Combining Full-Scale Ozonation and Biological Activated Carbon Filtration (O3-BAC) with Pilot-Scale Nanofiltration (NF) to Control Disinfection By-Product Formation for Treatment of Taihu Lake Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Operating Mode and Conditions
2.1.1. Full-Scale Processes at the Drinking Water Treatment Plant (DWTP)
2.1.2. Pilot-Scale Nanofiltration (NF) Process
2.2. Disinfection By-Product Formation Potential (DBPFP) Analysis
2.3. Other Analytical Assays
2.4. Data Analysis
3. Results and Discussion
3.1. Water Quality Parameters
3.1.1. Basic Parameters (Turbidity, Conductivity, TDS, and TH)
3.1.2. NOM Characterized by CODMn, DOC, UV254, SUVA, and EEM
3.1.3. Bromide (Br−) and Bromate (BrO3−)
3.2. DBPFP
3.2.1. Profile and Variation of DBPFP during Treatment Processes
3.2.2. Correlation of DBPFP with Water Characteristics: Factors Driving Elevation of Br-THMFP Induced by O3-BAC
3.3. Membrane Fouling Analysis
3.3.1. TMP Variation over Operational Time
3.3.2. Characterization of Membrane Cleaning Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, W.; Yu, H.-Q. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. Water Res. 2021, 190, 116759. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, Y.; Gui, B.; Gao, K.; Zhao, Q.; Qu, R.; Liu, T.; Hoffmann, M.; Staaks, C.; Dong, B. Application of coagulation-ultrafiltration-nanofiltration in a pilot study for Tai Lake water treatment. Water Environ. Res. 2019, 92, 579–5877. [Google Scholar] [CrossRef] [PubMed]
- Kurajica, L.; Bošnjak, M.U.; Kinsela, A.S.; Štiglić, J.; Waite, T.D.; Capak, K.; Pavlić, Z. Effects of changing supply water quality on drinking water distribution networks: Changes in NOM optical properties, disinfection byproduct formation, and Mn deposition and release. Sci. Total Environ. 2021, 762, 144159. [Google Scholar] [CrossRef] [PubMed]
- Slavik, I.; Müller, S.; Mokosch, R.; Azongbilla, J.A.; Uhl, W. Impact of shear stress and pH changes on floc size and removal of dissolved organic matter (DOM). Water Res. 2012, 46, 6543–6553. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Graham, N.; Tang, Y.; Siddique, M.S.; Kimura, K.; Yu, W. The role of medium molecular weight organics on reducing disinfection by-products and fouling prevention in nanofiltration. Water Res. 2022, 215, 118263. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, Y.; Hu, Y.; Hanigan, D.; Westerhoff, P.; An, D. Formation and control of C-and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment. Water Res. 2021, 194, 116964. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Patel, N.; Chaudhary, V.K. Disinfection by-products in drinking water: Occurrence, toxicity and abatement. Environ. Pollut. 2020, 267, 115474. [Google Scholar] [CrossRef]
- Geter, D.R.; Moore, T.M.; George, M.H.; Kilburn, S.R.; Allen, J.W.; Nelson, G.M.; Winkfield, E.; DeAngelo, A.B. Tribromomethane exposure and dietary folate deficiency in the formation of aberrant crypt foci in the colons of F344/N rats. Food Chem. Toxicol. 2005, 43, 1405–1412. [Google Scholar] [CrossRef]
- Bond, T.; Goslan, E.H.; Parsons, S.A.; Jefferson, B. Disinfection by-product formation of natural organic matter surrogates and treatment by coagulation, MIEX® and nanofiltration. Water Res. 2010, 44, 1645–1653. [Google Scholar] [CrossRef]
- GB 5749-2022; Standards for Drinking Water Quality. State Administration for Market Regulation & Standardization Administration: Beijing, China, 2022. Available online: https://mp.weixin.qq.com/s/UEEK6d1g97Jye4Ct6XEfKw (accessed on 1 October 2022)In Chinese.
- Zhang, Y.; Lu, Z.; Zhang, Z.; Shi, B.; Hu, C.; Lyu, L.; Zuo, P.; Metz, J.; Wang, H. Heterogeneous Fenton-like reaction followed by GAC filtration improved removal efficiency of NOM and DBPs without adjusting pH. Sep. Purif. Technol. 2020, 260, 118234. [Google Scholar] [CrossRef]
- Bond, T.; Huang, J.; Templeton, M.R.; Graham, N. Occurrence and control of nitrogenous disinfection by-products in drinking water—A review. Water Res. 2011, 45, 4341–4354. [Google Scholar] [CrossRef]
- Chen, H.; Lin, T.; Chen, W.; Tao, H.; Xu, H. Removal of disinfection byproduct precursors and reduction in additive toxicity of chlorinated and chloraminated waters by ozonation and up-flow biological activated carbon process. Chemosphere 2018, 216, 624–632. [Google Scholar] [CrossRef]
- Chu, W.; Gao, N.; Yin, D.; Deng, Y.; Templeton, M.R. Ozone–biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products. Chemosphere 2012, 86, 1087–1091. [Google Scholar] [CrossRef]
- Sun, Y.; Angelotti, B.; Brooks, M.; Dowbiggin, B.; Evans, P.J.; Devins, B.; Wang, Z.W. A pilot-scale investigation of disinfection by-product precursors and trace organic removal mechanisms in ozone-biologically activated carbon treatment for potable reuse. Chemosphere 2018, 210, 539–549. [Google Scholar] [CrossRef]
- Li, P.; Wu, C.; Yang, Y.; Wang, Y.; Yu, S.; Xia, S.; Chu, W. Effects of microbubble ozonation on the formation of disinfection by-products in bromide-containing water from Tai Lake. Sep. Purif. Technol. 2018, 193, 408–414. [Google Scholar] [CrossRef]
- Wei, X.; Yang, M.; Zhu, Q.; Wagner, E.D.; Plewa, M.J. Comparative quantitative toxicology and QSAR modeling of the haloacetonitriles: Forcing agents of water disinfection byproduct toxicity. Environ. Sci. Technol. 2020, 54, 8909–8918. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, X.; Fang, Y.; Fu, C.; Chen, Z. Trade-off control of organic matter and disinfection by-products in the drinking water treatment chain: Role of pre-ozonation. Sci. Total Environ. 2021, 770, 144767. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, X.; Chen, R.; Pan, L.; Shi, B. Control of disinfection byproducts in drinking water treatment plants: Insight into activated carbon filter. Chemosphere 2021, 280, 130958. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Tang, X.C.; Wu, N.X.; Chen, H.B. Leakage of soluble microbial products from biological activated carbon filtration in drinking water treatment plants and its influence on health risks. Chemosphere 2018, 202, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Siddique, M.S.; Xiong, X.; Yang, H.; Maqbool, T.; Graham, N.; Yu, W. Dynamic variations in DOM and DBPs formation potential during surface water treatment by ozonation-nanofiltration: Using spectroscopic indices approach. Chem. Eng. J. 2021, 427, 132010. [Google Scholar] [CrossRef]
- Ersan, M.S.; Ladner, D.A.; Karanfil, T. The control of N-nitrosodimethylamine, halonitromethane, and trihalomethane precursors by nanofiltration. Water Res. 2016, 105, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Yu, M.J. Characterization of NOM in the Han River and evaluation of treatability using UF–NF membrane. Environ. Res. 2005, 97, 116–123. [Google Scholar] [PubMed]
- Wang, P.; Wang, F.; Jiang, H.; Zhang, Y.; Zhao, M.; Xiong, R.; Ma, J. Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. Water Res. 2020, 175, 115649. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Liu, T.; Crawshaw, J.; Liu, T.; Graham, N. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH. Water Res. 2018, 139, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Bai, L.; Xu, D.; Zhang,, H.; Guo, T.; Li, G.; Liang, H. Effects of oxidation on humic-acid-enhanced gypsum scaling in different nanofiltration phases: Performance, mechanisms and prediction by differential log-transformed absorbance spectroscopy. Water Res. 2021, 195, 116989. [Google Scholar] [CrossRef] [PubMed]
- Krzeminski, P.; Vogelsang, C.; Meyn, T.; Köhler, S.J.; Poutanen, H.; Wit, H.D.; Uhl, W. Natural organic matter fractions and their removal in full-scale drinking water treatment under cold climate conditions in nordic capitals. J. Environ. Manag. 2019, 241, 427–438. [Google Scholar] [CrossRef] [PubMed]
- De la Rubia, A.; Rodríguez, M.; León, V.M.; Prats, D. Removal of natural organic matter and THM formation potential by ultra-and nanofiltration of surface water. Water Res. 2008, 42, 714–722. [Google Scholar] [CrossRef]
- Imbrogno, A.; Tiraferri, A.; Abbenante, S.; Weyand, S.; Schwaiger, R.; Luxbacher, T.; Schäfer, A.I. Organic fouling control through magnetic ion exchange-nanofiltration (MIEX-NF) in water treatment. J. Membr. Sci. 2018, 549, 474–485. [Google Scholar] [CrossRef]
- Zulaikha, S.; Lau, W.J.; Ismail, A.F.; Jaafar, J. Treatment of restaurant wastewater using ultrafiltration and nanofiltration membranes. J. Water Process. Eng. 2014, 2, 58–62. [Google Scholar] [CrossRef]
- Xue, S.; Jin, W.; Zhang, Z.; Liu, H. Reductions of dissolved organic matter and disinfection by-product precursors in full-scale wastewater treatment plants in winter. Chemosphere 2017, 179, 395–404. [Google Scholar] [CrossRef]
- Watson, K.; Farré, M.J.; Leusch, F.D.; Knight, N. Using fluorescence-parallel factor analysis for assessing disinfection by-product formation and natural organic matter removal efficiency in secondary treated synthetic drinking waters. Sci. Total Environ. 2018, 640, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Chen, Y.; Gui, B.; Guo, X.; Zhang, J. Pilot study on the treatment of lake water with algae by ultrafiltration–ozone–biologically activated carbon. J. Water Supply Res. Technol. 2021, 70, 1192–1203. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection. Water Quality-Determination of Haloacetic Acids-Gas Chromatography; HJ758-2015; Ministry of Environmental Protection: Beijing, China, 2015. Available online: http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201510/W020151030565342332739.pdf (accessed on 1 October 2022). (In Chinese)
- GB/T 5750.7-2006; Standard Examination Methods for Drinking Water—Aggregate Organic Parameters. Ministry of Health of the People’s Republic of China & Standardization Administration: Beijing, China, 2007. Available online: http://down.foodmate.net/standard/yulan.php?itemid=11213 (accessed on 1 October 2022). (In Chinese)
- GB/T 5750.4-2006; Standard Examination Methods for Drinking Water—Organoleptic and Physical Parameters. Ministry of Health of the People’s Republic of China & Standardization Administration: Beijing, China, 2007. Available online: http://down.foodmate.net/standard/yulan.php?itemid=11182 (accessed on 1 October 2022). (In Chinese)
- Xu, D.; Bai, L.; Tang, X.; Niu, D.; Luo, X.; Zhu, X.; Li, G.; Liang, H. A comparison study of sand filtration and ultrafiltration in drinking water treatment: Removal of organic foulants and disinfection by-product formation. Sci. Total Environ. 2019, 691, 322–331. [Google Scholar] [CrossRef]
- Xu, X.; Kang, J.; Shen, J.; Zhao, S.; Wang, B.; Zhang, X.; Chen, Z. EEM–PARAFAC characterization of dissolved organic matter and its relationship with disinfection by-products formation potential in drinking water sources of northeastern China. Sci. Total Environ. 2021, 774, 145297. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, N.; Matsushige, K.; Komatsu, K.; Kohzu, A.; Nara, F.W.; Ogishi, F.; Yahata, M.; Mikami, H.; Goto, T.; Imai, A. Fast and precise method for HPLC–size exclusion chromatography with UV and TOC (NDIR) detection: Importance of multiple detectors to evaluate the characteristics of dissolved organic matter. Water Res. 2011, 45, 6240–6248. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, T.; Chu, H.; Zhang, W.; Huang, W.; Dong, B.; Wu, D.; Chen, F. Natural organic matter separation by forward osmosis: Performance and mechanisms. Water Res. 2021, 191, 116829. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. parafac. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef] [Green Version]
- Suzhou Water Bureau. Limit Value of Drinking Water Quality Indicators in Suzhou; Suzhou Water Bureau: Suzhou, China, 2021; Available online:https://www.cuwa.org.cn/Uploads/file/20210926/20210926104156_41592.pdf (accessed on 1 October 2022). (In Chinese)
- US EPA. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 1 October 2022).
- Ma, Y.; Mao, R.; Li, S. Hydrological seasonality largely contributes to riverine dissolved organic matter chemical composition: Insights from EEM-PARAFAC and optical indicators. J. Hydrol. 2021, 595, 125993. [Google Scholar] [CrossRef]
- Yang, L.; Chen, W.; Zhuang, W.E.; Cheng, Q.; Li, W.; Wang, H.; Guo, W.; Chen, C.T.A.; Liu, M. Characterization and bioavailability of rainwater dissolved organic matter at the southeast coast of China using absorption spectroscopy and fluorescence EEM-PARAFAC. Estuar. Coast. Shelf Sci. 2018, 217, 45–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 2013, 55, 26–37. [Google Scholar] [CrossRef]
- Lapierre, J.F.; Frenette, J.J. Effects of macrophytes and terrestrial inputs on fluorescent dissolved organic matter in a large river system. Aquat. Sci. 2009, 71, 15–24. [Google Scholar] [CrossRef]
- Msssivotte, P.; Frenette, J. Spatial connectivity in a large river system: Resolving the sources and fate of dissolved organic matter. Ecol. Appl. 2011, 21, 2600–2617. [Google Scholar]
- Shen, J.; Liu, C.; Lv, Q.; Gu, J.; Su, M.; Wang, S.; Chai, Y.; Cheng, C.; Wu, J. Novel insights into impacts of the COVID-19 pandemic on aquatic environment of Beijing-Hangzhou Grand Canal in southern Jiangsu region. Water Res. 2021, 193, 116873. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jeppesen, E.; Zhang, Y.; Shi, K.; Liu, X.; Zhu, G. Dissolved organic matter fluorescence at wavelength 275/342nm as a key indicator for detection of point-source contamination in a large chinese drinking water lake. Chemosphere 2016, 144, 503–509. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Hur, J. Conservative behavior of fluorescence eem-parafac components in resin fractionation processes and its applicability for characterizing dissolved organic matter. Water Res. 2015, 83, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Baghoth, S.A.; Sharma, S.K.; Amy, G.L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation–emission matrices and PARAFAC. Water Res. 2011, 45, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Stedmon, C.A.; Markager, S. Resolving the variability of dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 2005, 50, 686–697. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, K.; Zhang, Y.; Jeppesen, E.; Liu, X.; Zhou, Q.; Wu, H.; Tang, X.; Zhu, G. Fluorescence peak integration ratio IC:IT as a new potential indicator tracing the compositional changes in chromophoric dissolved organic matter. Sci. Total Environ. 2017, 574, 1588–1598. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Q.; Zhang, Y.; Qin, B.; Zhu, G. Excitation-emission matrix fluorescence and parallel factor analyses of the effects of N and P nutrients on the extracellular polymeric substances of microcystis aeruginosa. Limnologica 2017, 63, 18–26. [Google Scholar] [CrossRef]
- Devesa, R.; Dietrich, A.M. Guidance for optimizing drinking water taste by adjusting mineralization as measured by total dissolved solids (TDS). Desalination 2018, 439, 147–154. [Google Scholar] [CrossRef]
- Crider, Y.; Sultana, S.; Unicomb, L.; Davis, J.; Luby, S.P.; Pickering, A.J. Can you taste it? Taste detection and acceptability thresholds for chlorine residual in drinking water in Dhaka, Bangladesh. Sci. Total Environ. 2018, 613, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Liang, H.; Li, G. Factors affecting the removal of bromate and bromide in water by nanofiltration. Environ. Sci. Pollut. Res. 2019, 27, 24639–24649. [Google Scholar] [CrossRef] [PubMed]
- GB 50013-2018Standard for Design of Outdoor Water Supply Engineering; Ministry of Housing and Urban-Rural Development of the People’s Republic of China & State Administration for Market Regulation: Beijing, China, 2019. Available online: https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201908/20190828_241590.html (accessed on 1 October 2022). (In Chinese)
- Park, K.Y.; Yu, Y.J.; Yun, S.J.; Kweon, J.H. Natural organic matter removal from algal-rich water and disinfection by-products formation potential reduction by powdered activated carbon adsorption. J. Environ. Manag. 2019, 235, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Young, T.R.; Deem, S.; Leslie, J.C.; Salo-Zieman, V.; He, H.; Dodd, M.C. Drivers of disinfection byproduct formation and speciation in small, chlorinated coastal groundwater systems: Relative roles of bromide and organic matter, and the need for improved source water characterization and monitoring. Environ. Sci. Water Res. Technol. 2020, 6, 3361–3379. [Google Scholar] [CrossRef]
- Chaukura, N.; Marais, S.S.; Moyo, W.; Mbali, N.; Thakalekoala, L.C.; Ingwani, T.; Mamba, B.B.; Jarvis, P.; Nkambule, T.T. Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water—A review. J. Environ. Chem. Eng. 2020, 8, 103659. [Google Scholar] [CrossRef]
- Arnold, M.; Batista, J.; Dickenson, E.; Gerrity, D. Use of ozone-biofiltration for bulk organic removal and disinfection byproduct mitigation in potable reuse applications. Chemosphere 2018, 202, 228–237. [Google Scholar] [CrossRef]
- Wert, E.C.; Rosario-Ortiz, F.L. Effect of Ozonation on Trihalomethane and Haloacetic Acid Formation and Speciation in a Full-Scale Distribution System. Ozone Sci. Eng. 2011, 33, 14–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, W.; Yao, D.; Yin, D. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity. J. Environ. Sci. 2017, 58, 322–330. [Google Scholar] [CrossRef]
- MacKeown, H.; Gyamfi, J.A.; Schoutteten, K.V.K.M.; Dumoulin, D.; Verdickt, L.; Ouddane, B.; Criquet, J. Formation and removal of disinfection by-products in a full scale drinking water treatment plant. Sci. Total Environ. 2020, 704, 135280. [Google Scholar] [CrossRef]
- Krasner, S.W.; Lee, T.C.F.; Westerhoff, P.; Fischer, N.; Hanigan, D.; Karanfil, T.; Beita-Sandí, W.; Taylor-Edmonds, L.; Andrews, R.C. Granular activated carbon treatment may result in higher predicted genotoxicity in the presence of bromide. Environ. Sci. Technol. 2016, 50, 9583–9591. [Google Scholar] [CrossRef]
- Williams, C.J.; Conrad, D.; Kothawala, D.N.; Baulch, H.M. Selective removal of dissolved organic matter affects the production and speciation of disinfection byproducts. Sci. Total Environ. 2019, 652, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wang, D.; Ma, X.; Ni, J.; Zhang, H. THMs precursor removal by an integrated process of ozonation and biological granular activated carbon for typical Northern China water. Sep. Purif. Technol. 2010, 72, 263–268. [Google Scholar] [CrossRef]
- Chu, W.; Li, C.; Gao, N.; Templeton, M.R.; Zhang, Y. Terminating pre-ozonation prior to biological activated carbon filtration results in increased formation of nitrogenous disinfection by-products upon subsequent chlorination. Chemosphere 2015, 121, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Yan, H.; Zhang, F.; Xue, N.; Wang, Y.; Chu, Y.; Gao, B. Trihalomethanes (THMs) precursor fractions removal by coagulation and adsorption for bio-treated municipal wastewater: Molecular weight, hydrophobicity/hydrophily and fluorescence. J. Hazard. Mater. 2015, 297, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Hua, G.; Reckhow, D.A. Evaluation of bromine substitution factors of DBPs during chlorination and chloramination. Water Res. 2012, 46, 4208–4216. [Google Scholar] [CrossRef] [PubMed]
- Golea, D.M.; Upton, A.; Jarvis, P.; Moore, G.; Sutherland, S.; Parsons, S.A.; Judd, S.J. THM and HAA formation from NOM in raw and treated surface waters. Water Res. 2017, 112, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ju, L.; Xu, F.; Tian, L.; Jia, R.; Song, W.; Li, Y.; Liu, B. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water. Environ. Res. 2019, 182, 109063. [Google Scholar] [CrossRef]
- Cui, L.; Goodwin, C.; Gao, W.; Liao, B. Effect of cold water temperature on membrane structure and properties. J. Membr. Sci. 2017, 540, 19–26. [Google Scholar] [CrossRef]
- Tikka, A.; Gao, W.; Liao, B. Reversibility of membrane performance and structure changes caused by extreme cold water temperature and elevated conditioning water temperature. Water Res. 2018, 151, 260–270. [Google Scholar] [CrossRef]
- Su, Z.; Liu, T.; Li, X.; Graham, N.; Yu, W. Beneficial impacts of natural biopolymers during surface water purification by membrane nanofiltration. Water Res. 2021, 201, 117330. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yuan, R.; Chen, H.; Wang, F.; Zhou, B. Effect of sulfonamides on the dissolved organic matter fluorescence in biogas slurry during anaerobic fermentation according to the PARAFAC analysis. Process. Saf. Environ. Prot. 2020, 144, 253–262. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Peng, Y.; Zhang, Y.; Sun, Q. Characteristics and significance of dissolved organic matter in river sediments of extremely water-deficient basins: A Beiyun River case study. J. Clean. Prod. 2020, 277, 123063. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Y.; Kong, F.; Zhang, J.; Xi, M. Source, structural characteristics and ecological indication of dissolved organic matter extracted from sediments in the primary tributaries of the Dagu River. Ecol. Indic. 2019, 109, 105776. [Google Scholar] [CrossRef]
- He, Q.; Xiao, Q.; Fan, J.; Zhao, H.; Cao, M.; Zhang, C.; Jiang, Y. Excitation-emission matrix fluorescence spectra of chromophoric dissolved organic matter reflected the composition and origination of dissolved organic carbon in Lijiang River, Southwest China. J. Hydrol. 2021, 598, 126240. [Google Scholar] [CrossRef]
- DuPont Water Solutions. FilmTec™NF90-4040. Available online: https://www.dupont.com/products/filmtecnf904040.html (accessed on 1 October 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; He, H.; Li, T.; Chen, Y.; Dong, B. Combining Full-Scale Ozonation and Biological Activated Carbon Filtration (O3-BAC) with Pilot-Scale Nanofiltration (NF) to Control Disinfection By-Product Formation for Treatment of Taihu Lake Water. Water 2023, 15, 843. https://doi.org/10.3390/w15050843
Xu P, He H, Li T, Chen Y, Dong B. Combining Full-Scale Ozonation and Biological Activated Carbon Filtration (O3-BAC) with Pilot-Scale Nanofiltration (NF) to Control Disinfection By-Product Formation for Treatment of Taihu Lake Water. Water. 2023; 15(5):843. https://doi.org/10.3390/w15050843
Chicago/Turabian StyleXu, Pengcheng, Huan He, Tian Li, Yan Chen, and Bingzhi Dong. 2023. "Combining Full-Scale Ozonation and Biological Activated Carbon Filtration (O3-BAC) with Pilot-Scale Nanofiltration (NF) to Control Disinfection By-Product Formation for Treatment of Taihu Lake Water" Water 15, no. 5: 843. https://doi.org/10.3390/w15050843
APA StyleXu, P., He, H., Li, T., Chen, Y., & Dong, B. (2023). Combining Full-Scale Ozonation and Biological Activated Carbon Filtration (O3-BAC) with Pilot-Scale Nanofiltration (NF) to Control Disinfection By-Product Formation for Treatment of Taihu Lake Water. Water, 15(5), 843. https://doi.org/10.3390/w15050843