Effect of Varying Zinc Concentrations on the Biomethane Potential of Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sewage Sludge
2.2. Biochemical Methane Potential Tests
2.3. Analytical Methods and Sampling
2.4. Statistical Analysis
2.5. Calculations
3. Results and Discussion
3.1. Biomethane Yield with Background Zinc Concentrations
3.2. Effect of Increasing Zinc Concentrations on the Biomethane Yield of AS
3.3. Sulfate Reduction and sCOD Removal during Anaerobic Digestion
3.4. Zinc Removal by Sulfide Precipitation during the AD Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dokulilova, T.; Koutny, T.; Vítez, T. Effect of zinc and copper on anaerobic stabilization of sewage sludge. Acta Univ. Agric. Silvic. Mendel. Brunensis. 2018. [Google Scholar] [CrossRef]
- Pastor-Poquet, V.; Papirio, S.; Steyer, J.P.; Trably, E.; Escudié, R.; Esposito, G. High-solids anaerobic digestion model for homogenized reactors. Water Res. 2018, 142, 501–511. [Google Scholar] [CrossRef]
- Nguyen, V.K.; Chaudhary, D.K.; Dahal, R.H.; Trinh, N.H.; Kim, J.; Chang, S.W.; Hong, Y.; La, D.D.; Nguyen, X.C.; Ngo, H.H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Bellaton, S.; Guérin, S.; Pautremat, N.; Bernier, J.; Muller, M.; Motellet, S.; Azimi, S.; Pauss, A.; Rocher, V. Early assessment of a rapid alternative method for the estimation of the biomethane potential of sewage sludge. Bioresour. Technol. 2016, 206, 279–284. [Google Scholar] [CrossRef]
- Silvestre, G.; Fernández, B.; Bonmatí, A. Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants. Energy Convers. Manag. 2015, 101, 255–262. [Google Scholar] [CrossRef]
- Galey, B.; Gautier, M.; Kim, B.; Blanc, D.; Chatain, V.; Ducom, G.; Dumont, N.; Gourdon, R. Trace metal elements vaporization and phosphorus recovery during sewage sludge thermochemical treatment—A review. J. Hazard. Mater. 2022, 424, 127360. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S. Biogas production as affected by heavy metals in the anaerobic digestion of sludge. Egypt. J. Pet. 2014, 23, 409–417. [Google Scholar] [CrossRef]
- Nguyen, Q.M.; Bui, D.C.; Phuong, T.; Doan, V.H.; Nguyen, T.N.; Nguyen, M.V.; Tran, T.H.; Do, Q.T. Investigation of heavy metal effects on the anaerobic co-digestion process of waste activated sludge and septic tank sludge. Int. J. Chem. Eng. 2019, 2019, 5138060. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Q.; Zhao, J.; Wu, Y.; Wu, L.; Li, H.; Tang, M.; Sun, Y.; Guo, W.; Feng, Q.; et al. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: A review. J. Hazard. Mater. 2020, 383, 121176. [Google Scholar] [CrossRef] [PubMed]
- Altaş, L. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J. Hazard. Mater. 2009, 162, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Tytła, M. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland-case study. Int. J. Environ. Res. 2019, 16, 2430. [Google Scholar] [CrossRef]
- Chen, J.L.; Ortiz, R.; Steele, T.W.J.; Stuckey, D.C. Toxicants inhibiting anaerobic digestion: A review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef]
- Paulo, L.M.; Stams, A.J.; Sousa, D.Z. Methanogens, sulphate and heavy metals: A complex system. Rev. Environ. Sci. Biotechnol. 2015, 14, 537–553. [Google Scholar] [CrossRef]
- Mudhoo, A.; Kumar, S. Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int. J. Environ. Sci. Technol. 2013, 10, 1383–1398. [Google Scholar] [CrossRef]
- Codina, J.C.; Muñoz, M.A.; Cazorla, F.M.; Pérez-García, A.; Moriñigo, M.A.; De Vicente, A. The inhibition of methanogenic activity from anaerobic domestic sludges as a simple toxicity bioassay. Water Res. 1998, 32, 1338–1342. [Google Scholar] [CrossRef]
- Kumar, M.; Nandi, M.; Pakshirajan, K. Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation. J. Environ. Manag. 2021, 278, 111555. [Google Scholar] [CrossRef]
- Matassa, S.; Esposito, G.; Pirozzi, F.; Papirio, S. Exploring the biomethane potential of different industrial hemp (Cannabis sativa L.) biomass residues. Energies 2020, 13, 3361. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Bianco, F.; Race, M.; Papirio, S.; Oleszczuk, P.; Esposito, G. Coupling of desorption of phenanthrene from marine sediments and biodegradation of the sediment washing solution in a novel biochar immobilized-cell reactor. Environ. Pollut. 2022, 308, 119621. [Google Scholar] [CrossRef]
- Junior, I.V.; de Almeida, R.; Cammarota, M.C. A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants. J. Water Process. Eng. 2021, 40, 101857. [Google Scholar] [CrossRef]
- Wu, L.J.; Kobayashi, T.; Kuramochi, H.; Li, Y.Y.; Xu, K.Q. Effects of potassium, magnesium, zinc, and manganese addition on the anaerobic digestion of de-oiled grease trap waste. Arab. J. Sci. Eng. 2016, 41, 2417–2427. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Li, Y.Y.; Liu, Y.; Zhao, Y. Influence of zero valent scrap iron (ZVSI) supply on methane production from waste activated sludge. Chem. Eng. J. 2015, 263, 461–470. [Google Scholar] [CrossRef]
- Abelleira-Pereira, J.M.; Pérez-Elvira, S.I.; Sánchez-Oneto, J.; de la Cruz, R.; Portela, J.R.; Nebot, E. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment. Water Res. 2015, 71, 330–340. [Google Scholar] [CrossRef]
- Sarioglu, M.; Akkoyun, S.; Bisgin, T. Inhibition effects of heavy metals (copper, nickel, zinc, lead) on anaerobic sludge. Desalin. Water Treat. 2010, 23, 55–60. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, C.C. Effect of heavy metals on the methanogenic UASB granule. Water Res. 1999, 33, 409–416. [Google Scholar] [CrossRef]
- Kumar, M.; Sinharoy, A.; Pakshirajan, K. Process integration for biological sulfate reduction in a carbon monoxide fed packed bed reactor. J. Environ. Manag. 2018, 219, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Van Houten, B.H.; Roest, K.; Tzeneva, V.A.; Dijkman, H.; Smidt, H.; Stams, A.J. Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res. 2006, 40, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Guo, B.; Zhang, L.; Zhang, Y.; Yu, N.; Liu, Y. Biomethane recovery from source-diverted household blackwater: Impacts from feed sulfate. Process Saf. Environ. Prot. 2020, 136, 28–38. [Google Scholar] [CrossRef]
- Kiyuna, L.S.M.; Fuess, L.T.; Zaiat, M. Unraveling the influence of the COD/sulfate ratio on organic matter removal and methane production from the biodigestion of sugarcane vinasse. Bioresour. Technol. 2017, 232, 103–112. [Google Scholar] [CrossRef]
- Villa-Gomez, D.K.; Papirio, S.; van Hullebusch, E.D.; Farges, F.; Nikitenko, S.; Kramer, H.J.M.; Lens, P.N.L. Influence of sulfide concentration and macronutrients on the characteristics of metal precipitates relevant to metal recovery in bioreactors. Bioresour. Technol. 2012, 110, 26–34. [Google Scholar] [CrossRef]
- Kumar, M.; Pakshirajan, K. Continuous removal and recovery of metals from wastewater using inverse fluidized bed sulfidogenic bioreactor. J. Clean. Prod. 2021, 284, 124769. [Google Scholar] [CrossRef]
- Yekta, S.S.; Elreedy, A.; Liu, T.; Hedenström, M.; Isaksson, S.; Fujii, M.; Schnürer, A. Influence of cysteine, serine, sulfate, and sulfide on anaerobic conversion of unsaturated long-chain fatty acid, oleate, to methane. Sci. Total Environ. 2022, 817, 152967. [Google Scholar] [CrossRef] [PubMed]
- Zayed, G.; Winter, J. Inhibition of methane production from whey by heavy metals–protective effect of sulfide. Appl. Microbiol. Biotechnol. 2000, 53, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Estrella, J.; Puyol, D.; Sierra-Alvarez, R.; Field, J.A. Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. J. Hazard. Mater. 2015, 283, 755–763. [Google Scholar] [CrossRef] [PubMed]
Sample | TS (g/L; %) | VS (g/L; %) | Zn (mg/L) | Zn (mg/g VS) |
---|---|---|---|---|
AS | 14.98 | 6.41 | 92.98 | 14.22 |
Oxidized sludge | 6.53 | 2.04 | 18.76 | 9.33 |
Dehydrated sludge | 19.17% | 7.95% | 0.05 | 0.59 |
Days | AS | AS + 200 mg Zn/L | AS + 300 mg Zn/L | AS + 400 mg Zn/L |
---|---|---|---|---|
1 | 408.00 | 514.00 | 500.00 | 520.00 |
64 | 1.72 | 2.82 | 3.00 | 4.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Matassa, S.; Bianco, F.; Oliva, A.; Papirio, S.; Pirozzi, F.; De Paola, F.; Esposito, G. Effect of Varying Zinc Concentrations on the Biomethane Potential of Sewage Sludge. Water 2023, 15, 729. https://doi.org/10.3390/w15040729
Kumar M, Matassa S, Bianco F, Oliva A, Papirio S, Pirozzi F, De Paola F, Esposito G. Effect of Varying Zinc Concentrations on the Biomethane Potential of Sewage Sludge. Water. 2023; 15(4):729. https://doi.org/10.3390/w15040729
Chicago/Turabian StyleKumar, Manoj, Silvio Matassa, Francesco Bianco, Armando Oliva, Stefano Papirio, Francesco Pirozzi, Francesco De Paola, and Giovanni Esposito. 2023. "Effect of Varying Zinc Concentrations on the Biomethane Potential of Sewage Sludge" Water 15, no. 4: 729. https://doi.org/10.3390/w15040729
APA StyleKumar, M., Matassa, S., Bianco, F., Oliva, A., Papirio, S., Pirozzi, F., De Paola, F., & Esposito, G. (2023). Effect of Varying Zinc Concentrations on the Biomethane Potential of Sewage Sludge. Water, 15(4), 729. https://doi.org/10.3390/w15040729