Impact of a Sand Filtration Pretreatment Step on High-Loaded Greywater Treatment by an Electrocoagulation Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. EC Electrodes
2.2. Greywater Selection and Characteristics
2.3. Experimental Setup and Operating Conditions
2.4. Analytical Methods
2.5. Calculations
3. Results and Discussion
3.1. Greywater Characteristics
3.2. Changes in pH
3.3. Turbidity, and Color Removals
3.4. COD Removal
3.5. Energy Consumption
3.6. Technical Concerns Regarding the Performance of the Sand Filtration Unit
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, E.; Bani-Melhem, K. Greywater characterization, and treatment for reuse in an arid environment. Water Sci. Technol. 2012, 66, 72–78. [Google Scholar] [CrossRef]
- Khajvand, M.; Mostafazadeh, A.K.; Drogui, P.; Tyagi, R.D.; Brien, E. Greywater characteristics, impacts, treatment, and reclamation using adsorption processes towards the circular economy. Environ. Sci. Pollut. Res. 2022, 29, 10966–11003. [Google Scholar] [CrossRef]
- Boddu, V.M.; Paul, T.; Page, M.A.; Byl, C.; Ward, L.; Ruan, J. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment. J. Environ. Chem. Eng. 2016, 4, 4435–4443. [Google Scholar] [CrossRef] [Green Version]
- Bani-Melhem, K.; Smith, E. Greywater Treatment by a Continuous Process of an Electro-coagulation Unit, and a Submerged Membrane Bioreactor System. Chem. Eng. J. 2012, 198–199, 201–210. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; El-Khateeb, M.A.; Shehata, M. Greywater Treatment using different designs of sand filters. Desal. Water Treat. 2014, 52, 5237–5242. [Google Scholar] [CrossRef]
- Barışçı, S.; Turkay, O. Domestic greywater treatment by electrocoagulation using hybrid electrode combinations. J. Water Process Eng. 2016, 10, 56–66. [Google Scholar] [CrossRef]
- Bani-Melhem, K.; Al-Shannag, M.; Alrousan, D.; Al-Kofahi, S.; Al-Qodah, Z.; Al-Kilani, M.R. Impact of soluble COD on greywater treatment by electrocoagulation technique. Desal. Water Treat. 2017, 89, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Alrousan, D.; Afkhami, A.; Bani-Melhem, K.; Dunlop, P. Organic degradation potential of real greywater using TiO2-Based advanced oxidation processes. Water 2020, 12, 2811. [Google Scholar] [CrossRef]
- Chanakya, H.N.; Kumar, K.H. Treatment of gray water using anaerobic biofilms created on synthetic, and natural fibers. Process Saf. Environ. Prot. 2014, 92, 186–192. [Google Scholar] [CrossRef]
- Bani-Melhem, K.; Al-Qodah, Z.; Al-Shannag, M.; Qasaimeh, A.; Qtaishat, M.R.; Alkasrawi, M. On the performance of real greywater treatment using a submerged membrane bioreactor system. J. Membr. Sci. 2015, 476, 40–49. [Google Scholar] [CrossRef]
- Al-Ghazawi, Z.; Qasaimeh, A.; Bani-Melhem, K. Ablution gray water qualitative assessment, and treatment by submerged membrane bioreactor: A case study in Jordan. Desal. Water Treat. 2018, 127, 213–221. [Google Scholar] [CrossRef]
- Barzegar, G.; Wu, J.; Ghanbari, F. Enhanced treatment of greywater using electrocoagulation/ozonation: Investigation of process parameters. Process Saf. Environ. Prot. 2019, 121, 125–132. [Google Scholar] [CrossRef]
- Al-Shannag, M.; Lafi, W.; Bani-Melhem, K.; Gharagheer, F.; Dhaimat, O. Reduction of COD, and TSS from paper industries wastewater using electro-coagulation, and chemical coagulation. Sep. Sci. Technol. 2012, 47, 700–708. [Google Scholar] [CrossRef]
- Al-Shannag, M.; Al-Qodah, Z.; Bani-Melhem, K.; Qtaishat, M.R.; Alkasrawi, M. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study, and process performance. Chem. Eng. J. 2015, 260, 749–756. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Shannag, M.; Bani-Melhem, K.; Assirey, E.; Yahya, M.A.; Al-Shawabkeh, A. Free radical-assisted electrocoagulation processes for wastewater treatment. Environ. Chem. Lett. 2018, 16, 695–714. [Google Scholar] [CrossRef]
- Ronaldo Anuf, A.; Ramaraj, K.; Sivasankarapillai, V.S.; Dhanusuraman, R.; Maran, J.P.; Rajeshkumar, G.; Rahdar, A.; Díez-Pascual, A.M. Optimization of electrocoagulation process for treatment of rice mill effluent using response surface methodology. J. Water Process Eng. 2022, 49, 103074. [Google Scholar] [CrossRef]
- Bani-Melhem, K. Development of a Novel Submerged Membrane Electro-Bioreactor for Wastewater Treatment. Ph.D. Thesis, Concordia University, Montreal, QC, Canada, 2008. [Google Scholar]
- Bani-Melhem, K.; Elektorowicz, M. Development of a novel submerged membrane electro-bioreactor (SMEBR): Performance for fouling reduction. Environ. Sci. Technol. 2010, 44, 3298–3304. [Google Scholar] [CrossRef]
- Bani-Melhem, K.; Elektorowicz, M. Performance of the submerged membrane electoro bioreactor (SMEBR) with iron electrodes for wastewater treatment, and fouling reduction. J. Membr. Sci. 2011, 379, 434–439. [Google Scholar] [CrossRef]
- Khandegar, V.; Saroha, A.K. Electrocoagulation for The Treatment of Textile İndustry Effluent. J. Environ. Manag. 2013, 128, 949–963. [Google Scholar] [CrossRef]
- Bani-Melhem, K.; Qtaishat, M.R.; Tawalbeh, M. Evaluation of scrap metallic waste electrode materials for the application in electrocoagulation treatment of wastewater. Chemosphere 2023, 310, 136668. [Google Scholar] [CrossRef]
- Asaithambi, P.; Govindarajan, R.; Yesuf, M.B.; Selvakumar, P.; Alemayehu, E. Enhanced treatment of landfill leachate wastewater using sono(US)-ozone(O3)–electrocoagulation(EC) process: Role of process parameters on colour, COD, and electrical energy consumption. Process Saf. Environ. Prot. 2020, 142, 212–218. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Tawalbeh, M.; Al-Shannag, M.; Al-Anber, Z.; Bani-Melhem, K. Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review. Sci. Total. Environ. 2020, 744, 140806. [Google Scholar] [CrossRef] [PubMed]
- Nigri, E.M.; Santos, A.L.; Rocha, S.D. Removal of organic compounds, calcium, and strontium from petroleum industry effluent by simultaneous electrocoagulation, and adsorption. J. Water Process Eng. 2020, 37, 101442. [Google Scholar] [CrossRef]
- Assayed, A.; Chenoweth, J.; Pedley, S. Drawer compacted sand filter: A new, and innovative method for on-site greywater treatment. Environ. Technol. 2014, 35, 2435–2446. [Google Scholar] [CrossRef] [Green Version]
- Katukiza, A.Y.; Ronteltap, M.; Niwagaba, C.B.; Kansiime, F.; Lens, P.N.L. Greywater treatment in urban slums by a filtration system: Optimisation of the filtration medium. J. Environ. Manag. 2014, 146, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Albalawneh, A.; Chang, T.; Alshawabkeh, H. Greywater treatment by granular filtration system using volcanic tuff, and gravel media. Water Sci. Technol. 2017, 75, 2331–2341. [Google Scholar] [CrossRef] [PubMed]
- Spychała, M.; Niec, J.; Zawadzki, P.; Matz, R.; Nguyen, T.H. Removal of Volatile Solids from Greywater Using Sand Filters. Appl. Sci. 2019, 9, 770. [Google Scholar] [CrossRef] [Green Version]
- Morales-Figueroa, A.; Teutli-Sequeira, E.A.; Linares-Hernández, I.; Martínez-Miranda, V.; García-Morales, M.A.; Roa-Morales, G. Optimization of the Electrocoagulation Process with Aluminum Electrodes for Rainwater Treatment. Front. Environ. 2022, 10, 860011. [Google Scholar] [CrossRef]
- Shaikh, I.N.; Ahammed, M. Quantity, and quality characteristics of greywater: A review. J. Environ. Manag. 2020, 261, 110266. [Google Scholar] [CrossRef] [PubMed]
- Jamrah, A.; Al-Omari, A.; Al-Qasem, L.; Ghani, N.A. Assessment of availability and characteristics of greywater in Amman. Water Inter. 2006, 31, 210–220. [Google Scholar] [CrossRef]
- Halalsheh, M.; Dalahmeh, S.; Sayed, M.; Suleiman, W.; Shareef, M.; Mansour, M.; Safi, M. Grey water characteristics and treatment options for rural areas in Jordan. Bioresour. Technol. 2008, 99, 6635–6641. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamaiedeh, H.; Bino, M. Effect of treated grey water reuse in irrigation on soil and plants. Desalination 2010, 256, 115–119. [Google Scholar] [CrossRef]
- Daphne, L.H.X.; Utomo, H.D.; Kenneth, L.Z.H. Correlation between turbidity, and total suspended solids in Singapore rivers. J. Water Sustain. 2011, 1, 313–322. [Google Scholar]
- Saad, F.N.M.; Jamaludin, S.Z.A.; Izhar, T.N.T. Investigation of using sand filter in treating grey water. IOP Conf. Ser. Earth Environ. Sci. 2021, 646, 012056. [Google Scholar] [CrossRef]
- Zipf, M.S.; Pinheiro, I.G.; Conegero, M.G. Simplified greywater treatment systems: Slow filters of sand, and slate waste followed by granular activated carbon. J. Environ. Manag. 2016, 176, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Al-Shannag, M.; Bani-Melhem, K.; Al-Anber, Z.; Al-Qodah, Z. Enhancement of COD-nutrients removals and filterability of secondary clarifier municipal wastewater influent using electrocoagulation technique. Sep. Sci. Technol. 2013, 48, 673–680. [Google Scholar] [CrossRef]
- Patel, P.; Gupta, S.; Mondal, P. Electrocoagulation process for greywater treatment: Statistical modeling, optimization, cost analysis and sludge management. Sep. Purif. Technol. 2022, 296, 121327. [Google Scholar] [CrossRef]
- Li, F.; Wichmann, K.; Otterpohl, R. Review of the technological approaches for greywater treatment, and reuses. Sci. Total. Environ. 2009, 407, 3439–3449. [Google Scholar] [CrossRef]
- JSMO. Water—Reclaimed Grey Water JS1776:2013, 2nd ed.; Jordan Standards and Metrology Organization: Amman, Jordan, 2013; pp. 1–16. [Google Scholar]
- Leverenze, G.; Tchobanoglous, G.; Darby, J. Clogging in intermittently dosed sand filters used for wastewater treatment. Water Res. 2009, 43, 695–705. [Google Scholar] [CrossRef]
Parameter Index | Unit | Value |
---|---|---|
pH | - | 6.59 ± 0.14 |
Temperature | Celsius (°C) | 20.2 ± 0.2 |
Total dissolved solids (TDS) | mg/L | 750 ± 70 |
Total suspended solids (TSS) | mg/L | 275 ± 14 |
Chemical oxygen demand (COD) | mg/L | 1102 ± 50 |
Turbidity | FAU | 313 ± 1.5 |
Color | Pt-Co | 662 ± 20 |
Conductivity | (µS/cm) | 1235 ± 136 |
Parameter | This Study | Bani-Melhem at al. [7] | Jamrah et al. [31] | Halalsheh et al. [32] | Al-Hamaiedeh and Bino [33] |
---|---|---|---|---|---|
pH | 6.59 ± 0.14 | 6.4–7.6 | 7.81 | 6.35 | 6.9–7.8 |
Turbidity (FAU/NTU) | 313.3 ± 1.5 (FAU) | 704–901 (FAU) | 48.9 (NTU) | - | - |
Conductivity (µS/cm) | 1235 ± 136 | 716.7–900 | 1910 | 1830 | 1570–2000 |
Total dissolved solids (TDS) (mg/L) | 750 ± 70 | 400–507 | 893 | - | - |
Total suspended solids (TSS) (mg/L) | 275 ± 14 | 808–1000 | 168 | 845 | 23–358 |
Color (Pt-Co) | 662 ± 20 | 194–388 | - | - | - |
COD (mg/L) | 1102 ± 50 | 1450–1600 | 78 | 2568 | 92–2263 |
Parameter | Jordan GW Standard JS1776:2013 for Different Uses [40]: | Results of This Study | |||
---|---|---|---|---|---|
Cooked Vegetables Irrigation | Raw Vegetables Irrigation | Toilet Flushing | Without SF Step | With SF Step | |
pH (unitless) | 6–9 | 6–9 | <10 | 7.99 ± 0.45 | 7.45 ± 0.34 |
Turbidity (NTU) | - | - | 50 | 0 | 0 |
Color (Pt-Co) | - | - | - | 48 ± 5 | 34 ± 4 |
Chemical oxygen demand (mg/L) | 120 | 120 | <10 | 165 ± 28.6 | 77 ± 28.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bani-Melhem, K.; Bsoul, A.A.; Al-Qodah, Z.; Al-Ananzeh, N.; Al-Kilani, M.R.; Al-Shannag, M.; Bani-Salameh, W. Impact of a Sand Filtration Pretreatment Step on High-Loaded Greywater Treatment by an Electrocoagulation Technique. Water 2023, 15, 990. https://doi.org/10.3390/w15050990
Bani-Melhem K, Bsoul AA, Al-Qodah Z, Al-Ananzeh N, Al-Kilani MR, Al-Shannag M, Bani-Salameh W. Impact of a Sand Filtration Pretreatment Step on High-Loaded Greywater Treatment by an Electrocoagulation Technique. Water. 2023; 15(5):990. https://doi.org/10.3390/w15050990
Chicago/Turabian StyleBani-Melhem, Khalid, Abeer Al Bsoul, Zakaria Al-Qodah, Nada Al-Ananzeh, Muhammad Rasool Al-Kilani, Mohammad Al-Shannag, and Walid Bani-Salameh. 2023. "Impact of a Sand Filtration Pretreatment Step on High-Loaded Greywater Treatment by an Electrocoagulation Technique" Water 15, no. 5: 990. https://doi.org/10.3390/w15050990
APA StyleBani-Melhem, K., Bsoul, A. A., Al-Qodah, Z., Al-Ananzeh, N., Al-Kilani, M. R., Al-Shannag, M., & Bani-Salameh, W. (2023). Impact of a Sand Filtration Pretreatment Step on High-Loaded Greywater Treatment by an Electrocoagulation Technique. Water, 15(5), 990. https://doi.org/10.3390/w15050990