Water Quality Modeling in Headwater Catchments: Comprehensive Data Assessment, Model Development and Simulation of Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Case Study
2.2. Stage 1: Information Analysis
2.2.1. Collection of Information
2.2.2. Definition of Sites with Similar Water Quality
2.2.3. Definition of Relevant Water Quality Constituents
2.2.4. Spatiotemporal Distribution of Water Quality
2.2.5. Analysis of Data Quality, Consistency, and Validity
2.3. Stage 2: Development of a Water Quality Model
2.3.1. Model Selection
2.3.2. Characterization of River Hydraulics and Solute Transport
2.3.3. Model Implementation, Calibration, and Verification
2.4. Stage 3: Simulation of Scenarios
2.4.1. Identification of Potential Conflicts
2.4.2. Simulation of the Critical Scenario
2.4.3. Simulation of Alternative Scenarios
3. Results and Discussion
3.1. Stage 1: Information Analysis
3.1.1. Collection of Information
3.1.2. Definition of Sites with Similar Water Quality
3.1.3. Definition of Relevant Water Quality Constituents
3.1.4. Spatiotemporal Distribution of Water Quality
3.1.5. Analysis of Data Quality, Consistency, and Validity
3.2. Stage 2: Development of a Water Quality Model
3.2.1. Model Selection
3.2.2. Characterization of River Hydraulics and Solute Transport
3.2.3. Model Implementation, Calibration, and Verification
3.3. Stage 3: Simulation of Scenarios
3.3.1. Identification of Potential Conflicts
3.3.2. Simulation of Critical Scenario
3.3.3. Simulation of Alternative Scenarios
4. Conclusions
4.1. Information Analysis
4.2. Development of a Water Quality Model
4.3. Simulation of Scenarios
4.4. Suggestions for Further Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sub-Basin | Long, Lat [Dec. Degrees] | Elevation [MAMSL] | Stream | Description | Source |
---|---|---|---|---|---|
S1 | −73.70, 5.33 | 2559.2 | Lenguazaque River | Downstream S2 Confluence | Primary |
−73.70, 5.33 | 2559.2 | Mine Drainage | Pipe downstream S1-1 | Primary | |
−73.71, 5.34 | 2551.4 | Lenguazaque River | Downstream Coking Plant | Primary | |
−73.76, 5.32 | 2544.9 | Lenguazaque River | Basin Outlet | Primary and Secondary | |
S2 | −73.65, 5.38 | 3036.8 | Mojica Creek | Near Paramo | Primary |
−73.67, 5.36 | 2801.0 | Mojica Creek | Between S2-1 and S2-3 | Primary | |
−73.69, 5.34 | 2569.5 | Mojica Creek | Upstream S2-4 Confluence | Primary | |
−73.69, 5.33 | 2566.9 | Hondura Creek | Upstream S2-3 Confluence | Primary | |
−73.69, 5.33 | 2566.7 | Mojica Creek | S2-3 and S2-4 Confluence | Primary | |
−73.70, 5.33 | 2559.7 | Mojica Creek | Upstream S3 Confluence | Primary and Secondary | |
−73.63, 5.36 | 3277.0 | Mine Drainage | Pablo Gonzalez Mine | Secondary | |
−73.64, 5.36 | 3218.0 | Unnamed Creek | Upstream Corales Mine | Secondary | |
−73.64, 5.36 | 3225.0 | Mine Drainage | Corales Mine | Secondary | |
−73.64, 5.36 | 3214.0 | Unnamed Creek | Downstream Corales Mine | Secondary | |
−73.68, 5.32 | 2715.0 | Baloncitos Creek | Upstream Chorrera | Secondary | |
−73.68, 5.32 | 2700.0 | Chorrera Creek | Receives Mine Drainage | Secondary | |
−73.68, 5.32 | 2696.0 | Baloncitos Creek | Downstream Chorrera | Secondary | |
S3 | −73.71, 5.30 | 2570.0 | Lenguazaque River | Tapias Monitoring Station | Secondary |
−73.71, 5.31 | 2564.7 | Domestic Wastewater | Lenguazaque Discharge | Secondary | |
−73.70, 5.33 | 2559.3 | Lenguazaque River | Upstream S2 Confluence | Primary | |
S4 | −73.66, 5.28 | 2847.0 | Mine Drainage | San Sebastian Mine | Secondary |
−73.66, 5.28 | 2818.0 | Mine Drainage | San Jose Mine | Secondary | |
−73.66, 5.27 | 2820.0 | Palizada Creek | Upstream Mine Drainage | Secondary | |
−73.66, 5.27 | 2819.0 | Palizada Creek | Downstream Mine Drainage | Secondary | |
−73.69, 5.27 | 2774.0 | Mine Drainage | Chuscal Mine | Secondary | |
S5 | −73.73, 5.22 | 2784.0 | Mine Drainage | Unknown Mine | Primary |
References
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Chapra, S.C. Advances in River Water Quality Modelling and Management: Where We Come from, Where We Are, and Where We’re Going? In New Trends in Urban Drainage Modelling. UDM 2018., 1st ed.; Green Energy and, Technology; Mannina, G., Ed.; Springer: Cham, Switzerland, 2019; pp. 295–301. [Google Scholar] [CrossRef]
- Chapra, S.C.; Camacho, L.A.; McBride, G.B. Impact of Global Warming on Dissolved Oxygen and BOD Assimilative Capacity of the World’s Rivers: Modeling Analysis. Water 2021, 13, 2048. [Google Scholar] [CrossRef]
- Messerli, B.; Viviroli, D.; Weingartner, R. Mountains of the World: Vulnerable Water Towers for the 21st Century. Ambio 2004, 13, 29–33. [Google Scholar] [CrossRef]
- Viviroli, D.; Durr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef] [Green Version]
- Wohl, E. The significance of small streams. Front. Earth Sci. 2017, 11, 447–456. [Google Scholar] [CrossRef]
- Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B. The role of headwater streams in downstream water quality. J. Am. Water Resour. Assoc. 2007, 43, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Beckman, N.D.; Wohl, E. Carbon storage in mountainous headwater streams: The role of old-growth forest and logjams. Water Resour. Res. 2014, 50, 2376–2393. [Google Scholar] [CrossRef]
- Wohl, E. Rivers in the Anthropocene: The U.S. perspective. Geomorphology 2018, 366, 106600. [Google Scholar] [CrossRef]
- Wohl, E. Human impacts to mountain streams. Geomorphology 2006, 79, 217–248. [Google Scholar] [CrossRef] [Green Version]
- Mankiewicz-Boczec, J.; Nalecz-Jawecki, G.; Drobniewska, A.; Kaza, M.; Sumorok, B.; Izydorczyk, K.; Zalewski, M.; Sawicki, J. Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicol. Environ. Saf. 2008, 71, 830–836. [Google Scholar] [CrossRef]
- Merlo, C.; Abril, A.; Ame, M.V.; Arguello, G.A.; Carreras, H.A.; Chiappero, M.S.; Hued, A.C.; Wannaz, E.; Galanti, L.N.; Monferran, M.V.; et al. Integral assessment of pollution in the Suquía River (Córdoba, Argentina) as a contribution to lotic ecosystem restoration programs. Sci. Total Environ. 2011, 409, 5034–5045. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, S.; Shi, Y.; Wang, C.; Li, B.; Li, Y.; Wu, S. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci. Total Environ. 2018, 615, 141–149. [Google Scholar] [CrossRef] [PubMed]
- González-Martínez, M.D.; Huguet, C.; Pearse, J.; McIntyre, N.; Camacho, L.A. Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia. Appl. Geochem. 2019, 108, 104382. [Google Scholar] [CrossRef]
- Kazi, T.G.; Arain, M.B.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Sarfraz, R.A.; Baig, J.A.; Shah, A.Q. Assessment of water quality polluted lake using multivariate statistical techniques: A case study. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef]
- Pinto, C.C.; Calazans, G.M.; Oliveira, S.C. Assessment of spatial variations in the surface water quality of the Velhas River Basin, Brazil, using multivariate statistical analysis and nonparametric statistics. Environ. Monit. Assess. 2019, 191, 164. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—A case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Güler, C.; Thyne, G.D.; McCray, J.E.; Turner, A.K. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Gatica, E.A.; Almeida, C.A.; Mallea, M.A.; Corigliano, M.C.; González, P. Water quality assessment, by statistical analysis, on rural and urban areas of Chocancharava River (Río Cuarto), Córdoba, Argentina. Environ. Monit. Assess. 2012, 184, 7257–7274. [Google Scholar] [CrossRef]
- Bertuzzo, E.; Hotchkiss, E.R.; Argerich, A.; Kominoski, J.S.; Oviedo-Vargas, D.; Savoy, P.; Scarlett, R.; von Schiller, D.; Heffernan, J.B. Respiration regimes in rivers: Partitioning source-specific respiration from metabolism time series. Limnol. Oceanogr. 2022, 67, 2374–2388. [Google Scholar] [CrossRef]
- Elshorbagy, A.; Teegavarapu, R.S.V.; Ormsbee, L. Total maximum daily load (TMDL) approach to surface water quality management: Concepts, issues, and applications. Can. J. Civ. Eng. 2005, 32, 442–448. [Google Scholar] [CrossRef]
- Hering, D.; Borja, A.; Carstensen, J.; Carvalho, L.; Elliot, M.; Feld, C.K.; Heiskanen, A.S.; Johnson, R.K.; Moe, J.; Pont, D.; et al. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci. Total Environ. 2010, 408, 4007–4019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.; Cho, S.; Park, M.J.; Kim, S. Determination of Standard Target Water Quality in the Nakdong River Basin for the Total Maximum Daily Load Management System in Korea. KSCE J. Civ. Eng. 2013, 17, 309–319. [Google Scholar] [CrossRef]
- Martin, J.L.; Borah, D.K.; Martinez-Guerra, E.; Perez-Gutierrez, J.D. TMDL Modeling Approaches, Model Surveys, and Advances; Watershed Management; ASCE: Reston, VA, USA, 2015; pp. 131–148. [Google Scholar] [CrossRef]
- McIntyre, N.; Angarita, M.; Fernandez, N.; Camacho, L.A.; Pearse, J.; Huguet, C.; Restrepo, O.J.; Ossa-Moreno, J. A Framework for Assessing the Impacts of Mining Development on Regional Water Resources in Colombia. Water 2018, 10, 268. [Google Scholar] [CrossRef] [Green Version]
- Japan Ministry of Environment. Guidance for Introducing the Total Pollutant Load Control System (TPLCS). 2011. Available online: https://www.env.go.jp/content/900453429.pdf (accessed on 3 November 2022).
- Uribe, N.; Corzo, G.; Quintero, M.; van Griensven, A.; Solomatine, D. Impact of conservation tillage on nitrogen and phosphorous runoff losses in a potato crop system in Fuquene watershed, Colombia. Agric. Water Manag. 2018, 209, 62–72. [Google Scholar] [CrossRef]
- Van Griensven, A.; Bawens, W. Integral water quality modelling of catchments. Water Sci. Technol. 2001, 43, 321–328. [Google Scholar] [CrossRef]
- Rodriguez-Jeangros, N.; Camacho, L.A.; Rodriguez, J.P.; McCray, J.E. Integrated Urban Water Resources Model to Improve Water Quality Management in Data-Limited Cities with Application to Bogota, Colombia. J. Sustain. Water Built Environ. 2018, 4, 04017019. [Google Scholar] [CrossRef]
- Holguin-Gonzalez, J.E.; Everaert, G.; Boets, P.; Galvis, A.; Goethals, P.L. Development and application of an integrated ecological modelling framework to analyze the impact of wastewater discharges on the ecological water quality of rivers. Environ. Model. Softw. 2013, 48, 27–36. [Google Scholar] [CrossRef]
- Knightes, C.D.; Ambrose Jr, R.B.; Avant, B.; Han, Y.; Acrey, B.; Bouchard, D.C.; Zepp, R.; Wool, T. Modeling framework for simulating concentrations of solute chemicals, nanoparticles, and solids in surface waters and sediments: WASP8 Advanced Toxicant Module. Environ. Model. Softw. 2019, 111, 444–458. [Google Scholar] [CrossRef]
- Lin, Y.; Larssen, T.; Vogt, R.D.; Feng, X.; Zhang, H. Modelling transport and transformation of mercury fractions in heavily contaminated mountain streams by coupling a GIS-based hydrological model with a mercury chemistry model. Sci. Total Environ. 2011, 409, 4596–4605. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.; Fonseca, A.; Vilar, V.J.; Boaventura, R.A.; Botelho, C.M. Water quality modelling of Lis River, Portugal. Environ. Sci. Pollut. Res. 2013, 20, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Knightes, C.D.; Bouchard, D.; Zepp, R.; Avant, B.; Hsieh, H.S.; Chang, X.; Acrey, B.; Henderson, W.M.; Spear, J. Simulating graphene oxide nanomaterial phototransformation and transport in surface water. Environ. Sci. Nano 2019, 6, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, N.; Camacho, L.A. Coupling hydrological and water quality models for assessing coal mining impacts on surface water resources. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019; Calvo, L., Ed.; IAHR: Madrid, Spain, 2019; pp. 5145–5154. [Google Scholar] [CrossRef]
- EAAB & UNAL. Modelación Dinámica de la Calidad del Agua del río Bogotá. 2008. Available online: http://orarbo.gov.co/apc-aa-files/57c59a889ca266ee6533c26niandesa/dinamica-de-calidad-del-agua-del-rio-bogota.pdf (accessed on 3 November 2022).
- Santos, T.F.; Camacho, L.A. An integrated Water Quality Model to Support Multiscale Decisions in a Highly Altered Catchment. Water 2022, 14, 374. [Google Scholar] [CrossRef]
- Duque-Mendez, N.D.; Orozco-Alzate, M.; Velez, J.J. Hydro-meteorological data análisis using OLAP techniques. DYNA 2014, 81, 160–167. [Google Scholar] [CrossRef]
- Rodriguez, E.; Sanchez, I.; Duque, N.; Arboleda, P.; Vega, C.; Zamora, D.; Lopez, P.; Kaune, A.; Werner, M.; Garcia, C.; et al. Combined use of Local and Global Hydro Meteorological Data with Hydrological Models for Water Resources Management in the Magdalena-Cauca Macro Basin—Colombia. Water Resour. Manag. 2020, 34, 2179–2199. [Google Scholar] [CrossRef]
- Hobson, A.J.; Neilson, B.T.; Stackelberg, N.; Shupryt, M.; Ostermiller, J.; Pelletier, G.; Chapra, S.C. Development of a Minimalistic Data Collection Strategy for QUAL2Kw. J. Water Resour. Plann. Manag. 2015, 141, 04014096. [Google Scholar] [CrossRef]
- Roa-García, M.C.; Brown, S.; Schreier, H.; Lavkulich, L.M. The role of land use and soils in regulating water flow in small headwater catchments of the Andes. Water Resour. Res. 2011, 47, W05510. [Google Scholar] [CrossRef]
- Harden, C.P. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 2006, 79, 249–263. [Google Scholar] [CrossRef]
- Buytaert, W.; De Bievre, B. Water for cities: The impact of climate change and demographic growth in the tropical Andes. Water Resour. Res. 2012, 48, W08503. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Davila, A.C. Propuesta Metodológica Para la Estimación y Análisis Del Impacto de Escenarios de Cambio Climático en la Calidad del Agua de Ríos Tropicales de Montaña. Caso de Estudio: Río Bogotá, Colombia. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2022. Available online: https://repositorio.uniandes.edu.co/handle/1992/54570 (accessed on 15 January 2023).
- Lees, M.J.; Camacho, L.A.; Chapra, S. On the relationship of transient storage and aggregated dead zone models of longitudinal solute transport in streams. Water Resour. Res. 2000, 36, 213–224. [Google Scholar] [CrossRef]
- Camacho, L.A.; Gonzalez, R.A. Calibration and predictive ability analysis of longitudinal solute transport models in mountain streams. Environ. Fluid Mech. 2008, 8, 597–604. [Google Scholar] [CrossRef]
- Pinilla-Agudelo, G.A.; Rodriguez-Sandoval, E.; Camacho, L.A. Preliminary Methodological Proposal for Estimating Environmental Flows in Projects Approved by the Ministry of Environment and Sustainable Development (MADS). Acta Biológica Colomb. 2013, 19, 43–60. [Google Scholar] [CrossRef]
- Cantor-Monroy, M.M. Solute Transport Modeling under Unsteady Flow Conditions in Channels with High Longitudinal Dispersion and Dead Zones. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2010. Available online: https://repositorio.unal.edu.co/handle/unal/70501 (accessed on 15 January 2023).
- Cañon-Zambrano, J.D. Determinación del Coeficiente de Degradación de Materia Orgánica Carbonacea en Ríos de Montaña. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2005. Available online: https://repositorio.uniandes.edu.co/handle/1992/9187 (accessed on 15 January 2023).
- Mateus-Garcia, S.I. Determinación de la Influencia de los Factores Hidrodinámicos y de Calidad del Agua en la Demanda Béntica de la Cuenca Alta del río Bogotá. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2011. Available online: https://repositorio.unal.edu.co/handle/unal/10235 (accessed on 15 January 2023).
- Robles-Perez, E.J. Estimación Experimental de Tasas de Nitrificación en Ríos de Montaña. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2005. Available online: https://repositorio.uniandes.edu.co/handle/1992/8997 (accessed on 15 January 2023).
- Rojas-Aguirre, A.F. Aplicación de Factores de Asimilación Para la Priorización de la Inversión en Sistemas de Saneamiento Hídrico en Colombia. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2011. Available online: https://repositorio.unal.edu.co/handle/unal/7652 (accessed on 15 January 2023).
- Navas, A. Factores de Asimilación de Carga Contaminante en ríos: Una Herramienta Para la Identificación de Estrategias de Saneamiento Hídrico en Países en Desarrollo. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2016. Available online: https://repositorio.uniandes.edu.co/handle/1992/13945 (accessed on 15 January 2023).
- Sandoval-Triana, L.C. Modelación del Transporte y Destino de Manganeso en Ríos: Caso de Estudio del río Bogotá. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2017. Available online: https://repositorio.uniandes.edu.co/handle/1992/13840 (accessed on 15 January 2023).
- Torres-Matallana, J.A. Estudio de los Procesos de Transporte y Decaimiento de Organismos Patógenos en Ríos de Montaña Colombianos. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2009. Available online: https://repositorio.unal.edu.co/handle/unal/59115 (accessed on 15 January 2023).
- Sanchez-Cardenas, N. Estimación del Coeficiente de Partición y Modelación de Organismos Indicadores de Patógenos en Ríos. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2017. Available online: https://repositorio.uniandes.edu.co/handle/1992/34317 (accessed on 15 January 2023).
- Medina, M.P. Propuesta Metodológica Para la Estimación de la Capacidad de Nitrificación de los Ríos de Montaña. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2009. [Google Scholar]
- Holguin-Gonzalez, J. Determinación de la Tasa de Reaireación en un río de Montaña Colombiano Mediante el uso de Trazadores. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2003. Available online: https://repositorio.uniandes.edu.co/handle/1992/9089 (accessed on 15 January 2023).
- Gelvez, R. Metodología Para Determinar la Tasa de Reaireación Por Medio de Trazadores Volátiles en dos ríos de Montaña Colombianos. In Proceedings of the XXIII Congreso Latinoamericano de Hidráulica, Cartagena, Colombia, 2–6 September 2008; Universidad Nacional de Colombia: Bogotá, Colombia, 2008. [Google Scholar]
- Flores, A.N.; Bledsoe, B.P.; Cuhaciyan, C.O.; Whol, E.E. Channel-reach morphology dependence on energy, scale, and hydroclimatic processes with implications for prediction using geospatial data. Water Resour. Res. 2006, 42, W06412. [Google Scholar] [CrossRef]
- Bogotá-A, R.G.; Groot, M.H.; Hooghiemstra, H.; Lourens, L.J.; Van der Linden, M.; Berrio, J.C. Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: Implications for a basin-wide biostratigraphic zonation for the last 284 ka. Quat. Sci. Rev. 2011, 30, 3321–3337. [Google Scholar] [CrossRef]
- Fernandez, N.; Camacho, L.A.; Nejadhashemi, A.P. Modeling Streamflow in Headwater Catchments: A Data-based Mechanistic Grounded Framework. J. Hydrol. Reg. Stud. 2022, 44, 101243. [Google Scholar] [CrossRef]
- CAR & Corpoboyaca. POMCA Río Alto Suarez: Documentos Técnicos. Available online: https://www.car.gov.co/vercontenido/86 (accessed on 3 November 2022).
- Vélez, M.I.; Hooghiemstra, H.; Metcalfe, S.; Martínez, I.; Mommersteeg, H. Pollen- and diatom based environmental history since the Last Glacial Maximum from the Andean core Fúquene-7, Colombia. J. Quat. Sci. 2003, 18, 17–30. [Google Scholar] [CrossRef]
- Cabrera, M.; Ramírez, W. Restauración Ecológica de los Páramos de Colombia: Transformación y Herramientas Para su Conservación; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2014; pp. 1–296. [Google Scholar] [CrossRef]
- Rubiano, J.; Quintero, M.; Estrada, R.D.; Moreno, A. Multiscale Analysis for Promoting Integrated Watershed Management. Water Int. 2006, 31, 398–411. [Google Scholar] [CrossRef]
- Valderrama, M.; Pinilla-Vargas, M.; Andrade, G.I.; Valderrama-Escallón, E.; Hernández, S. Lake Fuquene (Colombia). In The Wetland Book; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 773–783. [Google Scholar] [CrossRef]
- Martínez-Nieto, P.; García-Gómez, G.; Mora-Ortiz, L.; Robles-Camargo, G. Polluting macrophytes Colombian lake Fúquene used as substrate by edible fungus Pleurotus ostreatus. World J. Microbiol. Biotechnol. 2014, 30, 225–236. [Google Scholar] [CrossRef]
- Fernandez, N.; Camacho, L.A.; McIntyre, N. Impacto de Minería de Carbón en Corrientes Superficiales de Páramo. In Proceedings of the AGUA 2018 Agua, Justicia Ambiental y Paz, Cali, Colombia, 13–16 November 2018. [Google Scholar]
- Fernandez, N.; Camacho, L.A.; McIntyre, N.; Huguet, C.; Pearse, J. Propuesta Metodológica para Modelación del Impacto de la minería de Carbón en los Recursos Hídricos de Cuencas de Montaña. In Proceedings of the XXVIII Congreso Latinoamericano de Hidráulica, Buenos Aires, Argentina, 18–21 September 2018; Lecertua, E., Lopardo, M.C., Menendez, A., Spaletti, P., Eds.; pp. 1343–1351. [Google Scholar]
- Yague, J. Multitemporal Remote Sensing of the Outburst of Three Aquatic Weeds in the Fuquene Lagoon, Colombia. In Proceedings of the International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Biloxi, MS, USA, 16–18 May 2005. [Google Scholar] [CrossRef]
- Martínez-Nieto, P.; Bernal-Castillo, J.; Calixto-Díaz, M.; Basto-Riaño, M.A.; Chaparro-Rico, B. Biofertilizers and composting accelerators of polluting macrophytes of a Colombian lake. J. Soil Sci. Plant Nutr. 2011, 11, 47–61. [Google Scholar] [CrossRef]
- Agencia Nacional de Mineria. Visor Geográfico Anna Minería. Available online: https://annamineria.anm.gov.co/Html5Viewer/index.html?viewer=SIGMExt.sigm&locale=es-CO&appAcronym=sigm (accessed on 3 November 2022).
- SIAC. Catálogo de mapas: Complejos de páramos a escala 1:100.000. Available online: http://www.siac.gov.co/catalogo-de-mapas (accessed on 3 November 2022).
- NASA & METI: ASTER Global Digital Elevation Map. Available online: https://asterweb.jpl.nasa.gov/gdem.asp (accessed on 3 November 2022).
- IGAC: Datos Abiertos Cartografía y Geografía (1:10.000). Available online: https://geoportal.igac.gov.co/contenido/datos-abiertos-cartografia-y-geografia (accessed on 3 November 2022).
- Texas A&M & USDA. Soil and Water Assessment Tool SWAT+. Available online: https://swat.tamu.edu/software/plus/ (accessed on 3 November 2022).
- Camacho, L.A.; Díaz-Granados, M. Metodología Para la Obtención de un Modelo Predictivo de Transporte de Solutos y de Calidad Del Agua en ríos—Caso Río Bogotá. In Proceedings of the Seminario Internacional La Hidroinformática en la Gestión Integrada de los Recursos Hídricos, Cali, Colombia, 2003. Available online: https://www.researchgate.net/publication/268078930_Calibracion_de_modelos_de_transporte_de_solutos_Caso_rio_Bogota_-_Colombia (accessed on 3 November 2022).
- Baird, R.; Eaton, A.D.; Rice, E.W.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2018. [Google Scholar]
- Wilson Engineering & EPA. Water Resources Database 6.1. Available online: http://www.wrdb.com/ (accessed on 3 November 2022).
- USGS Load Estimator (LOADEST). Available online: https://pubs.usgs.gov/tm/2005/tm4A5/pdf/508final.pdf (accessed on 3 November 2022).
- Engel, B.; Storm, D.; White, M.; Arnold, J.; Arabi, M. A hydrologic/water quality model application protocol. J. Am. Water Resour. Assoc. 2007, 43, 1223–1236. [Google Scholar] [CrossRef]
- Shanahan, P.; Henze, M.; Koncsos, L.; Rauch, W.; Reichert, P.; SomlyoDy, L.; Vanrolleghem, P. River water quality modelling: II. problems of the art. Water Sci. Technol. 1998, 38, 245–252. [Google Scholar] [CrossRef]
- Pelletier, G.J.; Chapra, S.C.; Tao, H. Qual2kw—A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environ. Model. Softw. 2006, 21, 419–425. [Google Scholar] [CrossRef]
- Wool, T.; Ambrose Jr., R. B.; Martin, J.L.; Comer, A. WASP 8: The Next Generation in the 50-yearEvolution of USEPA’s Water Quality Model. Water 2020, 12, 1398. [Google Scholar] [CrossRef] [PubMed]
- USEPA Environmental Modeling Community of Practice: WASP8 Download. Available online: https://www.epa.gov/ceam/wasp8-download (accessed on 3 November 2022).
- Department of Ecology State of Washington: Models and tools for water quality improvement. Available online: https://ecology.wa.gov/Research-Data/Data-resources/Models-spreadsheets/Modeling-the-environment/Models-tools-for-TMDLs (accessed on 3 November 2022).
- Kannel, P.R.; Lee, S.; Lee, Y.S.; Kanel, S.R.; Pelletier, G.J. Application of automated QUAL2kw for water quality modeling and management in the Bagmati River, Nepal. Ecol. Model. 2007, 202, 503–517. [Google Scholar] [CrossRef]
- Jimenez, M.A.; Camacho, L.A.; Velez, J.I. Distributed Solute Transport Modeling Based on the Morphological Conceptualization of Drainage Networks. PhD Thesis. Chapter 5. Universidad Nacional de Colombia, 2015. Available online: https://repositorio.unal.edu.co/handle/unal/52172 (accessed on 15 January 2023).
- Thorne, C.R.; Zevenbergen, L.W. Estimating Mean Velocity in Mountain Rivers. J. Hydraul. Eng. 1985, 111, 612–624. [Google Scholar] [CrossRef]
- Manning, R. On the flow of water in open channels and pipes. Trans. Inst. Civ. Eng. Irel. 1891, 20, 161–207. [Google Scholar]
- Leopold, L.B.; Maddock, T., Jr. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications. In Geological Survey Professional Papers; U.S. Government Printing Office: Washington, DC, USA, 1953; Volume 252, 57p. [Google Scholar] [CrossRef] [Green Version]
- Vanegas, F.A. Una Aproximación a la Determinación de Relaciones Paramétricas de Transporte de Solutos en la Cuenca del río Teusacá. Master’s Thesis, Universidad de los Andes, Bogotá Colombia, 2019. Available online: https://repositorio.uniandes.edu.co/handle/1992/44281 (accessed on 15 January 2023).
- Taylor, G.I. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. A 1954, 223, 446–468. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hidrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Niño, C.A.; Camacho, L.A. Modelo de Transporte de Solutos V3.0. Master’s Thesis, Universidad de los Andes, Bogotá Colombia, 2004. [Google Scholar]
- Beer, T.; Young, P.C. Longitudinal Dispersion in Natural Streams. J. Environ. Eng. 1983, 109, 1049–1067. [Google Scholar] [CrossRef]
- Hernandez-Suarez, J.S.; Camacho, L.A. Revisiting the Relationship of Transient-Storage and Aggregated Dead Zone Models of Longitudinal Solute Transport in Streams. In Proceedings of the ICHE 2014, Hamburg, Germany, 28 September–2 October 2014; pp. 845–852. [Google Scholar]
- Daus, A.D.; Frind, E.O.; Sudicky, E.A. Comparative error analysis in finite element formulations of the advection-dispersion equation. Adv. Water Resour. 1985, 8, 86–95. [Google Scholar] [CrossRef]
- Cope, B.; Shaikh, T.; Parmar, R.; Chapra, S.; Martin, J. Literature Review on Nutrient Related Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling; U.S. Environmental Protection Agency: Washington, DC, USA, 2020; pp. 1–97. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=348267&Lab=CEMM (accessed on 3 November 2022).
- Arenas, G.A. Modelación de la calidad del agua en un río de montaña Colombiano (Quebrada la Lejía). Master’s Thesis, Universidad de los Andes, Bogotá Colombia, 2004. Available online: https://repositorio.uniandes.edu.co/handle/1992/21262 (accessed on 15 January 2023).
- Camacho, L.A.; Rodriguez, E.A.; Gonzalez, R.; Torres-Matallana, J.A.; Gelvez, R.; Medina, M.P. Metodología para la caracte-rización de la capacidad de autopurificación de ríos de montaña. In Proceedings of the I Congreso Internacional del agua y el ambiente, January, 2007. Available online: https://www.researchgate.net/publication/52009046_Metodologia_para_la_caracterizacion_de_la_capacidad_de_autopurificacion_de_rios_de_montana (accessed on 15 January 2023).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Charbonneau, P. Genetic Algorithms in Astronomy and Astrophysics. Astrophys. J. Suppl. 1955, 101, 309–334. [Google Scholar] [CrossRef]
- Martin, J.L.; McCutcheon, S.C. Measurement and Analysis of Flow. In Hydrodynamics and Transport for Water Quality Modeling; CRC Press: Boca Raton, FL, USA, 1999; Volume 3, pp. 93–198. [Google Scholar]
- Rodriguez Miranda, J.P.; Garcia Ubaque, C.A.; Pardo Pinzon, J. Selección de tecnologías para el tratamiento de aguas residuales municipales. Tecnura 2015, 19, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Solano, C.J. Estimación preliminar de cargas de nutrientes y sedimentos debido a cambios en el uso del suelo, considerando la implementación de un modelo SWAT—caso de estudio Rio Teusacá. Master’s Thesis, Universidad de los Andes, Bogotá, Colombia, 2016. Available online: https://repositorio.uniandes.edu.co/handle/1992/18184 (accessed on 15 January 2023).
- Gobierno de Colombia. Decreto 1594 de 1984. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=18617 (accessed on 3 November 2022).
Stages | Activities |
---|---|
Stage 1: Information Analysis | Collection of information |
Definition of sites with similar water quality | |
Definition of relevant water quality constituents | |
Spatiotemporal distribution of water quality | |
Analyses of data quality, consistency, and validity | |
Stage 2: Development of a water quality model | Model selection |
Characterization of river hydraulics and solute transport | |
Water quality model implementation, calibration, and verification | |
Stage 3: Simulation of scenarios | Identification of potential conflicts |
Simulation of critical scenario | |
Simulation of alternative water quality scenarios (e.g., sanitation, treatment infrastructure and climate change) |
Feature | Primary Data | Secondary Data | All Data |
---|---|---|---|
Surface water samples | Yes | Yes | Yes |
Sediment samples | Yes | No | Yes |
Domestic wastewater samples | No | Yes | Yes |
Mining wastewater samples | No | Yes | Yes |
Date of first sample | 16 September 2017 | 11 September 2013 | 11 September 2013 |
Date of last sample | 7 March 2020 | 6 November 2019 | 7 March 2020 |
Number of years sampled | 3 | 6 | 7 |
Number of sampled quarters of the year | 3 | 4 | 4 |
Number of campaigns | 3 | 22 | 25 |
Number of samples | 13 | 42 | 55 |
Number of constituents per sample | 5–68 | 19–58 | 5–68 |
Number of sampled locations | 10 | 16 | 26 |
Number of records | 749 | 1584 | 2.333 |
Records below detection | 201 | 650 | 851 |
Constituent Group | State Variables * | Parameters | General Ref. Values [91] Median (Min, Max) | Mountain Rivers Ref. Values Median (Min, Max) [Ref] | Units | |
---|---|---|---|---|---|---|
Solids | Inorganic suspended solids (ISS) | Settling rate (vss) | 0.61 (0, 1.9) | 0.38 (0.01,3.00) | [59,103] | m day−1 |
Organic solids: Detritus (Det) | Dissolution rate (kdt) | 0.63 (0.001, 5) | 0.22 (0.01, 1.97) | [59,103] | day−1 | |
Settling rate (vdt) | 0.5 (0, 4.8) | 0.62 (0.10, 0.95) | [59] | m day−1 | ||
Organic matter & Pathogen bioindicators | Slow CBOD (CBODS) | Hydrolysis rate (khc) | 0.82 (0, 4) | 0.52 (0.01, 3.00) | [59] | day−1 |
Oxidation rate (kdcs) | 0.2 (0, 5) | - | day−1 | |||
Fast CBOD (CBODF) | Oxidation rate (kdc) | 2.5 (0.02, 4.3) | 0.39 (0.10, 39.05) | [51,59,103] | day−1 | |
Total Coliforms (TC) | Decay rate (kpath) | - | 0.55 (0.48, 0.66) | [57,58] | day−1 | |
Settling rate (vpath) | - | 1.50 (0.32, 3.89) | [57,58] | m day−1 | ||
Nutrients | Organic Nitrogen (Norg) | Hydrolysis rate (khn) | 0.2 (0.001, 4.3) | 0.47 (0.01, 3.36) | [53,59,103] | day−1 |
Settling rate (von) | 0.11 (0, 1.8) | 1.05 (0.27, 2.16) | [55] | m day−1 | ||
Ammonium (NH4+) | Nitrification rate (kn) | 2.5 (0.01, 10) | 0.74 (0.15, 9.00) | [53,59,103] | day−1 | |
Nitrates (NO3−) | Denitrification rate (kdn) | 1 (0, 1.9) | 0.21 (0.00, 0.68) | [53,103] | day−1 | |
Organic Phosphorous (Porg) | Hydrolysis rate (khp) | 0.43 (0.001, 4.2) | 0.73 (0.01, 4.00) | [59,103] | day−1 | |
Settling rate (vop) | 0.1 (0.003, 1.8) | 1.09 (0.18, 4.95) | [55] | m day−1 | ||
Inorganic Phosphorous (Pinorg) | Settling rate (vip) | 0.9 (0, 2) | 0.99 (0.31, 4.57) | [55] | m day−1 | |
Plants & algae | Phytoplankton (Phyto) | Max. Growth rate (kga) | 2.5 (0.2, 4.1) | - | day−1 | |
Respiration rate (krea) | 0.1 (0.015, 0.7) | - | day−1 | |||
Death rate (kdea) | 0.05 (0, 0.59) | - | day−1 | |||
Settling rate (va) | 0.15 (0, 2) | - | m day−1 | |||
Bottom plants (BotP) | Max. Growth rate (kgaF) | 15 (1.3, 100) | - | gDm−2day−1 | ||
Basal Resp. rate (krea1F) | 0.2 (0.007, 1.2) | - | day−1 | |||
Photo Resp. rate (krea2F) | 0.6 (0.3, 0.6) | - | - | |||
Excretion rate (kexaF) | 0.05 (0, 0.1) | - | day−1 | |||
Death rate (kdeaF) | 0.05 (0, 0.59) | - | day−1 | |||
Subsistence N (Nbmin) | 7.4 (7.2, 72) | - | mg/gD | |||
Subsistence P (Pbmin) | 2.9 (1, 10) | - | mg/gD | |||
Max. uptake N (Nupmax) | 364 (100, 720) | - | mg/gD/day | |||
Max. uptake P (Pupmax) | 100 (50, 200) | - | mg/gD/day | |||
Half sat N (kNratio) | 2.2 (0.9, 9) | - | - | |||
Half sat P (kPratio) | 1.4 (0.09, 4.6) | - | - |
Cluster | Description | Sub-Basins and Sites |
---|---|---|
C1 | Domestic Wastewater Discharge | S3:2 |
C2 | Most Polluted Creeks and Mine Drainages | S1:2; S2:9,10; S4:4,5; S5:1 |
C3 | Mojica Creek below 2600 m of elevation | S2:3,4,5,6 |
C4 | Other Mine Drainages and Creeks | S2:1,2,7,8; S4:2,3 |
C5 | Baloncitos Creek Area and Mine Drainage at S4 | S2:11,12,13; S4:1 |
C6 | Lenguazaque River | S1:1,3,4; S3:1,3 |
Conventional Constituents | Principal Components | Toxicants | Principal Components | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||
EC | - | 0.392 | - | Al | 0.3 | - | - |
Alk | 0.25 | - | - | As | 0.202 | - | - |
Acidity | - | 0.404 | - | Ba | - | 0.323 | −0.341 |
pH | - | −0.355 | - | Ca | - | 0.435 | - |
Hardness | - | 0.420 | - | Cl− | - | 0.42 | - |
E. Coli * | 0.23 | - | 0.500 | Co | 0.251 | - | - |
TC * | 0.22 | - | 0.561 | Cr | 0.244 | - | −0.252 |
Total Solids | 0.26 | - | - | Cu | 0.277 | - | −0.219 |
Suspended Solids | 0.20 | - | - | Fe | 0.334 | - | - |
Volatile Solids | - | - | 0.234 | K | - | 0.29 | - |
DO | −0.21 | - | - | Li | - | - | 0.429 |
Slow CBOD | - | - | 0.388 | Mg | - | 0.386 | - |
Fast CBOD | 0.26 | - | - | Mn | 0.264 | - | 0.313 |
Total COD | 0.24 | - | - | Na | - | 0.425 | - |
Soluble COD | 0.21 | - | - | Ni | 0.304 | - | - |
NH4+ | 0.26 | - | - | Pb | 0.222 | - | - |
Total Kjeldahl N | 0.25 | - | - | Phenol | - | −0.209 | - |
Total N | 0.24 | - | - | S2− | 0.299 | - | - |
Soluble Reactive P | 0.21 | - | - | SO42− | - | - | 0.458 |
Total P | 0.25 | - | - | V | 0.238 | - | - |
Phyto | - | - | 0.32 | Zn | 0.326 | - | - |
Variance % | 37% | 17% | 14% | Variance % | 36% | 13% | 10% |
Dataset | Stream | OF Results (Equation (4)) | |||
---|---|---|---|---|---|
Sites Included (Equations (3) and (4) | Optimal Parameters | Quantile 2.5 | Quantile 97.5 | ||
Calibration | A | S2:1,2 | 0.170 | 0.182 | 0.215 |
S2:3,5,6 | 0.147 | 0.158 | 0.159 | ||
B | S3:3 | 0.416 | 0.544 | 0.629 | |
C | S1:1,3 | 0.010 | 0.019 | 0.021 | |
All | S1:1,3; S2:1,2,3,5,6; S3:3 | 0.243 | 0.250 | 0.294 | |
Verification | All | S1:4; S2:1,6; S3:3 | 0.278 | 0.280 | 0.285 |
Water Use | Constituent | Standard | Units | Critical Values | |||||
---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | ||||
Potabilization by conventional means | pH | 5–9 | pH | -* | 3.1 | - | 4.0 | - | - |
TC | <20,000 | MPN/100 mL | 120 × 106 | - | - | - | - | 240,000 | |
NH4+ | <1 | mg/L | 97.8 | 5.0 | - | - | - | 1.06 | |
Cr+6 | <0.05 | mg/L | - | 0.14 ** | - | - | - | - | |
Pb | <0.05 | mg/L | - | 0.06 | - | 0.06 | - | - | |
Phenol | <0.002 | mg/L | 0.24 | 0.27 | - | - | - | 0.45 | |
SO42− | <400 | mg/L | - | 2430 | - | - | - | - | |
Potabilization by disinfection only | pH | 6.5–8.5 | pH | - | 3.1 | 5.8 | 4.0 | - | 6.23 |
TC | <1000 | MPN/100mL | - | - | 11,000 | - | 5500 | 240,000 | |
NH4+ | <1 | mg/L | 97.8 | 5.0 | - | - | - | 1.06 | |
Cr+6 | <0.05 | mg/L | - | 0.14 ** | - | - | - | - | |
Pb | <0.05 | mg/L | - | 0.06 | - | 0.06 | - | - | |
Phenol | <0.002 | mg/L | 0.24 | 0.27 | - | - | - | 0.448 | |
SO42− | <400 | mg/L | - | 2430 | - | - | - | - | |
Agriculture | pH | 4.5–9 | pH | - | 3.1 | - | 4.0 | - | - |
TC | <5000 | MPN/100mL | - | - | 11,000 | - | 5500 | 240,000 | |
Al | <5 | mg/L | - | 21.99 | - | - | - | - | |
Cu | <0.2 | mg/L | - | 0.24 | - | - | - | - | |
Cr+6 | <0.1 | mg/L | - | 0.14 ** | - | - | - | - | |
Fe | <5 | mg/L | - | 187 | - | 9.1 | - | - | |
Mn | <0.2 | mg/L | - | 4.96 | - | 2.15 | 0.25 | - | |
Ni | <0.2 | mg/L | - | 0.56 | - | - | - | - | |
Livestock | pH | 4.5–9 | pH | - | 3.1 | - | 4.0 | - | - |
TC | <5000 | MPN/100mL | - | - | 11,000 | - | 5500 | 240,000 | |
Al | <5 | mg/L | - | 21.99 | - | - | - | - | |
Recreation | pH | 5–9 | pH | - | 3.1 | - | 4.0 | - | - |
TC | <1000 | MPN/100mL | - | - | 11,000 | - | 5500 | 240,000 | |
DO | >0.7 sat | mg/L | 0 | 2.8 | 4.91 | 3.3 | 2.49 | 0.6 | |
Phenol | <0.002 | mg/L | 0.24 | 0.27 | - | - | - | 0.448 | |
Conservation | pH | 6.5–9 | pH | - | 3.1 | 5.8 | 4.0 | - | 6.23 |
DO | 5 | mg/L | 0 | 2.8 | 4.91 | 3.3 | 2.49 | 0.6 | |
Toxicants | <0.1 | 96-h LC50 *** | uncertain | uncertain | uncertain | uncertain | uncertain | uncertain |
XQT (Equation (7)) | Value | Units |
---|---|---|
1Q2 | 0.273 | m3s−1 |
1Q3 | 0.223 | m3s−1 |
4Q3 | 0.170 | m3s−1 |
7Q10 | 0.236 * | m3s−1 |
Site | Constituent | Load in Critical Scenario | Load Reduction Compared to Critical Scenario | |||
---|---|---|---|---|---|---|
Alternative 1 | Alternative 2 | |||||
[kg day−1] * | [%] | [kg day−1] * | [%] | [kg day−1] * | ||
S3:1—Headwater of Stream B | TC | 4.35 × 1013 | - | - | 97.92% | 4.26 × 1013 |
ISS | 2124.25 | - | - | - | - | |
Det | 485.39 | - | - | 75.00% | 364.05 | |
CBODF | 141.36 | - | - | 85.00% | 120.15 | |
CBODS | 154.01 | - | - | 85.00% | 130.91 | |
COD | 1112.72 | - | - | 85.00% | 945.82 | |
Norg | 4.19 | - | - | 67.18% | 2.81 | |
NH4+ | 19.37 | - | - | 30.00% | 5.81 | |
Porg | 1.81 | - | - | - | - | |
Pinorg | 1.59 | - | - | - | - | |
S3:2—Discharge of Domestic Wastewater | TC | 7.915 × 1013 | 99.99% | 7.914 × 1013 | 99.99% | 7.914 × 1013 |
ISS | 0.37 | 85.00% | 0.32 | 85.00% | 0.32 | |
Det | 36.98 | 85.00% | 31.43 | 85.00% | 31.43 | |
CBODF | 37.96 | 85.00% | 32.26 | 85.00% | 32.26 | |
CBODS | 41.35 | 85.00% | 35.15 | 85.00% | 35.15 | |
COD | 26.06 | 75.00% | 19.54 | 75.00% | 19.54 | |
Norg | 3.69 | 30.00% | 1.11 | 43.01% | 1.59 | |
NH4+ | 6.03 | 10.00% | 0.60 | 10.00% | 0.60 | |
Porg | 0.12 | 30.00% | 0.04 | 125.73% | 0.15 | |
Pinorg | 0.90 | 30.00% | 0.27 | 30.00% | 0.27 | |
S2:6—Mojica Creek | TC | 3.63 × 1011 | - | - | - | - |
ISS | 75.72 | - | - | - | - | |
Det | 17.30 | - | - | 50.00% | 8.65 | |
CBODF | 5.20 | - | - | 75.00% | 3.90 | |
CBODS | 5.67 | - | - | 75.00% | 4.25 | |
COD | 134.41 | - | - | 85.00% | 114.25 | |
Norg | 1.26 | - | - | 50.00% | 0.63 | |
NH4+ | 0.47 | - | - | 50.00% | 0.24 | |
Porg | 0.44 | - | - | - | - | |
Pinorg | 0.32 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, N.; Camacho, L.A. Water Quality Modeling in Headwater Catchments: Comprehensive Data Assessment, Model Development and Simulation of Scenarios. Water 2023, 15, 868. https://doi.org/10.3390/w15050868
Fernandez N, Camacho LA. Water Quality Modeling in Headwater Catchments: Comprehensive Data Assessment, Model Development and Simulation of Scenarios. Water. 2023; 15(5):868. https://doi.org/10.3390/w15050868
Chicago/Turabian StyleFernandez, Nicolas, and Luis A. Camacho. 2023. "Water Quality Modeling in Headwater Catchments: Comprehensive Data Assessment, Model Development and Simulation of Scenarios" Water 15, no. 5: 868. https://doi.org/10.3390/w15050868
APA StyleFernandez, N., & Camacho, L. A. (2023). Water Quality Modeling in Headwater Catchments: Comprehensive Data Assessment, Model Development and Simulation of Scenarios. Water, 15(5), 868. https://doi.org/10.3390/w15050868