Montmorillonite-Based Natural Adsorbent from Colombia for the Removal of Organic Pollutants from Water: Isotherms, Kinetics, Nature of Pollutants, and Matrix Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. MMT Preparation
2.3. Characterization of MMT
2.4. Adsorption Experiments
2.5. Equilibrium Isotherms
2.6. Adsorption Kinetics
2.7. Evaluation of Applicability of the Isotherm Models and Kinetics
2.8. Analytical Techniques
3. Results and Discussion
3.1. MMT Characterization
3.2. Adsorption of Anionic and Cationic Dyes in Distilled Water Using MMT
3.3. Effects of MMT Dose and Dye Type on the Amount of Adsorbed Organic Pollutants
3.4. Study of Adsorption Isotherms
3.5. Study of Adsorption Kinetics
3.6. Identification of the Adsorption Sites on MMT for Removal of Dyes
3.7. Cost and Reuse of MMT
3.8. Complex Matrix Effect
3.8.1. CV Adsorption in Textile Wastewater
3.8.2. Pharmaceutical Adsorption in Urine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salleh, M.A.M.; Mahmoud, D.K.; Karim, W.A.W.A.; Idris, A. Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review. Desalination 2011, 280, 1–13. [Google Scholar] [CrossRef]
- Tkaczyk-Wlizło, A.; Mitrowska, K.; Błądek, T. Quantification of Twenty Pharmacologically Active Dyes in Water Samples Using UPLC-MS/MS. Heliyon 2022, 8, e09331. [Google Scholar] [CrossRef]
- Sivakumar, D. Role of Lemna Minor Lin. in Treating the Textile Industry Wastewater. Int. J. Fash. Text. Eng. 2014, 8, 208–212. [Google Scholar] [CrossRef]
- Luján-Facundo, M.J.; Iborra-Clar, M.I.; Mendoza-Roca, J.A.; Alcaina-Miranda, M.I. Pharmaceutical Compounds Removal by Adsorption with Commercial and Reused Carbon Coming from a Drinking Water Treatment Plant. J. Clean. Prod. 2019, 238, 117866. [Google Scholar] [CrossRef]
- Botero-Coy, A.M.; Martínez-Pachón, D.; Boix, C.; Rincón, R.J.; Castillo, N.; Arias-marín, L.P.; Losada, L.M.-; Torres-Palma, R.; Moncayo-Lasso, A.; Hérnandez, F. An Investigation into the Occurrence and Removal of Pharmaceuticals in Colombian Wastewater. Sci. Total Environ. 2018, 642, 842–853. [Google Scholar] [CrossRef]
- Omotola, E.O.; Olatunji, O.S. Quantification of Selected Pharmaceutical Compounds in Water Using Liquid Chromatography-Electrospray Ionisation Mass Spectrometry (LC-ESI-MS). Heliyon 2020, 6, e05787. [Google Scholar] [CrossRef]
- Bischel, H.N.; Özel Duygan, B.D.; Strande, L.; McArdell, C.S.; Udert, K.M.; Kohn, T. Pathogens and Pharmaceuticals in Source-Separated Urine in EThekwini, South Africa. Water Res. 2015, 85, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Ewis, D.; Ba-Abbad, M.M.; Benamor, A.; El-Naas, M.H. Adsorption of Organic Water Pollutants by Clays and Clay Minerals Composites: A Comprehensive Review. Appl. Clay Sci. 2022, 229, 106686. [Google Scholar] [CrossRef]
- Rakhym, A.B.; Seilkhanova, G.A.; Kurmanbayeva, T.S. Adsorption of Lead (II) Ions from Water Solutions with Natural Zeolite and Chamotte Clay. Mater. Sci. Eng. 2020, 31, 482–485. [Google Scholar] [CrossRef]
- Vidal, C.B.; dos Santos, A.B.; do Nascimento, R.F.; Bandosz, T.J. Reactive Adsorption of Pharmaceuticals on Tin Oxide Pillared Montmorillonite: Effect of Visible Light Exposure. Chem. Eng. J. 2015, 259, 865–875. [Google Scholar] [CrossRef]
- Wang, L.; Wang, D.; Cai, C.; Li, N.; Zhang, L.; Yang, M. Effect of Water Occupancy on the Excess Adsorption of Methane in Montmorillonites. J. Nat. Gas Sci. Eng. 2020, 80, 103393. [Google Scholar] [CrossRef]
- Guechi, E.-K.; Hamdaoui, O. Biosorption of Methylene Blue from Aqueous Solution by Potato (Solanum tuberosum) Peel: Equilibrium Modelling, Kinetic, and Thermodynamic Studies. Desalin. Water Treat. 2015, 57, 10270–10285. [Google Scholar] [CrossRef]
- Legras, A.; Kondor, A.; Heitzmann, M.T.; Truss, R.W. Inverse Gas Chromatography for Natural Fibre Characterisation: Identification of the Critical Parameters to Determine the Brunauer—Emmett—Teller Specific Surface Area. J. Chromatogr. A 2015, 1425, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Pillai, I.M.S.; Gupta, A.K. Performance Analysis of a Continuous Serpentine Flow Reactor for Electrochemical Oxidation of Synthetic and Real Textile Wastewater: Energy Consumption, Mass Transfer Coefficient and Economic Analysis. J. Environ. Manag. 2017, 193, 524–531. [Google Scholar] [CrossRef]
- Jojoa-Sierra, D.; Silva-Agredo, J.; Herrera-Calderon, E.; Torres-Palma, R. Elimination of the Antibiotic Norfloxacin in Municipal Wastewater, Urine and Seawater by Electrochemical Oxidation on IrO2 Anodes. Sci. Total Environ. 2016, 575, 1228–1238. [Google Scholar] [CrossRef]
- Bouyahia, C.; Rahmani, M.; Bensemlali, M.; El Hajjaji, S.; Slaoui, M.; Bencheikh, I.; Azoulay, K.; Labjar, N. Influence of Extraction Techniques on the Adsorption Capacity of Methylene Blue on Sawdust: Optimization by Full Factorial Design. Mater. Sci. Energy Technol. 2023, 6, 114–123. [Google Scholar] [CrossRef]
- Arenas, C.N.; Vasco, A.; Betancur, M.; Martínez, J.D. Removal of Indigo Carmine (IC) from Aqueous Solution by Adsorption through Abrasive Spherical Materials Made of Rice Husk Ash (RHA). Process. Saf. Environ. Prot. 2017, 106, 224–238. [Google Scholar] [CrossRef]
- Paredes-Laverde, M.; Salamanca, M.; Diaz-Corrales, J.D.; Flórez, E.; Silva-Agredo, J.; Torres-Palma, R.A. Understanding the Removal of an Anionic Dye in Textile Wastewaters by Adsorption on ZnCl2 Activated Carbons from Rice and Coffee Husk Wastes: A Combined Experimental and Theoretical Study. J. Environ. Chem. Eng. 2021, 9, 105685. [Google Scholar] [CrossRef]
- Pan, X.; Qin, X.; Zhang, Q.; Ge, Y.; Ke, H.; Cheng, G. N- and S-Rich Covalent Organic Framework for Highly Efficient Removal of Indigo Carmine and Reversible Iodine Capture. Microporous Mesoporous Mater. 2020, 296, 109990. [Google Scholar] [CrossRef]
- Bentahar, S.; Dbik, A.; El Khomri, M.; El Messaoudi, N.; Lacherai, A. Adsorption of Methylene Blue, Crystal Violet and Congo Red from Binary and Ternary Systems with Natural Clay: Kinetic, Isotherm, and Thermodynamic. J. Environ. Chem. Eng. 2017, 5, 5921–5932. [Google Scholar] [CrossRef]
- Lang, W.; Yang, Q.; Song, X.; Yin, M.; Zhou, L. Cu Nanoparticles Immobilized on Montmorillonite by Biquaternary Ammonium Salts: A Highly Active and Stable Heterogeneous Catalyst for Cascade Sequence to Indole-2-Carboxylic Esters. RSC Adv. 2017, 7, 13754–13759. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.A.; Somani, R.S.; Bajaj, H.C.; Jasra, R.V. Nanoclays for Polymer Nanocomposites, Paints, Inks, Greases and Cosmetics Formulations, Drug Delivery Vehicle and Waste Water Treatment. Bull. Mater. Sci. 2006, 29, 133–145. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, T.; Zhang, Z.; Xie, M. Hydrothermal Synthesis of a Graphene/Magnetite/Montmorillonite Nanocomposite and Its Ultrasonically Assisted Methylene Blue Adsorption. J. Mater. Sci. 2019, 54, 11037–11055. [Google Scholar] [CrossRef]
- Samudrala, S.P.; Kandasamy, S.; Bhattacharya, S. Turning Biodiesel Waste Glycerol into 1,3-Propanediol: Catalytic Performance of Sulphuric Acid-Activated Montmorillonite Supported Platinum Catalysts in Glycerol Hydrogenolysis. Sci. Rep. 2018, 8, 7484. [Google Scholar] [CrossRef]
- Martins, M.G.; Martins, D.O.T.A.; De Carvalho, B.L.C.; Mercante, L.A.; Soriano, S.; Andruh, M.; Vieira, M.D.; Vaz, M.G.F. Synthesis and Characterization of Montmorillonite Clay Intercalated with Molecular Magnetic Compounds. J. Solid State Chem. 2015, 228, 99–104. [Google Scholar] [CrossRef]
- Yi, D.; Yang, H.; Zhao, M.; Huang, L.; Camino, G.; Frache, A.; Yang, R. A Novel, Low Surface Charge Density, Anionically Modified Montmorillonite for Polymer Nanocomposites. RSC Adv. 2017, 7, 5980–5988. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Peng, K. MoSe2/Montmorillonite Composite Nanosheets: Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalytic Activity. Minerals 2018, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, Y.; Liu, S.; Wu, Y.; Zhou, Q.; Zhang, Y.; Zheng, X.; Han, Y.; Xie, C.; Liu, N. Adsorption of Deoxynivalenol by Pillared Montmorillonite. Food Chem. 2021, 343, 128391. [Google Scholar] [CrossRef]
- Panda, A.K.; Mishra, B.G.; Mishra, D.K.; Singh, R.K. Effect of Sulphuric Acid Treatment on the Physico-Chemical Characteristics of Kaolin Clay. Colloids Surf. A Physicochem. Eng. Asp. 2010, 363, 98–104. [Google Scholar] [CrossRef]
- Dogan, M.; Umran Dogan, A.; Irem Yesilyurt, F.; Alaygut, D.; Buckner, I.; Wurster, D.E. Baseline Studies of the Clay Minerals Society Special Clays: Specific Suerface Area by the Brunauer Emmett Teller (BET) Method. Clays Clay Miner. 2007, 55, 534–541. [Google Scholar] [CrossRef]
- Abbasi, A.R.; Karimi, M.; Daasbjerg, K. Efficient Removal of Crystal Violet and Methylene Blue from Wastewater by Ultrasound Nanoparticles Cu-MOF in Comparison with Mechanosynthesis Method. Ultrason. Sonochem. 2017, 37, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Szlachta, M.; Wójtowicz, P. Adsorption of Methylene Blue and Congo Red from Aqueous Solution by Activated Carbon and Carbon Nanotubes. Water Sci. Technol. 2013, 68, 2240–2248. [Google Scholar] [CrossRef]
- Yao, M.; Kuratani, K.; Kojima, T.; Takeichi, N.; Senoh, H.; Kiyobayashi, T. Indigo Carmine: An Organic Crystal as a Positive-Electrode Material for Rechargeable Sodium Batteries. Sci. Rep. 2014, 4, 3650. [Google Scholar] [CrossRef] [Green Version]
- Adams, E. The Antibacterial Action of Crystal Violet. J. Pharm. Pharmacol. 1967, 19, 821–826. [Google Scholar] [CrossRef]
- Dotto, G.L.; Santos, J.M.N.; Rodrigues, I.L.; Rosa, R.; Pavan, F.A.; Lima, E.C. Adsorption of Methylene Blue by Ultrasonic Surface Modified Chitin. J. Colloid Interface Sci. 2015, 446, 133–140. [Google Scholar] [CrossRef]
- Adel, M.; Ahmed, M.A.; Mohamed, A.A. Effective Removal of Indigo Carmine Dye from Wastewaters by Adsorption onto Mesoporous Magnesium Ferrite Nanoparticles. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100550. [Google Scholar] [CrossRef]
- Wang, H.; Luo, W.; Guo, R.; Li, D.; Xue, B. Effective Adsorption of Congo Red Dye by Magnetic Chitosan Prepared by Solvent-Free Ball Milling. Mater. Chem. Phys. 2022, 292, 126857. [Google Scholar] [CrossRef]
- Gutiérrez-Segura, E.; Solache-Ríos, M.; Colín-Cruz, A. Sorption of Indigo Carmine by a Fe-Zeolitic Tuff and Carbonaceous Material from Pyrolyzed Sewage Sludge. J. Hazard. Mater. 2009, 170, 1227–1235. [Google Scholar] [CrossRef]
- Meroufel, B.; Benali, O.; Benyahia, M.; Benmoussa, Y.; Zenasni, M.A. Adsorptive Removal of Anionic Dye from Aqueous Solutions by Algerian Kaolin: Characteristics, Isotherm, Kinetic and Thermodynamic Studies. J. Mater. Environ. Sci. 2013, 4, 482–491. [Google Scholar]
- Pathania, D.; Sharma, A.; Sethi, V. Microwave Induced Graft Copolymerization of Binary Monomers onto Luffa Cylindrica Fiber: Removal of Congo Red. Procedia Eng. 2017, 200, 408–415. [Google Scholar] [CrossRef]
- Dong, W.; Lu, Y.; Wang, W.; Zong, L.; Zhu, Y.; Kang, Y.; Wang, A. A New Route to Fabricate High-Efficient Porous Silicate Adsorbents by Simultaneous Inorganic-Organic Functionalization of Low-Grade Palygorskite Clay for Removal of Congo Red. Microporous Mesoporous Mater. 2019, 277, 267–276. [Google Scholar] [CrossRef]
- Ghosh, D.; Bhattacharyya, K.G. Adsorption of Methylene Blue on Kaolinite. Appl. Clay Sci. 2002, 20, 295–300. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S. Mesoporous Iraqi Red Kaolin Clay as an Efficient Adsorbent for Methylene Blue Dye: Adsorption Kinetic, Isotherm and Mechanism Study. Surf. Interfaces 2020, 18, 100422. [Google Scholar] [CrossRef]
- Jayasantha Kumari, H.; Krishnamoorthy, P.; Arumugam, T.K.; Radhakrishnan, S.; Vasudevan, D. An Efficient Removal of Crystal Violet Dye from Waste Water by Adsorption onto TLAC/Chitosan Composite: A Novel Low Cost Adsorbent. Int. J. Biol. Macromol. 2017, 96, 324–333. [Google Scholar] [CrossRef]
- Zhai, Q. Studies of Adsorption of Crystal Violet from Aqueous Solution by Nano Mesocellular Foam Silica: Process Equilibrium, Kinetic, Isotherm, and Thermodynamic Studies. Water Sci. Technol. 2020, 81, 2092–2108. [Google Scholar] [CrossRef]
- Hamza, W.; Dammak, N.; Hadjltaief, H.B.; Eloussaief, M.; Benzina, M. Sono-Assisted Adsorption of Cristal Violet Dye onto Tunisian Smectite Clay: Characterization, Kinetics and Adsorption Isotherms. Ecotoxicol. Environ. Saf. 2018, 163, 365–371. [Google Scholar] [CrossRef]
- Chikate, R.C.; Kadu, B.S. Improved Photocatalytic Activity of CdSe-Nanocomposites: Effect of Montmorillonite Support towards Efficient Removal of Indigo Carmine. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2014, 124, 138–147. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, J.; Wang, F.; Chu, Y.; Yang, L.; Xia, M. Mechanism of Carboxymethyl Chitosan Hybrid Montmorillonite and Adsorption of Pb (II) and Congo Red by CMC-MMT Organic-Inorganic Hybrid Composite. Int. J. Biol. Macromol. 2020, 149, 1161–1169. [Google Scholar] [CrossRef]
- El Haouti, R.; Ouachtak, H.; El Guerdaoui, A.; Amedlous, A.; Amaterz, E.; Haounati, R.; Addid, A.A.; Akbal, F.; El Alem, N.; Taha, M.L. Cationic Dyes Adsorption by Na-Montmorillonite Nano Clay: Experimental Study Combined with a Theoretical Investigation Using DFT- Based Descriptors and Molecular Dynamics Simulations. J. Mol. Liq. 2019, 290, 111139. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, J.; Lu, X.; Wang, R. Surface Acidity of Quartz: Understanding the Crystallographic Control. Phys. Chem. Chem. Phys. 2014, 16, 26909–26916. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; Bezerra, C.; de Oliveira Bezerra, C.; Bergamasco, R. Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Mpelane, S.; Mketo, N.; Bingwa, N.; Nomngongo, P.N. Synthesis of Mesoporous Iron Oxide Nanoparticles for Adsorptive Removal of Levofloxacin from Aqueous Solutions: Kinetics, Isotherms, Thermodynamics and Mechanism. Alex. Eng. J. 2022, 61, 8457–8468. [Google Scholar] [CrossRef]
- Paredes-Laverde, M.; Salamanca, M.; Silva-Agredo, J.; Manrique-Losada, L.; Torres-Palma, R.A. Selective Removal of Acetaminophen in Urine with Activated Carbons from Rice (Oryza sativa) and Coffee (Co Ffea arabica) Husk: Effect of Activating Agent, Activation Temperature and Analysis of Physical-Chemical Interactions. J. Environ. Chem. Eng. 2019, 7, 103318. [Google Scholar] [CrossRef]
EDS Analysis | |||
---|---|---|---|
Element | Wt (%) | Element | Wt (%) |
C | 3.25 | Mg | 2.19 |
N | 0.76 | Al | 17.13 |
O | 29.01 | Si | 36.50 |
Na | 0.13 | Fe | 11.02 |
Nitrogen physisorption analysis | |||
Specific surface area (BET) 82.5 m2 g−1 | |||
Total pore volume 0.004 cm3 g−1 | |||
Average pore width 65.5 nm | |||
PZC | |||
2.6 0.1 |
Isotherm Models | Parameters | Dye | |||
---|---|---|---|---|---|
IC | CR | MB | CV | ||
Langmuir | qm (mg g−1) | 1.07 | 16.2 | 14.1 | 18.2 |
qm (mmol g−1) | 2.29 × 10−3 | 2.33 × 10−2 | 4.41 × 10−2 | 4.62 × 10−2 | |
KL (L mg−1) | 1.18 | 0.287 | 0.496 | 0.642 | |
KL (L mmol−1) | 550 | 200 | 159 | 253 | |
RL | 4.23 × 10−3–4.25 × 10−4 | 1.72 × 10−2–1.74 × 10−3 | 9.98 × 10−3–1.01 × 10−3 | 7.73 × 10−3–7.78 × 10−4 | |
R2 | 0.9992 | 0.9909 | 0.9914 | 0.9999 | |
APE (%) | 0.913 | 5.46 | 1.96 | 0.981 | |
Δq (%) | 1.01 | 7.74 | 3.40 | 1.47 | |
Freundlich | KF (mg g−1)(L mg−1)1/n | 1.58 | 13.9 | 12.9 | 26.1 |
n | 4.44 | 1.55 | 0.719 | 0.688 | |
R2 | 0.9885 | 0.9899 | 0.9870 | 0.9884 | |
APE (%) | 3.51 | 7.44 | 4.70 | 5.21 | |
Δq (%) | 5.43 | 11.48 | 6.34 | 7.37 | |
Redlich-Peterson | KRP (L g−1) | 133 | 360 | 361 | 187 |
aR | 155 | 47.7 | 41.9 | 19.1 | |
0.95 | 0.91 | 0.89 | 0.95 | ||
R2 | 0.9990 | 0.9975 | 0.9997 | 0.9999 | |
APE (%) | 0.715 | 0.825 | 0.426 | 0.261 | |
Δq (%) | 0.984 | 1.35 | 0.640 | 0.554 |
Adsorbed Dye | Adsorbent | qm (mg g−1) | qm (mmol g−1) | Reference |
---|---|---|---|---|
IC | Abrasive spherical materials made of rice husk ash | 0.4 | 8.58 × 10−4 | [17] |
MMT | 1.07 | 2.29 × 10−3 | Present Study | |
Fe-zeolitic | 32.8 | 7.04 × 10−2 | [38] | |
Activated carbon with ZnCl2 from rice husk | 36.6 | 7.85 × 10−2 | [18] | |
CR | Algerian kaolin | 5.94 | 8.53 × 10−3 | [39] |
MMT | 16.2 | 2.33 × 10−2 | Present Study | |
Copolymer of luffa cylindrica fibre | 19.2 | 2.76 × 10−2 | [40] | |
Palygorskite clay | 51.2 | 7.35 × 10−2 | [41] | |
MB | Sawdust | 7.84 | 2.45 × 10−2 | [16] |
Kaolinite | 8.88 | 2.78 × 10−2 | [42] | |
MMT | 14.1 | 4.41 × 10−2 | Present Study | |
Mesoporous Iraqi red kaolin clay | 240 | 7.52 × 10−1 | [43] | |
CV | Composite of typha latifolia activated carbon | 2.37 | 6.02 × 10−3 | [44] |
Nano mesocellular foam silica | 6.60 | 1.68 × 10−2 | [45] | |
MMT | 18.2 | 4.62 × 10−2 | Present Study | |
Tunisian Smectite Clay | 86.5 | 2.20 × 10−1 | [46] |
Pseudo-First Order Model | ||||||||||||||||
Dye | Adsorbent Dose (g L−1) | qeq, exp (mg g−1) | qeq, exp (mmol g−1) | qeq, cal (mg g−1) | qeq, cal (mmol g−1) | k1 (min−1) | R2 | APE (%) | Δq (%) | |||||||
IC | 0.2 | 0.919 | 1.97 × 10−3 | 0.957 | 2.05 × 10−3 | 0.0758 | 0.9912 | 6.05 | 9.61 | |||||||
0.6 | 0.911 | 1.95 × 10−3 | 0.942 | 2.02 × 10−3 | 0.0407 | 0.9887 | 4.65 | 7.59 | ||||||||
1 | 0.909 | 1.95 × 10−3 | 0.856 | 1.84 × 10−3 | 0.146 | 0.9701 | 6.83 | 10.3 | ||||||||
2 | 0.722 | 1.55 × 10−3 | 0.684 | 1.47 × 10−3 | 0.160 | 0.9803 | 7.05 | 10.0 | ||||||||
CR | 0.2 | 21.4 | 3.07 × 10−2 | 18.2 | 2.61 × 10−2 | 6.01 | 0.9191 | 14.8 | 19.0 | |||||||
0.6 | 9.81 | 1.41 × 10−2 | 8.49 | 1.22 × 10−2 | 17.8 | 0.9404 | 13.4 | 18.9 | ||||||||
1 | 7.56 | 1.09 × 10−2 | 7.81 | 1.12 × 10−2 | 0.209 | 0.9802 | 3.30 | 4.93 | ||||||||
2 | 4.06 | 5.83 × 10−3 | 3.83 | 5.50 × 10−3 | 7.75 | 0.9618 | 5.72 | 8.20 | ||||||||
MB | 0.2 | 14.9 | 4.66 × 10−2 | 14.2 | 4.44 × 10−2 | 4.15 | 0.9832 | 4.76 | 6.76 | |||||||
0.6 | 5.50 | 1.72 × 10−2 | 5.46 | 1.71 × 10−2 | 0.809 | 0.9891 | 0.789 | 1.13 | ||||||||
1 | 3.59 | 1.12 × 10−2 | 3.52 | 1.10 × 10−2 | 18.8 | 0.9999 | 1.87 | 2.68 | ||||||||
2 | 1.87 | 5.85 × 10−3 | 1.82 | 5.69 × 10−3 | 4.14 | 0.9873 | 2.61 | 3.70 | ||||||||
CV | 0.2 | 22.7 | 5.76 × 10−2 | 21.2 | 5.38 × 10−2 | 18.3 | 0.9669 | 6.60 | 9.35 | |||||||
0.6 | 7.87 | 2.00 × 10−2 | 7.69 | 1.95 × 10−2 | 0.371 | 0.9767 | 2.29 | 3.24 | ||||||||
1 | 4.96 | 1.26 × 10−2 | 4.89 | 1.24 × 10−2 | 17.96 | 0.9864 | 1.35 | 1.92 | ||||||||
2 | 2.51 | 6.37 × 10−3 | 2.50 | 6.35 × 10−3 | 0.741 | 0.9877 | 0.398 | 0.563 | ||||||||
Pseudo-Second Order Model | ||||||||||||||||
Dye | Adsorbent Dose (g L−1) | qeq, exp (mg g−1) | qeq, exp (mmol g−1) | qeq, cal (mg g−1) | qeq, cal (mmol g−1) | k2 (mg g−1 min−1) | k2 (mmol g−1 min−1) | R2 | APE (%) | Δq (%) | ||||||
IC | 0.2 | 0.919 | 1.97 × 10−3 | 0.983 | 2.11 × 10−3 | 0.0636 | 1.36 × 10−4 | 0.9967 | 3.50 | 6.67 | ||||||
0.6 | 0.911 | 1.95 × 10−3 | 0.934 | 2.00 × 10−3 | 0.0674 | 1.45 × 10−4 | 0.9981 | 4.62 | 7.01 | |||||||
1 | 0.909 | 1.95 × 10−3 | 0.906 | 1.94 × 10−3 | 0.207 | 4.44 × 10−4 | 0.9919 | 2.59 | 4.16 | |||||||
2 | 0.722 | 1.55 × 10−3 | 0.767 | 1.64 × 10−3 | 0.289 | 6.20 × 10−4 | 0.9963 | 6.47 | 9.1 | |||||||
CR | 0.2 | 21.4 | 3.07 × 10−2 | 20.6 | 2.96 × 10−2 | 0.0239 | 3.43 × 10−5 | 0.9901 | 3.61 | 5.36 | ||||||
0.6 | 9.81 | 1.41 × 10−2 | 9.41 | 1.35 × 10−2 | 0.0634 | 9.10 × 10−5 | 0.9974 | 3.99 | 5.89 | |||||||
1 | 7.56 | 1.09 × 10−2 | 7.66 | 1.10 × 10−2 | 0.0815 | 1.17 × 10−4 | 0.9956 | 1.31 | 2.43 | |||||||
2 | 4.06 | 5.83 × 10−3 | 4.15 | 5.96 × 10−3 | 0.180 | 2.58 × 10−4 | 0.9968 | 2.15 | 3.35 | |||||||
MB | 0.2 | 14.9 | 4.66 × 10−2 | 14.7 | 4.60 × 10−2 | 0.147 | 4.60 × 10−4 | 0.9981 | 1.41 | 2.08 | ||||||
0.6 | 5.50 | 1.72 × 10−2 | 5.49 | 1.72 × 10−2 | 1.39 | 4.35 × 10−3 | 0.9999 | 0.244 | 0.403 | |||||||
1 | 3.59 | 1.12 × 10−2 | 3.52 | 1.10 × 10−2 | 1.76 | 5.50 × 10−3 | 0.9999 | 1.87 | 2.68 | |||||||
2 | 1.87 | 5.85 × 10−3 | 1.85 | 5.78 × 10−3 | 1.80 | 5.63 × 10−3 | 0.9999 | 1 | 1.45 | |||||||
CV | 0.2 | 22.7 | 5.76 × 10−2 | 21.2 | 5.38 × 10−2 | 0.0515 | 1.31 × 10−4 | 0.9973 | 6.60 | 9.35 | ||||||
0.6 | 7.87 | 2.00 × 10−2 | 7.99 | 2.03 × 10−2 | 0.117 | 2.97 × 10−4 | 0.9999 | 1.52 | 2.16 | |||||||
1 | 4.96 | 1.26 × 10−2 | 4.95 | 1.26 × 10−2 | 1.28 | 3.25 × 10−3 | 0.9999 | 0.145 | 0.223 | |||||||
2 | 2.51 | 6.37 × 10−3 | 2.52 | 6.40 × 10−3 | 2.27 | 5.76 × 10−3 | 0.9999 | 0.398 | 0.563 |
Cost Production of MMT | |||||
Items | Unit Price | Consumption | Cost (USD) | ||
Power | 0.160 USD kWh−1 | 21.2 kW h−1 | 3.39 | ||
MMT | 2.13 USD kg−1 | 1.11 kg | 2.36 | ||
Water | 0.950 USD m−3 | 0.0110 m3 | 0.0105 | ||
Total Cost production MMT (USD kg−1) | 5.76 | ||||
Cost of MMT for removal of dyes | |||||
Dye | IC | CR | MB | CV | |
qm (g kg−1) | 0.922 | 16.2 | 14.1 | 18.2 | |
(g dye/USD) | 0.160 | 2.81 | 2.45 | 3.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Laverde, M.; Montaño, D.F.; Torres-Palma, R.A. Montmorillonite-Based Natural Adsorbent from Colombia for the Removal of Organic Pollutants from Water: Isotherms, Kinetics, Nature of Pollutants, and Matrix Effects. Water 2023, 15, 1046. https://doi.org/10.3390/w15061046
Paredes-Laverde M, Montaño DF, Torres-Palma RA. Montmorillonite-Based Natural Adsorbent from Colombia for the Removal of Organic Pollutants from Water: Isotherms, Kinetics, Nature of Pollutants, and Matrix Effects. Water. 2023; 15(6):1046. https://doi.org/10.3390/w15061046
Chicago/Turabian StyleParedes-Laverde, Marcela, Diego F. Montaño, and Ricardo A. Torres-Palma. 2023. "Montmorillonite-Based Natural Adsorbent from Colombia for the Removal of Organic Pollutants from Water: Isotherms, Kinetics, Nature of Pollutants, and Matrix Effects" Water 15, no. 6: 1046. https://doi.org/10.3390/w15061046
APA StyleParedes-Laverde, M., Montaño, D. F., & Torres-Palma, R. A. (2023). Montmorillonite-Based Natural Adsorbent from Colombia for the Removal of Organic Pollutants from Water: Isotherms, Kinetics, Nature of Pollutants, and Matrix Effects. Water, 15(6), 1046. https://doi.org/10.3390/w15061046