbd.int/doc/meetings/sbstta/sbstta-18/official/sbstta-18-09-add1-en.pdf (accessed on 14 August 2022).
- Tsiamis, K.; Cardoso, A.C.; Gervasini, E. The European Alien Species Information Network on the Convention on Biological Diversity pathways categorization. NeoBiota 2017, 32, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Kraufvelin, P.; Pekcan-Hekim, Z.; Bergstr, U.; Florin, A.B.; Lehikoinen, A.; Mattila, J.; Arula, T.; Briekmane, L.; Brown, E.J.; Celmer, Z.; et al. Essential coastal habitats for fish in the Baltic Sea. Estuar. Coast. Shelf Sci. 2018, 204, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Franz, M.; Lieberum, C.; Bock, G.; Karez, R. Environmental parameters of shallow water habitats in the SW Baltic Sea. Earth Syst. Sci. Data 2019, 11, 947–957. [Google Scholar] [CrossRef]
- Ojaveer, H.; Jaanus, A.; MacKenzie, B.R.; Martin, G.; Olenin, S.; Radziejewska, T.; Telesh, I.; Zettler, M.L.; Zaiko, A. Status of biodiversity in the Baltic Sea. PLoS ONE 2010, 5, e12467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuorinen, I.; Hänninen, J.; Rajasilta, M.; Laine, P.; Eklund, J.; Montesino-Pouzols, F.; Corona, F.; Junker, K.; Meier, M.H.E.; Dippner, J.W. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas—Implications for environmental monitoring. Ecol. Indic. 2015, 50, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Feistel, R.; Weinreben, S.; Wolf, H.; Seitz, S.; Spitzer, P.; Adel, G.; Nausch, B.; Schneider, D.; Wright, D. Density and absolute salinity of the Baltic Sea 2006–2009. Ocean Sci. 2010, 6, 3–24. [Google Scholar] [CrossRef] [Green Version]
- EASIN. European Alien Species Information Network 2022. Available online: https://easin.jrc.ec.europa.eu/easin (accessed on 2 October 2022).
- Fishbase. Global Information System on Fishes 2022. Available online: www.fishbase.org (accessed on 2 October 2022).
- GISD. Global Invasive Species Database 2022. Available online: http://www.iucngisd.org/gisd/ (accessed on 2 October 2022).
- Dobrzycka-Krahel, A.; Fidalgo, M.L. Euryhalinity and geographical origin aid global crayfish invasion. Water 2023. Under review. [Google Scholar]
- Gollasch, S.; Leppäkoski, E. Risk assessment and management scenarios for ballast water mediated species introductions into the Baltic Sea. Aquat. Invasions 2007, 2, 313–340. [Google Scholar] [CrossRef]
- IMO. International Convention for the Control and Management of Ships Ballast Water and Sediments of IMO; IMO: London, UK, 2004; Available online: http://www.imo.org/home.asp (accessed on 20 January 2022).
- Nakano, D.; Strayer, D.L. Biofouling animals in freshwater: Biology, impacts, and ecosystem engineering. Front. Ecol. Environ. 2014, 12, 167–175. [Google Scholar] [CrossRef]
- Marine Environment Protection Committee. Guidelines for the Control and Management of Ships’ Biofouling to Minimize the Transfer of Invasive Aquatic Species; Resolution MEPC.207(62) Adopted on 15 July 2011; Marine Environment Protection Committee: Oxfordshire, UK, 2011; Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/RESOLUTION%20MEPC.207[62].pdf (accessed on 20 January 2022).
- IMO. Guidance for Minimizing the Transfer of Invasive Aquatic Species as Biofouling (Hull Fouling) for Recreational Craft; MEPC.1/Circ.792; IMO: London, UK, 2012; Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/MEPC.1-Circ.792.pdf (accessed on 20 January 2022).
- Pelletier, E.; Bonnet, C.; Lemarchand, K. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper ant-fouling paints. Int. J. Mol. Sci. 2009, 10, 3209–3223. [Google Scholar] [CrossRef] [Green Version]
- Magin, C.M.; Cooper, S.P.; Brennan, A. Non-toxic antifouling strategies. Mater. Today 2010, 13, 36–44. [Google Scholar] [CrossRef]
- Dobosz, K.M.; Kolewe, K.W.; Schiffman, J.D. Green materials science and engineering reduces biofouling: Approeches for medical and membrane-based technologies. Front. Microbiol. 2015, 6, 196. [Google Scholar] [CrossRef] [PubMed]
- Nir, S.; Reches, M. Bio-inspired antifouling approaches: The quest towards non-toxic and non-biocidal materials. Curr. Opin. Biotechnol. 2016, 39, 48–55. [Google Scholar] [CrossRef]
- Faÿ, F.; Horel, G.; Linossier, I.; Vallée-Réhel, K. 2018 Effect of biocidal coatings on microfouling: In Vitro and In Situ results. Prog. Org. Coat. 2018, 114, 162–172. [Google Scholar] [CrossRef]
- Kaluza, P.; Kölzsch, A.; Gastner, T.; Blasius, B. The complex network of global ship movements. J. R. Soc. Interface 2010, 7, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Bij de Vaate, A.; Jażdżewski, K.; Ketelaars, H.A.M.; Gollasch, S.; Van der Velde, G. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can. J. Fish. Aquat. Sci. 2002, 59, 1159–1174. [Google Scholar] [CrossRef] [Green Version]
- Galil, B.S.; Nehring, S.; Panov, V.E. Waterways as invasion highways: Impact of climate change and globalization. In Biological Invasions; Ecological Studies No. 193; Nentwig, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 59–74. [Google Scholar]
- Bącela-Spychalska, K. Attachment ability of two invasive amphipod species may promote their spread by overland transport. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 196–201. [Google Scholar] [CrossRef]
- Dobrzycka-Krahel, A.; Medina-Villar, S. Alien species of Mediterranean origin in the Baltic Sea Region: Current state and risk assessment. Environ. Rev. 2020, 28, 339–356. [Google Scholar] [CrossRef]
- Dobrzycka-Krahel, A.; Graca, B. Laboratory study of the effect of salinity and ionic composition of water on the mortality and osmoregulation of the gammarid amphipod Dikerogammarus haemobaphes (Eichwald, 1841): Implications for understanding its invasive distribution pattern. Mar. Freshw. Behav. Physiol. 2014, 47, 227–238. [Google Scholar] [CrossRef]
- Svansson, A. Physical and Chemical Oceanography of the Skagerrak and the Kattegat; Fishery Board of Sweden, Institute of Marine Research: Lysekil, Sweden, 1975; Volume 1, p. 88. [Google Scholar]
- Dueñas, M.-A.; Ruffhead, H.J.; Wakefield, N.H.; Roberts, P.D.; Hemming, D.J.; Diaz-Soltero, H. The role played by invasive species in interactions with endangered and threatened species in the United States: A systematic review. Biodivers. Conserv. 2018, 27, 3171–3183. [Google Scholar] [CrossRef] [Green Version]
- Surowiec, J.; Dobrzycka-Krahel, A. New data on the non-indigenous gammarids in the Vistula Delta and the Vistula Lagoon. Oceanologia 2008, 50, 443–447. [Google Scholar]
- Dobrzycka-Krahel, A.; Bogalecka, M. The Baltic Sea under anthropopressure—The sea of paradoxes. Water 2022, 14, 3772. [Google Scholar] [CrossRef]
- Paini, D.R.; Yemshanov, D. Modelling the arrival of invasive organisms via the international marine shipping network: A Khapra beetle study. PLoS ONE 2012, 7, e44589. [Google Scholar] [CrossRef]
Pathways in Horizon Scanning | Literature Sources |
---|---|
Hitchhikers on ship or boat | [32] |
Ship bilge water | [1,32] |
Ship ballast water and sediment | [1,32] |
Ship hull fouling | [3,32] |
Habitat Types Selected in Horizon Scanning Tool | Literature Sources |
---|---|
1. Freshwater | |
1.1. Freshwater | [33,35] |
1.2. Rivers/streams | [33,35] |
2. Brackish | |
2.1. Estuaries | [33,35] |
2.2. Lagoons | [33,35] |
3. Marine | |
3.1. Bays | [33,35] |
3.2. Benthic zone | [33,35] |
3.3. Inshore marine | [33,35] |
3.4. Marine | [33,35] |
3.5. Pelagic zone (offshore) | [33,35] |
4. Littoral | |
4.1. Coastal areas | [33,35] |
4.2. Rocky shores | [33,35] |
Species Scientific Name | Species Group | Origin | Environment Based on [27,41] |
---|---|---|---|
Acanthogobius flavimanus (Temminck & Schlegel, 1845) | Fish | Asia | F, B, M |
Acentrogobius pflaumii (Bleeker, 1853) | Fish | Indonesia | B, M |
Alosa pseudoharengus (Wilson, 1811) | Fish | North America | F, B, M |
Arcuatula senhousia (Benson, 1842) | Mollusk | Asia | M |
Asterias amurensis Djakonov, 1950 | Echinoderm | Northern Pacific | M |
Botrylloides violaceus Oka, 1927 | Tunicata | Northwest Pacific | M |
Bugula neritina Thornely, 1912 | Bryozoan | Cryptogenic | M |
Bythotrephes longimanus Leydig, 1860 | Crustacean | Northern Europe and Asia | F, B, M |
Cabomba caroliniana A. Gray | Plant (Spermatophyta) | North America | F |
Channa micropeltes (Cuvier, 1831) | Fish | South-east Asia | F |
Charybdis japonica (A. Milne-Edwards, 1861) | Crustacean | Western Pacific | M |
Didemnum vexillum Kott, 2002 | Tunicata | Japan | M |
Faxonius rusticus (Girard, 1852) | Crustacean | North America | F |
Grateloupia turuturu Yamada, 1941 | Plant (Rhodophyta) | Asia | M |
Hydrilla verticillata (L. f.) Royle | Plant (Spermatophyta) | Asia, Africa and Australia | F |
Limnoperna fortunei (Dunker, 1857) | Mollusk | Asia | F |
Morone americana (Gmelin, 1789) | Fish | North America | F, B, M |
Myriophyllum heterophyllum Michx. | Plant (Spermatophyta) | North America | F |
Mytilopsis sallei (Récluz, 1849) | Mollusk | Caribbean islands and the Bay of Mexico | B, M |
Mytilus galloprovincialis Lamarck, 1819 | Mollusk | Mediterranean | M |
Perca flavescens (Mitchill, 1814) | Fish | North America | F, B |
Potamocorbula amurensis Schrenck, 1862 | Mollusk | Asia | B, M |
Pseudodiaptomus marinus Sato, 1913 | Crustacean | Indo-Pacific region | B, M |
Tricellaria inopinata d’Hondt & Occhipinti Ambrogi, 1985 | Bryozoan | Pacific | M |
Tridentiger trigonocephalus (Gill, 1859) | Fish | Asia | F, B, M |
Ulva pertusa Kjellman, 1897 | Plant (Chlorophyta) | Indo-Pacific region | M |
Undaria pinnatifida (Harvey) Suringar, 1873 | Plant (Phaeophyta) | Asia | M |
Probability | ||||||
---|---|---|---|---|---|---|
Species | Species Group | Origin | Establishment | Spread | Impact | Probability of Invasion |
Asterias amurensis | Echinoderm | Northern Pacific | 5 | 5 | 5 | 125 |
Botrylloides violaceus | Tunicata | Northwest Pacific | 5 | 5 | 5 | 125 |
Cabomba caroliniana | Plant (Spermatophyta) | North America | 5 | 5 | 5 | 125 |
Faxonius rusticus | Crustacean | North America | 5 | 5 | 5 | 125 |
Grateloupia turuturu | Plant (Rhodophyta) | Asia | 5 | 5 | 5 | 125 |
Hydrilla verticillata | Plant (Spermatophyta) | Asia, Africa, and Australia | 5 | 5 | 5 | 125 |
Limnoperna fortunei | Mollusk | Asia | 5 | 5 | 5 | 125 |
Myriophyllum heterophyllum | Plant (Spermatophyta) | North America | 5 | 5 | 5 | 125 |
Charybdis japonica | Crustacean | Western Pacific | 5 | 5 | 4 | 100 |
Didemnum vexillum | Tunicata | Japan | 5 | 5 | 4 | 100 |
Morone americana | Fish | North America | 5 | 5 | 4 | 100 |
Undaria pinnatifida | Plant (Phaeophyta) | Asia | 5 | 5 | 4 | 100 |
Potamocorbula amurensis | Mollusk | Asia | 5 | 4 | 5 | 100 |
Arcuatula senhousia | Mollusk | Asia | 4 | 5 | 5 | 100 |
Bythotrephes longimanus | Crustacean | Northern Europe and Asia | 5 | 5 | 3 | 75 |
Mytilopsis sallei | Mollusk | Caribbean islands and the Bay of Mexico | 5 | 5 | 3 | 75 |
Tricellaria inopinata | Bryozoan | Pacific | 5 | 5 | 3 | 75 |
Alosa pseudoharengus | Fish | North America | 3 | 5 | 5 | 75 |
Pseudodiaptomus marinus | Crustacean | Indo-Pacific region | 5 | 4 | 3 | 60 |
Mytilus galloprovincialis | Mollusk | Mediterranean | 5 | 5 | 2 | 50 |
Ulva pertusa | Plant (Chlorophyta) | Indo-Pacific region | 5 | 5 | 2 | 50 |
Perca flavescens | Fish | North America | 5 | 3 | 2 | 30 |
Acentrogobius pflaumii | Fish | Indonesia | 3 | 5 | 2 | 30 |
Acanthogobius flavimanus | Fish | Asia | 4 | 1 | 5 | 20 |
Channa micropeltes | Fish | South-east Asia | 3 | 3 | 2 | 18 |
Bugula neritina | Bryozoan | ? | 4 | 1 | 4 | 16 |
Tridentiger trigonocephalus | Fish | Asia | 1 | 5 | 1 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrzycka-Krahel, A.; Medina-Villar, S. A New Horizon-Scanning Tool to Identify Potential Aquatic Invasive Alien Species Introduced into the Baltic Sea by Shipping. Water 2023, 15, 531. https://doi.org/10.3390/w15030531
Dobrzycka-Krahel A, Medina-Villar S. A New Horizon-Scanning Tool to Identify Potential Aquatic Invasive Alien Species Introduced into the Baltic Sea by Shipping. Water. 2023; 15(3):531. https://doi.org/10.3390/w15030531
Chicago/Turabian StyleDobrzycka-Krahel, Aldona, and Silvia Medina-Villar. 2023. "A New Horizon-Scanning Tool to Identify Potential Aquatic Invasive Alien Species Introduced into the Baltic Sea by Shipping" Water 15, no. 3: 531. https://doi.org/10.3390/w15030531
APA StyleDobrzycka-Krahel, A., & Medina-Villar, S. (2023). A New Horizon-Scanning Tool to Identify Potential Aquatic Invasive Alien Species Introduced into the Baltic Sea by Shipping. Water, 15(3), 531. https://doi.org/10.3390/w15030531