Analysis of the Salinity of the Vistula River Based on Patrol Monitoring and State Environmental Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject of Research
2.2. Patrol Monitoring
2.3. Flow Measurements of the Vistula River
2.4. Data Compilation
2.5. GIS Data Analysis and Statistical Analysis
3. Results
3.1. Salinization of the Vistula River
3.2. Ion Speciation in the Water
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
JCWP Code | Order | JCWP Name | Centroid | Typo-logy | Classification | Analysis | Online Meas. Points/JCWP | |
---|---|---|---|---|---|---|---|---|
Longitude (WGS 84) | Latitude (WGS 84) | |||||||
RW20001221113549 | −3 | to Dobki without Kopydło | 197,005.2 | 493,539.5 | SM | - | ||
RW20009211159 | −2 | from Bładnica to Zb. Goczałkowice | 220,480.8 | 483,878.5 | SM | - | ||
RW20009211151 | −1 | from Dobki to Bładnica | 206,638.4 | 487,036.5 | SM | - | ||
RW20000211179 | 0 | Zb. Goczałkowice | 228,092.0 | 488,729.3 | SM | - | ||
RW20001921139 | 1 | Wisła from Zb. Goczałkowice to Biała | 229,610.4 | 497,190.4 | SM | 10 | ||
RW20001921199 | 2 | from Biała to Przemsza | 237,417.4 | 509,098.9 | 19 | SZCW | H/SM | 30 |
RW20001921339 | 3 | from Przemsza without Przemsza to Skawa | 242,615.5 | 523,572.1 | 19 | SZCW | H/SM | 10 |
RW2000192135599 | 4 | from Skawa to Skawinka | 236,488.5 | 543,988.5 | SM | 8 | ||
RW2000192137759 | 5 | from Skawinka to Podłężanka | 242,503.7 | 568,683.7 | 19 | SZCW | H/SM | 12 |
RW200019213799 | 6 | from Podłężanka to Raba | 248,963.1 | 594,528,0 | SM | 16 | ||
RW200021213999 | 7 | from Podłężanka to Raba | 258,811.4 | 616,348.4 | SM | 12 | ||
RW20002121799 | 8 | from Dunajec to Wisłoka | 275,906.1 | 646,288.3 | 21 | SZCW | H/SM | 30 |
RW20002121999 | 9 | from Wisłoka to San | 304,071.2 | 685,358.2 | 21 | SZCW | H/SM | 27 |
RW2000212319 | 10 | from San to Sanna | 328,995.2 | 699,931.4 | SM | 6 | ||
RW2000212339 | 11 | from Sanna to Kamienna | 346,560.6 | 700,099.1 | 21 | SZCW | H/SM | 8 |
RW2000212399 | 13 | from Kamienna to Wieprz | 383,953,0 | 698,656.2 | 21 | NAT | H/SM | 33 |
RW2000212539 | 14 | from Wieprz to Pilica | 429,460.3 | 671,429.7 | SM | 22 | ||
RW200021257 | 15 | from Pilica to Jeziorka | 455,115.3 | 655,521.8 | 21 | NAT | H/SM | 18 |
RW20002125971 | 16 | from Jeziorka to Kanał Młociński | 486,721.1 | 639,540.8 | 21 | SZCW | H/SM | 14 |
RW20002125999 | 17 | from Kanał Młociński to Narew | 504,707.4 | 622,761.8 | 21 | NAT | H/SM | 51 |
RW2000212739 | 18 | from Narew to Zb. Włocławek | 509,134.6 | 575,047.6 | 21 | NAT | H/SM | 28 |
RW2000212939 | 22 | from Narew to Zb. Włocławek | 578,796.3 | 461,610.8 | 21 | NAT | H/SM | 94 |
RW2000212939 | 22 | from Narew to Zb. Włocławek | 578,796.3 | 461,610.8 | 21 | NAT | H/SM | |
RW2000212939 | 22 | from Narew to Zb. Włocławek | 578,796.3 | 461,610.8 | 21 | NAT | H/SM | |
RW20000212339 | 12 | Zb. Włocławek | 228,092,0 | 488,729.3 | 0 | SZCW | H/SM | 33 |
RW2000275999 | 19 | 653,063.1 | 482,924.6 | SM | 6 | |||
RW20002127911 | 20 | from Zb. Włocławek to border of Region Wodny Środkowej Wisły | 530,066.6 | 505,539.3 | 21 | SZCW | SM | 11 |
RW20002127935 | 21 | border of Region Wodny Środkowej Wisły to tributary from Sierzchów | 544,481.3 | 496,033.0 | 21 | SZCW | SM | 74 |
RW2000212939 | 22 | from tributary from Sierzchów to Wda | 578,796.3 | 461,610.8 | 21 | SZCW | H/SM | 94 |
RW20002129999 | 23 | from Wda to mouth | 653,063.1 | 482,924.6 | 21 | SZCW | H/SM | |
RW20002129999 | 23 | from Wda to mouth | 653,063.1 | 482,924.6 | 21 | SZCW | H/SM | |
RW20002129999 | 23 | from Wda to mouth | 653,063.1 | 482,924.6 | 21 | SZCW | H/SM | |
RW20002129999 | 23 | from Wda to mouth |
References
- Williams, W.D. Anthropogenic Salinisation of Inland Waters. Hydrobiologia 2001, 466, 329–337. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.J. Salinisation of Rivers: An Urgent Ecological Issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef]
- Vengosh, A. Salinization and Saline Environments. Treatise Geochem. 2003, 9, 612. [Google Scholar]
- CALFED Water Quality Program. Salinity in the Central Valley and Sacramento-San Joaquin Delta; CALFED Water Quality Program: Sacramento, CA, USA, 2005; Volume 3, ISBN 9780792384250. [Google Scholar]
- Lachance, J.; Sadler, R.C.; Champney, A.; Smeets, P.W.M.H.; Blokker, E.J.M.; Van Lieverloo, M.; Van Der Kooij, D.; Van Der Wielen, P.; Triantafyllidou, S.; Best, D.; et al. Saving Freshwater from Salts. Science 2016, 351, 914–916. [Google Scholar]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardon, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P.; Langley, J.A. A Global Perspective on Wetland Salinization: Ecological Consequences of a Growing Threat to Freshwater Wetlands. Ecosphere 2015, 6, 1–43. [Google Scholar] [CrossRef]
- Martin, R.; Wood, G. A Review of Current Monitoring Activities to Develop a Framework for State and Condition Monitoring; Report No 1013-10-DAB; Australian Groundwater Technologies Pty Ltd.: Adelaide, Australia, 2011. [Google Scholar]
- Craft, C.; Neubauer, S.C. Global Change and Tidal Freshwater Wetlands: Scenarios and Impacts. In Tidal Freshwater Wetlands; Margraf Publishers GmbH Scientific Books: Weikersheim, Germany, 2009; Chapter 23; pp. 253–266. [Google Scholar]
- Anderson, D.M.; Hoagland, P.; Kaoru, Y.; White, A.W. Estimated Annual Economic Impacts from Harmful Algal Blooms (HABs) in the United States; Technical Report No. WHOI-2000-11; Woods Hole Oceanographic Institution: Woods Hole, MA, USA, 2000. [Google Scholar]
- Sager, D.R.; Barkoh, A.; Buzan, D.L.; Fries, L.T.; Glass, J.A.; Kurten, G.L.; Ralph, J.J.; Singhurst, E.J.; Southard, G.M.; Swanson, E. Toxic Prymnesium Parvum: A Potential Threat to US Reservoirs. Am. Fish. Soc. Symp. 2008, 62, 261–273. [Google Scholar]
- Southard, G.M.; Fries, L.T.; Barkoh, A. Prymnesium Parvum: The Texas Experience. J. Am. Water Resour. Assoc. 2010, 46, 14–23. [Google Scholar] [CrossRef]
- Gregg, T. Prymnesium Parvum and Fish Kills in a Southern Nevada Man-Made Reservoir. Master’s Thesis, University of Nevada, Las Vegas, NV, USA, 2014. [Google Scholar]
- Kaartvedt, S.; Johnsen, T.M.; Aksnes, D.L.; Lie, U.; Svendsen, H. Occurrence of the Toxic Phytoflagellate Prymnesium Parvum and Associated Fish Mortality in a Norwegian Fjord System. Can. J. Fish. Aquat. Sci. 1991, 48, 2316–2323. [Google Scholar] [CrossRef]
- Murray—Darling Basin Authority. General Review of Salinity Management in the Murray—Darling Basin; Murray—Darling Basin Authority: Canberra, Australia, 2014; ISBN 9781925221190. [Google Scholar]
- Cunillera-Montcusí, D.; Beklioğlu, M.; Cañedo-Argüelles, M.; Jeppesen, E.; Ptacnik, R.; Amorim, C.A.; Arnott, S.E.; Berger, S.A.; Brucet, S.; Dugan, H.A.; et al. Freshwater Salinisation: A Research Agenda for a Saltier World. Trends Ecol. Evol. 2022, 37, 440–453. [Google Scholar] [CrossRef]
- Strozik, G. Reduction of Saline Waters Discharge from Coal Mines Through Filling and Sealing of Underground Voids. World Sci. News 2017, 72, 354–368. [Google Scholar]
- GIOŚ (General Inspectorate of Environmental Protection). Available online: https://www.Gios.Gov.Pl/Pl/ (accessed on 6 September 2021).
- Falkowski, E. Wisła. Monografia Rzeki. In Przyroda Rzeki; Piskozuba, A., Ed.; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 1982. [Google Scholar]
- Absalon, D.; Matysik, M.; Ruman, M. Novel Methods And Solutions In Hydrology And Water Management. Pap. Glob. Chang. IGBP 2015, 22, 137–138. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. The International System of Units (SI) in Oceanography. Report of a IAPSO Working Group on Symbols, Unit and Nomenclature in Physical Oceanography (SUN); UNESCO: Paris, France, 1985; Volume 45. [Google Scholar]
- Millero, F.J. History of the Equation of State of Seawater. Oceanography 2010, 23, 18–33. [Google Scholar] [CrossRef] [Green Version]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 49. [Google Scholar]
- Absalon, D.; Kryszczuk, P.; Rutkiewicz, P. Changes in Water Quality along the Course of a River—Classic Monitoring versus Patrol Monitoring. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; Volume 1906. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; De, S.; Pan, I.; Dutta, P. Intelligent Multidimensional Data Clustering and Analysis. In Intelligent Multidimensional Data Clustering and Analysis; IGI Global: Pennsylvania, PA, USA, 2016; pp. 1–450. ISBN 9781522517771. [Google Scholar]
- Stephanou, M.; Varughese, M. Sequential Estimation of Spearman Rank Correlation Using Hermite Series Estimators. J. Multivar. Anal. 2021, 186, 104783. [Google Scholar] [CrossRef]
- Williams, W.D. Salinization of Rivers and Streams: An Important Environmental Hazard. Ambio 1987, 16, 180–185. [Google Scholar]
- Morford, S.L. Salinity in the Colorado River Basin; Bureau of Reclamation: Phoenix, AZ, USA, 2014. [Google Scholar]
- Gorostiza, S.; Sauri, D. Dangerous Assemblages: Salts, Trihalomethanes and Endocrine Disruptors in the Water Palimpsest of the Llobregat River, Catalonia. Geoforum 2017, 81, 153–162. [Google Scholar] [CrossRef]
- Ladrera, R.; Cañedo-Argüelles, M.; Prat, N. Impact of Potash Mining in Streams: The Llobregat Basin (Northeast Spain) as a Case Study. J. Limnol. 2017, 76, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Matysik, M. Wpływ Wód Kopalnianych Na Kształtowanie Się Odpływu Rzecznego Na Terenie Górnośląskiego Zagłębia Węglowego (The Impact of Mine Water Discharges on the Runoff of the Upper Silesian Coal Basin); Wydawnictwo Uniwersytetu Ślaskiego: Katowice, Poland, 2018. [Google Scholar]
- Herbst, D.B.; Kane, J.M. Responses of Aquatic Macroinvertebrates to Stream Channel Reconstruction in a Degraded Rangeland Creek in the Sierra Nevada. Ecol. Restor. 2009, 27, 76–88. [Google Scholar] [CrossRef]
- Svendsen, K.M.; Renshaw, C.E.; Magilligan, F.J.; Nislow, K.H.; Kaste, J.M. Flow and Sediment Regimes at Tributary Junctions on a Regulated River: Impact on Sediment Residence Time and Benthic Macroinvertebrate Communities. Hydrol. Process. 2009, 23, 284–296. [Google Scholar] [CrossRef]
- Petruck, A.; Stöffler, U. On the History of Chloride Concentrations in the River Lippe (Germany) and the Impact on the Macroinvertebrates. Limnologica 2011, 41, 143–150. [Google Scholar] [CrossRef]
- Arle, J.; Wagner, F. Effects of Anthropogenic Salinisation on the Ecological Status of Macroinvertebrate Assemblages in the Werra River (Thuringia, Germany). Hydrobiologia 2013, 701, 129–148. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Bundschuh, M.; Gutiérrez-Cánovas, C.; Kefford, B.J.; Prat, N.; Trobajo, R.; Schäfer, R.B. Effects of Repeated Salt Pulses on Ecosystem Structure and Functions in a Stream Mesocosm. Sci. Total Environ. 2014, 476–477, 634–642. [Google Scholar] [CrossRef]
- Hintz, W.D.; Relyea, R.A. A Review of the Species, Community, and Ecosystem Impacts of Road Salt Salinisation in Fresh Waters. Freshw. Biol. 2019, 64, 1081–1097. [Google Scholar] [CrossRef] [Green Version]
- Halabowski, D.; Lewin, I. Triggers for the Impoverishment of the Macroinvertebrate Communities in the Human-Impacted Rivers of Two Central European Ecoregions. Water. Air. Soil Pollut. 2021, 232, 55. [Google Scholar] [CrossRef]
- Krodkiewska, M.; Spyra, A.; Cieplok, A. Assessment of Pollution, and Ecological Status in Rivers Located in the Vistula and Oder River Basins Impacted by the Mining Industry in Central Europe (Poland). Ecol. Indic. 2022, 144, 109505. [Google Scholar] [CrossRef]
- Halabowski, D.; Bielańska-Grajner, I.; Lewin, I. Effect of Underground Salty Mine Water on the Rotifer Communities in the Bolina River (Upper Silesia, Southern Poland). Knowl. Manag. Aquat. Ecosyst. 2019, 420, 31. [Google Scholar] [CrossRef] [Green Version]
- Halabowski, D.; Bielańska-Grajner, I.; Lewin, I.; Sowa, A. Diversity of Rotifers in Small Rivers Affected by Human Activity. Diversity 2022, 14, 127. [Google Scholar] [CrossRef]
- Halabowski, D.; Lewin, I. Impact of Anthropogenic Transformations on the Vegetation of Selected Abiotic Types of Rivers in Two Ecoregions (Southern Poland). Knowl. Manag. Aquat. Ecosyst. 2020, 421, 35. [Google Scholar] [CrossRef]
- Bąk, M.; Halabowski, D.; Kryk, A.; Lewin, I.; Sowa, A. Mining Salinisation of Rivers: Its Impact on Diatom (Bacillariophyta) Assemblages. Fottea 2020, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Halabowski, D.; Bak, M.; Lewin, I. Distribution and Ecology of Two Interesting Diatom Species Navicula Flandriae Van de Vijver et Mertens and Planothidium Nanum Bak, Kryk et Halabowski in Rivers of Southern Poland and Their Spring Areas. Oceanol. Hydrobiol. Stud. 2021, 50, 137–149. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Utz, R.M.; Haq, S.; Gorman, J.; Grese, M. Freshwater Salinization Syndrome on a Continental Scale. Proc. Natl. Acad. Sci. USA 2018, 115, E574–E583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowa, A.; Tończyk, G.; Halabowski, D.; Krodkiewska, M. First Record of Sigara Assimilis (Fieber, 1848) (Hemiptera: Heteroptera: Corixidae) in Poland. Oceanol. Hydrobiol. Stud. 2018, 47, 211–217. [Google Scholar] [CrossRef]
- Sousa, R.; Halabowski, D.; Labecka, A.M.; Douda, K.; Aksenova, O.; Bespalaya, Y.; Bolotov, I.; Geist, J.; Jones, H.A.; Konopleva, E.; et al. The Role of Anthropogenic Habitats in Freshwater Mussel Conservation. Glob. Chang. Biol. 2021, 27, 2298–2314. [Google Scholar] [CrossRef] [PubMed]
- Piscart, C.; Lecerf, A.; Usseglio-Polatera, P.; Moreteau, J.C.; Beisel, J.N. Biodiversity Patterns along a Salinity Gradient: The Case of Net-Spinning Caddisflies. Biodivers. Conserv. 2005, 14, 2235–2249. [Google Scholar] [CrossRef]
- Zadereev, E.; Lipka, O.; Karimov, B.; Krylenko, M.; Elias, V.; Pinto, I.S.; Alizade, V.; Anker, Y.; Feest, A.; Kuznetsova, D.; et al. Overview of Past, Current, and Future Ecosystem and Biodiversity Trends of Inland Saline Lakes of Europe and Central Asia. Inl. Waters 2020, 10, 438–452. [Google Scholar] [CrossRef]
- Lioy, P.J.; Smith, K.R. A Discussion of Exposure Science in the 21st Century: A Vision and a Strategy. Environ. Health Perspect. 2013, 121, 405–409. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźnica, A.; Absalon, D.; Matysik, M.; Bąk, M.; Cieplok, A.; Halabowski, D.; Koczorowska, A.; Krodkiewska, M.; Libera, M.; Sierka, E.; et al. Analysis of the Salinity of the Vistula River Based on Patrol Monitoring and State Environmental Monitoring. Water 2023, 15, 838. https://doi.org/10.3390/w15050838
Woźnica A, Absalon D, Matysik M, Bąk M, Cieplok A, Halabowski D, Koczorowska A, Krodkiewska M, Libera M, Sierka E, et al. Analysis of the Salinity of the Vistula River Based on Patrol Monitoring and State Environmental Monitoring. Water. 2023; 15(5):838. https://doi.org/10.3390/w15050838
Chicago/Turabian StyleWoźnica, Andrzej, Damian Absalon, Magdalena Matysik, Małgorzata Bąk, Anna Cieplok, Dariusz Halabowski, Adrianna Koczorowska, Mariola Krodkiewska, Marcin Libera, Edyta Sierka, and et al. 2023. "Analysis of the Salinity of the Vistula River Based on Patrol Monitoring and State Environmental Monitoring" Water 15, no. 5: 838. https://doi.org/10.3390/w15050838