Combined Column Test for Characterization of Leaching and Transport of Trace Elements in Contaminated Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Analysis
2.2. The Combined Column
2.3. One-Stage Batch Test
2.4. Eluate Analysis
2.5. Data Treatment
2.6. Hydraulic Conductivity
3. Results and Discussion
3.1. Hydraulic Conductivity: Column Measurements vs. Pedotransfer Functions
3.2. Contaminant Mobility in Soil
3.2.1. Long-Term Leaching in the Combined Column Test
Shooting Range Soil
Urban Soil
3.2.2. Combined Column Test vs. One-Stage Batch Test
3.3. Effect of Soil Compaction on Leaching
3.4. Effect of Soil Compaction on Transport
3.5. In Future Development of the Combined Column
3.6. Pratical Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez, A.P.; Eugenio, N.R. Status of Local Soil Contamination in Europe; European Comission: Luxemburg, 2018. [Google Scholar]
- World Health Organization. Urban Redevelopment of Contaminated Sites: A Review of Scientific Evidence and Practical Knowledge on Environmental and Health Issues; Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- Peijnenburg, W.J.G.M. Implementation of bioavailability in prospective and retrospective risk assessment of chemicals in soils and sediments. In Bioavailability of Organic Chemicals in Soil and Sediment; Ortega-Calvo, J.J., Parsons, J.R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 391–422. [Google Scholar]
- Miljødirektoratet (The Norwegian Environmental Agency). Helsebaserte Tilstandsklasser for Forurenset Grunn; Miljødirektoratet: Oslo, Norway, 2009. [Google Scholar]
- Meuser, H.; Van der Graaff, R.H.M. Characteristics of natural and urban soils. In Dealing with Contaminated Sites; Swartjes, F.A., Ed.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Grathwohl, P.; Halm, D.; Bonilla, A.; Broholm, M.; Burganos, V.; Christophersen, M.; Comans, R.; Gaganis, P.; Gorostiza, I.; Höhener, P.; et al. Guideline for Groundwater Risk Assessment at Contaminated Sites (GRACOS); Eberhard Karl University of Tübingen: Tübingen, Germany, 2003. [Google Scholar]
- Almås, Å.R.; Singh, B.R. Trace metal contamination. In Encyclopedia of Soil Sciences; Lan, R., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 2364–2368. [Google Scholar]
- Kim, R.-Y.; Yoon, J.-K.; Kim, T.-S.; Yang, J.E.; Owens, G.; Kim, K.-R. Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef] [PubMed]
- CENT/TS 14405; Characterization of Waste. Leaching Behavior Test. Up-flow Peroclation Test (Under Specific Conditions). European Committee for Standardization: Brussels, Belgium, 2006.
- EN 12457-2; Characterization of Waste. Leaching. Compliance Test for Leaching of Granular Waste Materials and Sludges. Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size Below 4 mm (Without or With Size Reduction). European Committee for Standardization: Brussels, Belgium, 2003.
- L 11/27; Council Decision of 19 December 2002 Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II of Directive 1999/31/EC. Council of the European Union: Brussels, Belgium, 2003.
- Van der Sloot, H.A.; Van Zomeren, A.; Dijkstra, J.J.; Hoede, D.; Jacobs, J.; Schariff, H. Predication of long term leachate quality and chemical speciation for a predominantly inroganic waste landfill. In Proceedings of the Ninth International Waste Mangamenet and Landfill Symposium, Sardina, Italy, 6–10 October 2003. [Google Scholar]
- Schwartz, F.W.; Zhang, H. Fundamentals of Ground Water, 1st ed.; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Chapuis, R.P. Predicting the saturated hydraulic conductivity of soils: A review. Bull. Eng. Geol. Environ. 2012, 71, 401–434. [Google Scholar] [CrossRef]
- Dikinya, O.; Hinz, C.; Aylmore, G. Decrease in hydraulic conductivity and particle release associated with self-filtration in saturated soil columns. Geoderma 2008, 146, 192–200. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Yan, W.; Shangguan, Z. Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil Tillage Res. 2018, 183, 100–108. [Google Scholar] [CrossRef]
- Krogstad, T.; Jørgensen, P.; Sogn, T.; Børresen, T.; Kolnes, A.G. Manual for Kornfordelingsanalyse Etter Pipettemetoden [Instructions for particle size distribution analysis by the pipette method]; Institutt for Jordfag, Norwegian College of Agriculture: Ås, Norway, 1991. [Google Scholar]
- (R) 2702; Certificate of Analysis, Standard Reference Material, Inorganics in Marine Sediment. National Institute of Standards & Technology: Gaithesburg, MD, USA, 2016.
- (R) 2709a; Certificate of Analysis, Standard Reference Material, San Joaquin Soil. National Institute of Standard & Technology: Gaithesburg, MD, USA, 2009.
- Gustafsson, J.P. Visual MINTEQ ver. 3.0; KTH: Stockholm, Sweden, 2012. [Google Scholar]
- Carrier, W.D. Goodbye, Hazen; Hello, Kozeny-Carman. J. Geotech. Geoenvironmental Eng. 2003, 129, 1054–1056. [Google Scholar] [CrossRef] [Green Version]
- Chapuis, R.P. Predicting the saturated hydraulic conductivity of natural soils. Geotech. News 2008, 26, 47–50. [Google Scholar]
- Chapuis, R.P. Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can. Geotech. J. 2004, 41, 787–795. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Amstätter, K.; Lassen Bue, H.; Cornelissen, G.; Breedveld, G.; Henriksen, T.; Mulder, J. Antimony (Sb) Contaminated Shooting Range Soil: Sb Mobility and Immobilization by Soil Amendments. Environ. Sci. Technol. 2013, 47, 6431–6439. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Grasshorn Gebhardt, K.; Amstaetter, K.; Lassen Bue, H.; Herzel, H.; Mariussen, E.; Rossebø Almås, Å.; Cornelissen, G.; Breedveld, G.D.; Rasmussen, G.; et al. Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. J. Hazard. Mater. 2016, 307, 336–343. [Google Scholar] [CrossRef]
- Voie, Ø.A.; Strømseng, A.E. Risikovurdering Av Tungmetallforurensning På en Utendørs Skytebane; The Norwegian Defence Research Establishment: Kjeller, Norway, 2000. [Google Scholar]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Jordan, R.N.; Yonge, D.R.; Hathhorn, W.E. Enhanced mobility of Pb in the presence of dissolved natural organic matter. J. Contam. Hydrol. 1997, 29, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Tipping, E.; Rieuwerts, J.; Pan, G.; Ashmore, M.R.; Lofts, S.; Hill, M.T.R.; Farago, M.E.; Thornton, I. The solid–solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut. 2003, 125, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Heier, L.S.; Meland, S.; Ljønes, M.; Salbu, B.; Strømseng, A.E. Short-term temporal variations in speciation of Pb, Cu, Zn and Sb in a shooting range runoff stream. Sci. Total Environ. 2010, 408, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Saar, R.A.; Weber, J.H. Lead(II) complexation by fulvic acid: How it differs from fulvic acid complexation of copper(II) and cadmium(II). Geochim. Et Cosmochim. Acta 1980, 44, 1381–1384. [Google Scholar] [CrossRef]
- Covelo, E.F.; Vega, F.A.; Andrade, M.L. Competitive sorption and desorption of heavy metals by individual soil components. J. Hazard. Mater. 2007, 140, 308–315. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Mulder, J. Antimony. In Encyclopedia of Soil Science, 3rd ed.; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Wilson, S.C.; Lockwood, P.V.; Ashley, P.M.; Tighe, M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut. 2010, 158, 1169–1181. [Google Scholar] [CrossRef]
- Johnson, C.A.; Moench, H.; Wersin, P.; Kugler, P.; Wenger, C. Solubility of Antimony and Other Elements in Samples Taken from Shooting Ranges. J. Environ. Qual. 2005, 34, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Scheinost, A.C.; Rossberg, A.; Vantelon, D.; Xifra, I.; Kretzschmar, R.; Leuz, A.-K.; Funke, H.; Johnson, C.A. Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochim. Et Cosmochim. Acta 2006, 70, 3299–3312. [Google Scholar] [CrossRef]
- Ottesen, R.T.; Alexander, J.; Joranger, T.; Rytter, E.; Andersson, M. Forslag Til Tilstandsklasser for Jord; NGU: Trondheim, Norway, 2007. [Google Scholar]
- Delay, M.; Lager, T.; Schulz, H.D.; Frimmel, F.H. Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Manag. 2007, 27, 248–255. [Google Scholar] [CrossRef]
- Kosson, D.S.; van der Sloot, H.A.; Eighmy, T.T. An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues. J. Hazard. Mater. 1996, 47, 43–75. [Google Scholar] [CrossRef]
- Lopez Meza, S.; Garrabrants, A.C.; van der Sloot, H.; Kosson, D.S. Comparison of the release of constituents from granular materials under batch and column testing. Waste Manag. 2008, 28, 1853–1867. [Google Scholar] [CrossRef] [PubMed]
- Grathwohl, P.; Susset, B. Comparison of percolation to batch and sequential leaching tests: Theory and data. Waste Manag. 2009, 29, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Kalbe, U.; Berger, W.; Eckardt, J.; Simon, F.-G. Evaluation of leaching and extraction procedures for soil and waste. Waste Manag. 2008, 28, 1027–1038. [Google Scholar] [CrossRef]
- Chapuis, R.; Weber, S.; Duhaime, F. Permeability test results with packed spheres and non-plastic soils. Geotech. Test. J. 2015, 38, 950–964. [Google Scholar] [CrossRef]
- Pedersen, T.S. Væsketransport i Umettet Sone. Stratigrafisk beskrivelse av toppsedimentene på forskningsfeltet Moreppen, og bestemmelse av tilhørende hydrauliske parametere [Liquid transport in the unsaturated zone. Stratigraphic description of the top sediments on the Moreppen research area, and investigations of relevant hydraulic parameters]. Master’s Thesis, University of Oslo, Oslo, Norway, 1994. [Google Scholar]
Method | Description | Advantages 1 | Disadvantages 1 |
---|---|---|---|
Total soil concentration | Decomposition of soil matrix with acid before detection of contaminants (mg/kg dw) in the soil sample. | Cost-efficient. | Includes also the non-available contaminant fractions and leads to an overestimation of environmental risk. |
One-stage batch test (e.g., [10]) | Evaluates leaching (mg/kg dw) under specific conditions at one single liquid-to-solid (L/S) ratio. | Cost-efficient (duration ~24 h), easy to operate, rapid data analysis and interpretation. | Agitation contributes to a high-energy environment, and can lead to irreversible mobilization of dissolved organic matter (DOC) and colloids (e.g., [12]). Ignores mass transport. |
Column test (e.g., [9]) | Evaluates leaching (mg/kg dw) at various L/S ratios. | Field resembling conditions, provides information about leaching as a function of time. | Resource and time-consuming. Error sources, such as preferential flow, can affect reproducibility. |
Method | Description | Advantages 1 | Disadvantages 1 |
---|---|---|---|
Pedotransfer-functions, e.g., Hazen and Kozeny-Carman (e.g., [13]) | Based on single soil parameters, such as particle size distribution. | Cost-efficient. | Based on destructive sampling which does not measure real pore structure and connectivity. |
Column experiments, constant or falling head methods (e.g., [13]) | Disturbed or undisturbed soil cores (pore structure intact) are sampled from the field, and discharge measured under constant or falling head. | Suitable for a wide range of soils. | Prone to uncertainties due to field heterogeneities (undisturbed) or packing procedures (disturbed), as well as operation [14]. |
Field measurements | A wide range of methods exists, including piezometer and borehole installations. | Provides the most accurate values of the hydraulic conductivity at a site. Can account for heterogeneity if several setups are installed. | Resource and time-consuming. Consideration of the local area (e.g., flow patterns) must be made. |
Parameter | Unit | Shooting Range Soil | Urban Soil | |
---|---|---|---|---|
Soil type | - | Silty sand | Silty sand | |
d10 | mm | 0.004 | 0.002 | |
d60 | mm | 0.2 | 0.3 | |
Uniformity coefficient (Cu) | - | 50 | 150 | |
Loss on ignition (LOI) | % | 2.5 ± 0.1 | 7.7 ± 0.5 | |
Total inorganic content (TIC) | % | 0.02 ± 0.00 | 0.08 ± 0.02 | |
Total organic content (TOC) | % | 1.1 ± 0.0 | 5.3 ± 0.1 | |
pHin water (Liquid to solid ratio (L/S) 0.4) | - | 5.2 ± 0.0 | 7.4 ± 0.0 | |
Electrical conductivity (EC) | μS/cm | 50 ± 3 | 206 ± 18 | |
Total concentration | Pb | mg/kg dw | 1933 ± 58 | 660 ± 36 |
Cu | mg/kg dw | 127 ± 6 | 59 ± 4 | |
Zn | mg/kg dw | - | 193 ± 6 | |
Sb | mg/kg dw | 210 | - |
Parameter | Unit | Shooting Range Soil | Urban Soil | |
---|---|---|---|---|
Compaction level | High density | Low density | Low density | |
Experimental period | - | ~9 weeks | ~3 weeks | ~1–2 weeks |
Replicates | - | 3 | 3 | 3 |
Sampling (Liquid to solid ratio (L/S)) | L/kg | 0.1, 2, 6, and 10 | 0.1, 2, and 6 | 0.1, 2, and 6 |
Height of soil in column after packing | cm | ~30 | ~30 | ~30 |
Number of layers | - | 10 | 6 | 6 |
Average flow rate | mL/h | 5.8 | 10.4 | 9.4 |
Bulk density 1 | g/cm3 | 1.5 | 1.4 | 1.0 |
Pore number (e) 2 | - | 0.7 | 0.9 | 1.8 |
Porosity (n) 3 | - | 0.4 | 0.5 | 0.6 |
Porewater velocity 4 | cm/d | 16.5 | 27.1 | 18.0 |
Batch Test | Combined Column Test | |
---|---|---|
pH | 6.2 ± 0.1 | 6.7 ± 0.2 |
Pb (mg/kgdw) | 3.5 ± 0.4 | 6.2 ± 0.4 |
Cu (mg/kgdw) | 0.9 ± 0.1 | 1.0 ± 0.1 |
Sb (mg/kgdw) | 4.8 ± 0.2 | 8.4 ± 0.3 |
DOC (mg/kgdw) | 81 ± 8 | 55 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skjennum, K.A.; French, H.K.; Carotenuto, P.; Okkenhaug, G. Combined Column Test for Characterization of Leaching and Transport of Trace Elements in Contaminated Soils. Water 2023, 15, 874. https://doi.org/10.3390/w15050874
Skjennum KA, French HK, Carotenuto P, Okkenhaug G. Combined Column Test for Characterization of Leaching and Transport of Trace Elements in Contaminated Soils. Water. 2023; 15(5):874. https://doi.org/10.3390/w15050874
Chicago/Turabian StyleSkjennum, Karen Ane, Helen K. French, Pasquale Carotenuto, and Gudny Okkenhaug. 2023. "Combined Column Test for Characterization of Leaching and Transport of Trace Elements in Contaminated Soils" Water 15, no. 5: 874. https://doi.org/10.3390/w15050874
APA StyleSkjennum, K. A., French, H. K., Carotenuto, P., & Okkenhaug, G. (2023). Combined Column Test for Characterization of Leaching and Transport of Trace Elements in Contaminated Soils. Water, 15(5), 874. https://doi.org/10.3390/w15050874