InSAR Displacement with High-Resolution Optical Remote Sensing for the Early Detection and Deformation Analysis of Active Landslides in the Upper Yellow River
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Study Data
3. Methods
3.1. Time-Series InSAR Technology
3.2. Integrated Active Landslide Detection
3.3. Inversion of 3D Displacements
4. Results
4.1. Deformation from Ascending and Descending Orbital Images
4.2. Active Landslide Detection
4.3. Deformation of the Lijia Gorge Landslides Group
4.4. Deformation Characteristics of the Lijia Gorge Landslides Group
5. Discussion
5.1. Deformation Impact Factors
5.2. Deformation Results from Two InSAR Techniques
5.3. Integrated Framework for Detecting Active Landslides along the Upper Yellow River
6. Conclusions
- (1)
- Using Sentinel-1 images and high-resolution optical images, well-defined interpretation criteria of active landslides in the study area were summarized, and 103 active landslides were detected. The coincidence rate with the previous survey results was 76.8%, thereby verifying the availability of the integrated framework for detecting active landslides in the Upper Yellow River.
- (2)
- Among the detected active landslides, 87 were detected based on deformation in both ascending and descending images, 7 could only be detected in ascending images, and 9 could only be detected in descending images. The results indicate that active landslides can remain undetected in single-orbit radar data. The combination of ascending and descending radar images improves our ability to detect active landslides in alpine gorge regions. The comparison of two InSAR methods showed very similar landslide detection results.
- (3)
- InSAR deformation and temporal changes in surface morphology confirmed that the Lijia Gorge landslide group is active. Among the landslides within the group, the No. I and No. VI landslides move rapidly, with maximum LOS displacement rates of 152 and 116 mm/a, respectively. The No. I landslide has significant deformation in the E–W and vertical directions. The No. VI landslide primarily moves eastward, but downward movement is not apparent. River erosion and gravity are the main triggering factors; however, rainfall has no significant impact on deformation. Based on our results, the stability of these two landslides must be closely monitored.
- (4)
- The results of this study confirm the importance of combining multiple remote sensing techniques for the detection and analysis of active landslides. The well-defined interpretation criteria summarized in the present study could facilitate the detection and mapping of active landslides in Upper Yellow River area.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazard. Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Wang, Y.; Chen, M.; Luo, Y.; Liang, R.; Li, J. Typical characteristics of large-scale landslides in the transition belt between the Qinghai-Tibet Plateau and the Loess Plateau. Arab. J. Geosci. 2019, 12, 470. [Google Scholar] [CrossRef]
- Yin, Z.; Qin, X.; Yin, Y.; Zhao, W.; Wei, G. Landslide Developmental Characteristics and Response to Climate Change since the Last Glacial in the Upper Reaches of the Yellow River, NE Tibetan Plateau. Acta Geol. Sin. 2014, 88, 635–646. [Google Scholar] [CrossRef]
- Carla, T.; Intrieri, E.; Raspini, F.; Bardi, F.; Farina, P.; Ferretti, A.; Colombo, D.; Novali, F.; Casagli, N. Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci. Rep. 2019, 9, 14137. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, J. Proving the occurrence and cause of a landslide in a legal context. Bull. Eng. Geol. Environ. 1999, 58, 75–85. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, X.J.; Li, W.L. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 957–966. [Google Scholar] [CrossRef]
- Xu, Q. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1651–1659. [Google Scholar] [CrossRef]
- Ge, D.Q.; Dai, K.R.; Guo, Z.C.; Li, Z.H. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 949–956. [Google Scholar]
- Crippa, C.; Valbuzzi, E.; Frattini, P.; Crosta, G.B.; Spreafico, M.C.; Agliardi, F. Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data. Landslides 2021, 18, 2445–2463. [Google Scholar] [CrossRef]
- Urgilez Vinueza, A.; Handwerger, A.L.; Bakker, M.; Bogaard, T. A new method to detect changes in displacement rates of slow-moving landslides using InSAR time series. Landslides 2022, 19, 2233–2247. [Google Scholar] [CrossRef]
- Cascini, L.; Fornaro, G.; Peduto, D. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng. Geol. 2010, 112, 29–42. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Price, E.J. Phase gradient approach to stacking interferograms. J. Geophys. Res. Solid Earth 1998, 103, 30183–30204. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-Pass SAR Interferometry With Partially Coherent Targets. IEEE Trans. Geosci. Remote Sens. 2012, 50, 271–280. [Google Scholar] [CrossRef]
- Zhu, J.J.; Li, Z.W.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. Acta Geod. Cartogr. Sin. 2017, 46, 1717–1733. [Google Scholar] [CrossRef]
- He, K.; Liu, B.; Hu, X.; Zhou, R.; Xi, C.; Ma, G.; Han, M.; Li, Y.; Luo, G. Rapid Characterization of Landslide-Debris Flow Chains of Geologic Hazards Using Multi-method Investigation: Case Study of the Tiejiangwan LDC. Rock Mech. Rock Eng. 2022, 55, 5183–5208. [Google Scholar] [CrossRef]
- Ding, C.; Feng, G.; Liao, M.; Tao, P.; Zhang, L.; Xu, Q. Displacement history and potential triggering factors of Baige landslides, China revealed by optical imagery time series. Remote Sens. Environ. 2021, 254, 112253. [Google Scholar] [CrossRef]
- Zhang, C.S.; Zhang, Y.C.; Ma, Y.S.; Hu, J.J.; Gao, Q.Z. Distribution Regularity and Regionalization of Geological Hazards in the Upper Yellow River Valley. Acta Geosci. Sin. 2003, 24, 155–160. [Google Scholar]
- Li, X.L.; Guo, X.H.; Li, W.H. Mechanism of Giant Landslides from Longyangxia Valley to Liujiaxia Valley Along Upper Yellow River. J. Eng. Geol. 2011, 19, 516–529. [Google Scholar]
- Li, X.L.; Ma, J.Q.; Hu, G.S. Genetic analysis on huge landslides along the section from Longyang Gorge to Liujia Gorge of the Yellow River. Chin. J. Geol. Hazard Control 2007, 18, 28–32. [Google Scholar]
- Shi, X.G.; Zhang, L.; Tang, M.G.; Li, M.H.; Liao, M.S. Investigating a reservoir bank slope displacement history with multi-frequency satellite SAR data. Landslides 2017, 14, 1961–1973. [Google Scholar] [CrossRef]
- Li, M.H.; Zhang, L.; Shi, X.G.; Liao, M.S.; Yang, M. Monitoring active motion of the Guobu landslide near the Laxiwa Hydropower Station in China by time-series point-like targets offset tracking. Remote Sens. Environ. 2019, 221, 80–93. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, G.; Yang, T.; Zhang, M.; Chen, S.; Zhang, F. Satellite remote sensing-based detection of the deformation of a reservoir bank slope in Laxiwa Hydropower Station, China. Landslides 2012, 10, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Liu, X.; Hu, S.; Li, P. Large Deformation Analysis of a High Steep Slope Relating to the Laxiwa Reservoir, China. Rock Mech. Rock Eng. 2016, 49, 2253–2276. [Google Scholar] [CrossRef]
- Bai, J.G.; Lv, S.D.; Han, J.S. Stability prediction of reservoir landslide of Lijiaxia Hydropower station before and after reservoir impounding. Rock Soil Mech. 2008, 29, 1723–1731. [Google Scholar] [CrossRef]
- Price, E.J.; Sandwell, D.T. Small-scale deformations associated with the 1992 Landers, California, earthquake mapped by synthetic aperture radar interferometry phase gradients. J. Geophys. Res. Solid Earth 1998, 103, 27001–27016. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Werner, C.; Wiesmann, A. Measurement of Slow Uniform Surface Displacement with mm/year Accuracy. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000. [Google Scholar]
- Zhang, L.L.; Dai, K.R.; Deng, J.; Ge, D.Q.; Liang, R.B.; Li, W.L.; Xu, Q. Identifying Potential Landslides by Stacking-InSAR in Southwestern China and Its Performance Comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Interferometric Point Target Analysis for Deformation Mapping. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003. [Google Scholar]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.J. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, L01607. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Li, Z. Time-Series InSAR Technology for Ascending and Descending Orbital Images to Monitor Surface Deformation of the Metro Network in Chengdu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12583–12597. [Google Scholar] [CrossRef]
- Confuorto, P.; Di Martire, D.; Centolanza, G.; Iglesias, R.; Mallorqui, J.J.; Novellino, A.; Plank, S.; Ramondini, M.; Thuro, K.; Calcaterra, D. Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis. Remote Sens. Environ. 2017, 188, 51–72. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Rigo, E.; Bolla, A. Influence of filling–drawdown cycles of the Vajont reservoir on Mt. Toc slope stability. Geomorphology 2013, 191, 75–93. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Yin, K.; Wang, Y.; Shi, X.; Catani, F.; Ahmed, B. Landslide Characterization Applying Sentinel-1 Images and InSAR Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China. Remote Sens. 2020, 12, 3385. [Google Scholar] [CrossRef]
- Reyes-Carmona, C.; Barra, A.; Galve, J.P.; Monserrat, O.; Pérez-Peña, J.V.; Mateos, R.M.; Notti, D.; Ruano, P.; Millares, A.; López-Vinielles, J.; et al. Sentinel-1 DInSAR for Monitoring Active Landslides in Critical Infrastructures: The Case of the Rules Reservoir (Southern Spain). Remote Sens. 2020, 12, 809. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.Q.; Wei, G.; Yin, Z.Q.; Yuan, C.D.; Wu, X.N.; Li, Z.C. Characteristics and formation of Simencun Landslides in Jianzha Basin of Qinghai province. Chin. J. Geol. Hazard Control 2020, 31, 15–21. [Google Scholar] [CrossRef]
Satellite | Polarization | Start | End | Path ID | Track | Average Incident Angle | Number of Scenes |
---|---|---|---|---|---|---|---|
Sentinel-1 | VV | 2019-01 | 2021-02 | 26 | Ascending | 43.6271 | 54 |
2019-01 | 2021-04 | 128 | Ascending | 34.3686 | 66 | ||
2019-01 | 2021-04 | 33 | Descending | 35.8241 | 70 |
Satellite | Image Type | Spatial Revolution (m) | Acquisition Time |
---|---|---|---|
Gaofen-2 (GF-2) | Optical image | 1 | 20201129 20191125 |
TripleSat-2 (BJ-2) | 0.8 | 20181004, 20190726, 20190928, 20191103, 20191107, 20191219, 20200510, 20200516, 20200629, 20200726, 20200819, 20200918, 20201124, 20210128, 20210219, 20210506 |
Landlside No. | Corresponding Figure | Deformation Rate (mm/a) | Cumulative Movement (mm) | Slope Stability | Key |
---|---|---|---|---|---|
I | Figure 9a | 96–152 | 220–310 | Landslide moved integrally and rapidly Landslide slowly deformed at a uniform speed. | |
II | Figure 9b | 78–106 | 185–250 | ||
III | Figure 9c | 54–97 | 128–232 | ||
IV | Figure 9d | 55–66 | 134–158 | ||
V | Figure 9e | 64–87 | 155–216 | ||
VI | Figure 9f | 65–116 | 154–199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, K.; Ye, S.; Zou, J.; Hua, C.; Guo, J. InSAR Displacement with High-Resolution Optical Remote Sensing for the Early Detection and Deformation Analysis of Active Landslides in the Upper Yellow River. Water 2023, 15, 769. https://doi.org/10.3390/w15040769
Tu K, Ye S, Zou J, Hua C, Guo J. InSAR Displacement with High-Resolution Optical Remote Sensing for the Early Detection and Deformation Analysis of Active Landslides in the Upper Yellow River. Water. 2023; 15(4):769. https://doi.org/10.3390/w15040769
Chicago/Turabian StyleTu, Kuan, Shirong Ye, Jingui Zou, Chen Hua, and Jiming Guo. 2023. "InSAR Displacement with High-Resolution Optical Remote Sensing for the Early Detection and Deformation Analysis of Active Landslides in the Upper Yellow River" Water 15, no. 4: 769. https://doi.org/10.3390/w15040769