The Performance of Carbonate-Modified Nonionic Surfactants in Microplastic Flotation
Abstract
:1. Introduction
- Are carbonate-modified nonionic surfactants suitable for flotation applications?
- Which carbonate content is beneficial for such applications?
- Which properties of these surfactants in solutions could be key descriptors for selection and optimization?
2. Materials and Methods
2.1. Chemicals
2.2. Methods
2.2.1. Tensiomethry: Method of Maximum Bubble Pressure
2.2.2. Contact Angle
2.2.3. Foaming Test
2.2.4. Flotation Experiments
3. Results
3.1. Flotation
3.2. Equilibrium Surface Activity and Micellization
3.3. Wetting of Solid Surfaces
3.4. Foaming Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Nguyen, A.V.; Farrokhpay, S. A critical review of the growth, drainage and collapse of foams. Adv. Colloid Interface Sci. 2016, 228, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Kanokkarn, P.; Shiina, T.; Santikunaporn, M.; Chavadej, S. Equilibrium and dynamic surface tension in relation to diffusivity and foaming properties: Effects of surfactant type and structure. Colloids Surf. A Physicochem. Eng. Asp. 2017, 524, 135–142. [Google Scholar] [CrossRef]
- Kawale, D.; van Nimwegen, A.T.; Portela, L.M.; van Dijk, M.A.; Henkes, R.A.W.M. The relation between the dynamic surface tension and the foaming behaviour in a sparger setup. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 328–336. [Google Scholar] [CrossRef]
- Ampatzidis, C.D.; Varka, E.-M.A.; Karapantsios, T.D. Interfacial activity of amino acid-based glycerol ether surfactants and their performance in stabilizing O/W cosmetic emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2014, 460, 176–183. [Google Scholar] [CrossRef]
- Wang, K.; Lu, Y.C.; Xu, J.H.; Luo, G.S. Determination of Dynamic Interfacial Tension and Its Effect on Droplet Formation in the T-Shaped Microdispersion Process. Langmuir 2009, 25, 2153–2158. [Google Scholar] [CrossRef] [PubMed]
- Baret, J.C.; Kleinschmidt, F.; Harrak, A.E.; Griffiths, A.D. Kinetic aspects of emulsion stabilization by surfactants: A microfluidic analysis. Langmuir 2009, 25, 6088–6093. [Google Scholar] [CrossRef]
- Fainerman, V.B.; Mys, V.D.; Makievski, A.V.; Petkov, J.T.; Miller, R. Dynamic surface tension of micellar solutions in the millisecond and submillisecond time range. J. Colloid Interface Sci. 2006, 302, 40–46. [Google Scholar] [CrossRef]
- Miller, R.; Aksenenko, E.V.; Fainerman, V.B. Dynamic interfacial tension of surfactant solutions. Adv. Colloid Interface Sci. 2017, 247, 115–129. [Google Scholar] [CrossRef]
- Buzzacchi, M.; Schmiedel, P.; von Rybinski, W. Dynamic surface tension of surfactant systems and its relation to foam formation and liquid film drainage on solid surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2006, 273, 47–54. [Google Scholar] [CrossRef]
- Manousakis, M.; Avranas, A. Dynamic surface tension studies of mixtures of hydroxypropylmethylcellulose with the double chain cationic surfactants didodecyldimethylammonium bromide and ditetradecyldimethylammonium bromide. J. Colloid Interface Sci. 2013, 402, 237–245. [Google Scholar] [CrossRef]
- Chang, H.; Wang, Y.; Cui, Y.; Li, G.; Zhang, B.; Zhao, X.; Wei, W. Equilibrium and dynamic surface tension properties of Gemini quaternary ammonium salt surfactants with hydroxyl. Colloids Surf. A Physicochem. Eng. Asp. 2016, 500, 230–238. [Google Scholar] [CrossRef]
- Young, T., III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar] [CrossRef]
- Shinoda, K.; Lindman, B. Organized surfactant systems: Microemulsions. Langmuir 1987, 3, 135–149. [Google Scholar] [CrossRef]
- Tamura, T.; Kaneko, Y.; Ohyama, M. Dynamic Surface Tension and Foaming Properties of Aqueous Polyoxyethylene n-Dodecyl Ether Solutions. J. Colloid Interface Sci. 1995, 173, 493–499. [Google Scholar] [CrossRef]
- Yada, S.; Suzuki, T.; Hashimoto, S.; Yoshimura, T. Adsorption dynamics of homogeneous polyoxypropylene-polyoxyethylene alkyl ether nonionic surfactants at the air/water interface. J. Mol. Liq. 2018, 255, 208–214. [Google Scholar] [CrossRef]
- Shojaeimehr, T.; Schwarze, M.; Lima, M.T.; Schomäcker, R. Correlation of performance data of silica particle flotations and foaming properties of cationic and nonionic surfactants for the development of selection criteria for flotation auxiliaries. Colloids Surf. A Physicochem. Eng. Asp. 2022, 649, 129159. [Google Scholar] [CrossRef]
- Zhang, W.; Nesset, J.E.; Rao, R.; Finch, J.A. Characterizing frothers through critical coalescence concentration (CCC)95-hydrophile-lipophile balance (HLB) relationship. Minerals 2012, 2, 208–227. [Google Scholar] [CrossRef] [Green Version]
- Beran, E.E.; Hull, S.; Steininger, M. The Relationship Between the Chemical Structure of Poly(alkylene glycol)s and Their Aerobic Biodegradability in an Aqueous Environment. J. Polym. Environ. 2013, 21, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Wonyen, D.; Kromah, V.; Gibson, B.; Nah, S.; Chelgani, S. A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite). Minerals 2018, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Tupinamba Lima, M.; Kurt-Zerdeli, S.N.; Brüggemann, D.; Spiering, V.J.; Gradzielski, M.; Schomäcker, R. The dynamics of surface adsorption and foam formation of carbonate modified nonionic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2020, 588, 124386. [Google Scholar] [CrossRef]
- Hu, M.; Chen, M.; Li, G.; Pang, Y.; Wang, D.; Wu, J.; Qiu, F.; Zhu, X.; Sun, J. Biodegradable hyperbranched polyglycerol with ester linkages for drug delivery. Biomacromolecules 2012, 13, 3552–3561. [Google Scholar] [CrossRef] [PubMed]
- Baker, I.J.A.; Matthews, B.; Suares, H.; Krodkiewska, I.; Furlong, D.N.; Grieser, F.; Drummond, C.J. Sugar fatty acid ester surfactants: Structure and ultimate aerobic biodegradability. J. Surfactants Deterg. 2000, 3, 1–11. [Google Scholar] [CrossRef]
- Spiering, V.J.; Ciapetti, A.; Tupinamba Lima, M.; Hayward, D.W.; Noirez, L.; Appavuo, M.-S.; Schomäcker, R.; Gradzieleski, M. Substituting EO by CO2 in the Head Group of Nonionic Surfactants Changes their Phase Behavior Completely. ChemSusChem 2020, 13, 601. [Google Scholar] [CrossRef] [PubMed]
- Langanke, J.; Wolf, A.; Hofmann, J.; Böhm, K.; Subhani, M.A.; Müller, T.E.; Leitner, W.; Gürtler, C. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 2014, 16, 1865–1870. [Google Scholar] [CrossRef]
- Lima, M.T.; Spiering, V.J.; Kurt-Zerdeli, S.N.; Brüggemann, D.C.; Gradzielski, M.; Schomäcker, R. The hydrophilic-lipophilic balance of carboxylate and carbonate modified nonionic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2019, 569, 156–163. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Ramírez, P.; Pérez-Mosqueda, L.M.; Alfaro, M.C.; Muñoz, J. Surface and foaming properties of polyoxyethylene glycerol ester surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2014, 458, 195–202. [Google Scholar] [CrossRef]
- Li, W.C.; Tse, H.F.; Fok, L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total Environ. 2016, 566–567, 333–349. [Google Scholar] [CrossRef]
- Sun, J.; Dai, X.; Wang, Q.; van Loosdrecht, M.C.M.; Ni, B.J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef]
- Bui, X.T.; Vo, T.D.H.; Nguyen, P.T.; Nguyen, V.T.; Dao, T.S.; Nguyen, P.D. Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies. Environ. Technol. Innov. 2020, 19, 101013. [Google Scholar] [CrossRef]
- Ranjani, M.; Veerasingam, S.; Venkatachalapathy, R.; Mugilarasan, M.; Bagaev, A.; Mukhanov, V.; Vethamony, P. Assessment of potential ecological risk of microplastics in the coastal sediments of India: A meta-analysis. Mar. Pollut. Bull. 2021, 163, 111969. [Google Scholar] [CrossRef]
- Umar, A.; Caldwell, G.S.; Lee, J.G.M. Foam flotation can remove and eradicate ciliates contaminating algae culture systems. Algal Res. 2018, 29, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.J.; Chaprão, M.J.; Silva, I.A.; Brasileiro, P.P.F.; Almeida, D.G.; de Luna, J.M.; Rufino, R.D.; Santos, V.A.; Sarubbo, L.A. Biosurfactant application as alternative collectors in dissolved air flotation system. Chem. Eng. Trans. 2018, 64, 547–552. [Google Scholar] [CrossRef]
- Goswami, A.; Hassan, P.A.; Bhagwat, S.S. Static and dynamic surface tension behaviour of a triblock copolymer and a non ionic surfactant mixture. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 190–196. [Google Scholar] [CrossRef]
No. | Surfactant | Name | Specification | ||
---|---|---|---|---|---|
CMC (mmol/L) | σeq (mN/m) (at 0.01 g/L) | HLB (–) | |||
1 | C13EO4 | Marlipal O13/40 | 0.069 | 35.5 | 9.4 |
2 | C13EO5 | Marlipal O13/50 | 0.076 | 37.5 | 10.5 |
3 | C13EO6 | Marlipal O13/60 | 0.079 | 38.5 | 11.4 |
4 | C13EO7 | Marlipal O13/70 | 0.081 | 39.0 | 12.1 |
5 | C13EO8 | Marlipal O13/80 | 0.085 | 40.5 | 12.8 |
6 | C13EO10 | Marlipal O13/100 | 0.116 | 43.5 | 13.7 |
No. | Surfactant | Mn (g/mol) | CO2 (%) | CP (°C) | HLB (–) |
---|---|---|---|---|---|
7 | C12(CO2)3.1EO8.2-OH | 680.2 | 19.64 | 69.0 | 14.3 |
8 | C12(CO2)1.5EO11.5-OH | 762.4 | 8.84 | 85.0 | 14.9 |
9 | C12(CO2)1.3EO11.4-OH | 744.0 | 7.76 | 88.0 | 14.4 |
10 | C12(CO2)0.6EO13.3-OH | 792.0 | 3.32 | >100 | 16.5 |
No. | Surfactants | CMC (mmol/L) | σCMC (mN/m) | a0 (nm2) |
---|---|---|---|---|
7 | C12(CO2)3.1EO8.2-OH | 0.053 | 34.4 | 0.55 |
8 | C12(CO2)1.5EO11.5-OH | 0.091 | 35.9 | 0.65 |
9 | C12(CO2)1.3EO11.4-OH | 0.099 | 36.5 | 0.67 |
10 | C12(CO2)0.6EO13.3-OH | 0.118 | 35.9 | 0.69 |
11 | C12(CO2)0EO14.0-OH | 0.175 | 40.1 | 1.07 |
Surfactant Solution | σ (L/g) (mN/m) | θ (PET) (°) | σ (L/s) * (mN/m) |
---|---|---|---|
H2O | 72.0 | 65.6 | 14.3 |
C13EO7 | 39.0 | 32.0 | 11.7 |
C13EO8 | 40.5 | 34.1 | 16.9 |
C13EO10 | 43.5 | 49.5 | 16.6 |
C12(CO2)3.1EO8.2OH | 34.4 | 48.1 | 21.0 |
C12(CO2)1.5EO11.5OH | 35.9 | 51.0 | 21.4 |
C12(CO2)1.3EO11.4OH | 36.5 | 60.5 | 26.0 |
C12(CO2)0.6EO13.3OH | 35.9 | 62.0 | 27.2 |
C12(CO2)0EO14OH | 40.1 | 52.9 | 19.8 |
No. | Surfactants | CMC (mmol/L) | a0 (nm2) | Dmono (m2/s) | FA (–) | t1/2(foam) (s) |
---|---|---|---|---|---|---|
7 | C12(CO2)3.1EO8.2-OH | 0.0529 | 0.43 | 8.0 10−9 | 0.97 | 1400 |
8 | C12(CO2)1.5EO11.5-OH | 0.0914 | 0.57 | 3.5 10−9 | 0.99 | 1000 |
9 | C12(CO2)1.3EO11.5-OH | 0.0985 | 0.59 | 4.5 10−9 | 0.96 | 3500 |
10 | C12(CO2)0.6EO13.3-OH | 0.1177 | 0.65 | 5.0 10−9 | 0.91 | 2300 |
11 | C12(CO2)0EO14.0-OH | 0.1750 | 1.07 | 8.0 10−9 | 0.90 | 3600 |
5 | C13EO8 | 0.0800 | - | 4.0 10–9 | 0.80 | 1400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brüggemann, D.; Shojamejer, T.; Tupinamba Lima, M.; Zukova, D.; Marschall, R.; Schomäcker, R. The Performance of Carbonate-Modified Nonionic Surfactants in Microplastic Flotation. Water 2023, 15, 1000. https://doi.org/10.3390/w15051000
Brüggemann D, Shojamejer T, Tupinamba Lima M, Zukova D, Marschall R, Schomäcker R. The Performance of Carbonate-Modified Nonionic Surfactants in Microplastic Flotation. Water. 2023; 15(5):1000. https://doi.org/10.3390/w15051000
Chicago/Turabian StyleBrüggemann, Daniel, Tahereh Shojamejer, Michelle Tupinamba Lima, Dzenna Zukova, Rahel Marschall, and Reinhard Schomäcker. 2023. "The Performance of Carbonate-Modified Nonionic Surfactants in Microplastic Flotation" Water 15, no. 5: 1000. https://doi.org/10.3390/w15051000