Impacts of Solar Radiation Management on Hydro-Climatic Extremes in Southeast Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Projections
2.3. Hydrological Model
2.4. Hydro-Climatic Impact Assessment Framework
2.4.1. Bias Correction of Climate Projections
2.4.2. Hydrological Modelling
2.4.3. Hydro-Climatic Modelling
- The 20-year mean of annual temperature, precipitation and streamflow were used to assess changes in climatological conditions across the basin.
- The Expert Team of Climate Change Detection Indices (ETCDDI) [50] were then used for climatic extreme analysis, specifically focused on the common flood-related indices: the number of precipitation days with greater than 10 mm/day (R10 mm), 20 mm/day (R20 mm), 50 mm/day (R50 mm) and annual maximum daily rainfall amount (Rx1d).
3. Results
3.1. Bias-Corrected Climate Projections
3.2. Climatic Changes
3.3. Climatic Extremes Changes
3.4. SWAT+ Calibration and Validation
3.5. Hydrological Changes
3.6. Hydrological Extremes Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.B.; Huda, M.B.; Rather, N.A.; Eslamian, S. Potential of Solar Energy in India, Ch. 10 in Handbook of Eurasian Forecasting; Nova Science Publishers: New York, NY, USA, 2022. [Google Scholar]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Ridder, N.N.; Ukkola, A.M.; Pitman, A.J.; Perkins-Kirkpatrick, S.E. Increased occurrence of high impact compound events under climate change. Npj Clim. Atmos. Sci. 2022, 5, 3. [Google Scholar] [CrossRef]
- Ward, P.J.; Blauhut, V.; Bloemendaal, N.; Daniell, J.E.; de Ruiter, M.C.; Duncan, M.J.; Emberson, R.; Jenkins, S.F.; Kirschbaum, D.; Kunz, M.; et al. Review article: Natural hazard risk assessments at the global scale. Nat. Hazards Earth Syst. Sci. 2020, 20, 1069–1096. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Lenderink, G.; Prein, A.F.; Westra, S.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Do, H.X.; et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2021, 2, 107–122. [Google Scholar] [CrossRef]
- Eccles, R.; Zhang, H.; Hamilton, D. A review of the effects of climate change on riverine flooding in subtropical and tropical regions. J. Water Clim. Chang. 2019, 10, 687–707. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Jongman, B. Effective adaptation to rising flood risk. Nat. Commun. 2018, 9, 1986. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5°C. IPCC Spec. Rep. Impacts Glob. Warm. 2018, 1, 43–50. [Google Scholar]
- Kravitz, B.; Robock, A.; Forster, P.M.; Haywood, J.M.; Lawrence, M.G.; Schmidt, H. An overview of the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 2013, 118, 13103–13107. [Google Scholar] [CrossRef]
- Vaughan, N.E.; Lenton, T.M. A review of climate geoengineering proposals. Clim. Chang. 2011, 109, 745–790. [Google Scholar] [CrossRef]
- Lenton, T.M.; Vaughan, N.E. The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys. 2009, 9, 5539–5561. [Google Scholar] [CrossRef] [Green Version]
- Kravitz, B.; MacMartin, D.G. Uncertainty and the basis for confidence in solar geoengineering research. Nat. Rev. Earth Environ. 2020, 1, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Raimi, K.T. Public perceptions of geoengineering. Curr. Opin. Psychol. 2021, 42, 66–70. [Google Scholar] [CrossRef]
- Wiertz, T. Visions of Climate Control:Solar Radiation Management in Climate Simulations. Sci. Technol. Hum. Values 2016, 41, 438–460. [Google Scholar] [CrossRef]
- Tilmes, S.; Fasullo, J.; Lamarque, J.F.; Marsh, D.R.; Mills, M.; Alterskjaer, K.; Muri, H.; Kristjansson, J.E.; Boucher, O.; Schulz, M.; et al. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 2013, 118, 11036–11058. [Google Scholar] [CrossRef] [Green Version]
- Dagon, K.; Schrag, D.P. Exploring the Effects of Solar Radiation Management on Water Cycling in a Coupled Land–Atmosphere Model. J. Clim. 2016, 29, 2635–2650. [Google Scholar] [CrossRef]
- Pinto, I.; Jack, C.; Lennard, C.; Tilmes, S.; Odoulami, R.C. Africa’s Climate Response to Solar Radiation Management With Stratospheric Aerosol. Geophys. Res. Lett. 2020, 47, e2019GL086047. [Google Scholar] [CrossRef] [Green Version]
- Kuswanto, H.; Kravitz, B.; Miftahurrohmah, B.; Fauzi, F.; Sopahaluwaken, A.; Moore, J. Impact of solar geoengineering on temperatures over the Indonesian Maritime Continent. Int. J. Climatol. 2022, 42, 2795–2814. [Google Scholar] [CrossRef]
- Russell, L.M.; Rasch, P.J.; Mace, G.M.; Jackson, R.B.; Shepherd, J.; Liss, P.; Leinen, M.; Schimel, D.; Vaughan, N.E.; Janetos, A.C.; et al. Ecosystem impacts of geoengineering: A review for developing a science plan. Ambio 2012, 41, 350–369. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.R.; Ji, D.Y.; Miao, C.Y.; Muri, H.; Moore, J.C. Global streamflow and flood response to stratospheric aerosol geoengineering. Atmos. Chem. Phys. 2018, 18, 16033–16050. [Google Scholar] [CrossRef] [Green Version]
- Kleidon, A.; Kravitz, B.; Renner, M. The hydrological sensitivity to global warming and solar geoengineering derived from thermodynamic constraints. Geophys. Res. Lett. 2015, 42, 138–144. [Google Scholar] [CrossRef]
- Camilloni, I.; Montroull, N.; Gulizia, C.; Saurral, R.I. La Plata Basin Hydroclimate Response to Solar Radiation Modification With Stratospheric Aerosol Injection. Front. Clim. 2022, 4, 763983. [Google Scholar] [CrossRef]
- Cheng, W.; MacMartin, D.; Dagon, K.; Kravitz, B.; Tilmes, S.; Richter, J.H.; Mills, M.J.; Simpson, I.R. Soil Moisture and Other Hydrological Changes in a Stratospheric Aerosol Geoengineering Large Ensemble. J. Geophys. Res. Atmos. 2019, 124, 12773–12793. [Google Scholar] [CrossRef]
- Tew, Y.L.; Tan, M.L.; Juneng, L.; Chun, K.P.; Hassan, M.H.b.; Osman, S.b.; Samat, N.; Chang, C.K.; Kabir, M.H. Rapid Extreme Tropical Precipitation and Flood Inundation Mapping Framework (RETRACE): Initial Testing for the 2021–2022 Malaysia Flood. ISPRS Int. J. Geo-Inf. 2022, 11, 378. [Google Scholar] [CrossRef]
- Anua, N.; Tan, M.L.; Chan, N.W. Community resilience to the 2014 flood: A case study in the Kampung Manek Urai Lama, Kuala Krai, Kelantan. GEOGRAFIA—Malays. J. Soc. Space 2021, 17, 196–210. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 1–10. [Google Scholar] [CrossRef]
- Tan, M.L.; Liang, J.; Samat, N.; Chan, N.W.; Haywood, J.M.; Hodges, K. Hydrological Extremes and Responses to Climate Change in the Kelantan River Basin, Malaysia, Based on the CMIP6 HighResMIP Experiments. Water 2021, 13, 1472. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Cracknell, A.P.; Yusop, Z. Changes in precipitation extremes over the Kelantan River Basin, Malaysia. Int. J. Climatol. 2017, 37, 3780–3797. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Srinivasan, R.; Arnold, J.G.; Yang, X. A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water 2019, 11, 914. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Juneng, L.; Tangang, F.T.; Samat, N.; Chan, N.W.; Yusop, Z.; Ngai, S.T. SouthEast Asia HydrO-meteorological droughT (SEA-HOT) framework: A case study in the Kelantan River Basin, Malaysia. Atmos. Res. 2020, 246, 105155. [Google Scholar] [CrossRef]
- Mills, M.J.; Richter, J.H.; Tilmes, S.; Kravitz, B.; MacMartin, D.G.; Glanville, A.A.; Tribbia, J.J.; Lamarque, J.-F.; Vitt, F.; Schmidt, A.; et al. Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM). J. Geophys. Res. Atmos. 2017, 122, 13–061. [Google Scholar] [CrossRef]
- MacMartin, D.G.; Kravitz, B.; Tilmes, S.; Richter, J.H.; Mills, M.J.; Lamarque, J.-F.; Tribbia, J.J.; Vitt, F. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations. J. Geophys. Res. Atmos. 2017, 122, 12–574. [Google Scholar] [CrossRef]
- Tilmes, S.; Richter, J.H.; Kravitz, B.; MacMartin, D.G.; Mills, M.J.; Simpson, I.R.; Glanville, A.S.; Fasullo, J.T.; Phillips, A.S.; Lamarque, J.-F.; et al. CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project. Bull. Am. Meteorol. Soc. 2018, 99, 2361–2371. [Google Scholar] [CrossRef]
- Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Volk, M.; Srinivasan, R. Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 115–130. [Google Scholar] [CrossRef]
- Arnold, J.G.; Bieger, K.; White, M.J.; Srinivasan, R.; Dunbar, J.A.; Allen, P.M. Use of Decision Tables to Simulate Management in SWAT+. Water 2018, 10, 713. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Grassland, J.R.W. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Agricultural Research Service Blackland Research Center: Temple, TX, USA, 2011.
- Singh, L.; Saravanan, S. Simulation of monthly streamflow using the SWAT model of the Ib River watershed, India. HydroResearch 2020, 3, 95–105. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.; Maathuis, B.; Hein-Griggs, D.; Alvarado-Gamboa, L.-F. Performance Evaluation of Bias Correction Methods for Climate Change Monthly Precipitation Projections over Costa Rica. Water 2020, 12, 482. [Google Scholar] [CrossRef] [Green Version]
- Boé, J.; Terray, L.; Habets, F.; Martin, E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. 2007, 27, 1643–1655. [Google Scholar] [CrossRef]
- Patel, J.; Gnanaseelan, C.; Chowdary, J.S.; Parekh, A. A quantile mapping approach-based bias correction in Coupled Model Intercomparison Project Phase 5 models for decadal temperature predictions over India. Int. J. Climatol. 2022, 42, 2455–2469. [Google Scholar] [CrossRef]
- Tan, M.L.; Juneng, L.; Tangang, F.T.; Chan, N.W.; Ngai, S.T. Future hydro-meteorological drought of the Johor River Basin, Malaysia, based on CORDEX-SEA projections. Hydrol. Sci. J. 2019, 64, 921–933. [Google Scholar] [CrossRef]
- Ngai, S.T.; Tangang, F.; Juneng, L. Bias correction of global and regional simulated daily precipitation and surface mean temperature over Southeast Asia using quantile mapping method. Glob. Planet. Chang. 2017, 149, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Senent-Aparicio, J.; George, C.; Srinivasan, R. Introducing a new post-processing tool for the SWAT+ model to evaluate environmental flows. Environ. Model. Softw. 2021, 136, 104944. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Data, C. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. In World Meteorological Organization TD-1500; World Meteorological Organisation: Geneva, Switzerland, 2009; p. 52. [Google Scholar]
- Rupp, D.E.; Abatzoglou, J.T.; Hegewisch, K.C.; Mote, P.W. Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos. 2013, 118, 10884–10906. [Google Scholar] [CrossRef]
- Stjern, C.W.; Samset, B.H.; Boucher, O.; Iversen, T.; Lamarque, J.F.; Myhre, G.; Shindell, D.; Takemura, T. How aerosols and greenhouse gases influence the diurnal temperature range. Atmos. Chem. Phys. 2020, 20, 13467–13480. [Google Scholar] [CrossRef]
- Liu, Z.; Lang, X.; Jiang, D. Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: A surface energy budget perspective. Atmos. Chem. Phys. 2022, 22, 7667–7680. [Google Scholar] [CrossRef]
- Russotto, R.D.; Ackerman, T.P. Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction. Atmos. Chem. Phys. 2018, 18, 11905–11925. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Navarro, I.C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pérez-Sánchez, J.; Senent-Aparicio, J. Impact of Climate Change on the Hydrology of the Forested Watershed That Drains to Lake Erken in Sweden: An Analysis Using SWAT+ and CMIP6 Scenarios. Forests 2021, 12, 1803. [Google Scholar] [CrossRef]
- Mendonça dos Santos, F.; Proença de Oliveira, R.; Augusto Di Lollo, J. Effects of Land Use Changes on Streamflow and Sediment Yield in Atibaia River Basin—SP, Brazil. Water 2020, 12, 1711. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Pereira, D.D.; Martinez, M.A.; Pruski, F.F.; da Silva, D.D. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests. J. Hydrol. Reg. Stud. 2016, 7, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H.; Ghazal, K.A. Assessment of climate change impacts on water balance components of Heeia watershed in Hawaii. J. Hydrol. Reg. Stud. 2016, 8, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.C.; Hawcroft, M.K.; Haywood, J.M.; Jones, A.; Guo, X.; Moore, J.C. Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering. Earth’s Future 2018, 6, 230–251. [Google Scholar] [CrossRef] [Green Version]
- MacMartin, D.G.; Visioni, D.; Kravitz, B.; Richter, J.H.; Felgenhauer, T.; Lee, W.R.; Morrow, D.R.; Parson, E.A.; Sugiyama, M. Scenarios for modeling solar radiation modification. Proc. Natl. Acad. Sci. USA 2022, 119, e2202230119. [Google Scholar] [CrossRef]
- Richter, J.H.; Visioni, D.; MacMartin, D.G.; Bailey, D.A.; Rosenbloom, N.; Dobbins, B.; Lee, W.R.; Tye, M.; Lamarque, J.F. Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): Protocol and initial results from the first simulations. Geosci. Model Dev. 2022, 15, 8221–8243. [Google Scholar] [CrossRef]
- Abdul Ghani, L.; Ali, N.a.; Nazaran, I.S.; Hanafiah, M.M. Environmental Performance of Small-Scale Seawater Reverse Osmosis Plant for Rural Area Water Supply. Membranes 2021, 11, 40. [Google Scholar] [CrossRef]
- Firdaus, R.B.R.; Mou Leong, T.; Rahmat, S.R.; Senevi Gunaratne, M. Paddy, rice and food security in Malaysia: A review of climate change impacts. Cogent Soc. Sci. 2020, 6, 1818373. [Google Scholar] [CrossRef]
- Bailey, R.T.; Park, S.; Bieger, K.; Arnold, J.G.; Allen, P.M. Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines. Environ. Model. Softw. 2020, 126, 104660. [Google Scholar] [CrossRef]
Precipitation (mm/day) | Maximum Temperature (°C) | Minimum Temperature (°C) | |
---|---|---|---|
GLENS (raw) | 0.97 | 2.1 | 3.3 |
GLENS (bias-corrected) | 0.21 | 0.27 | 0.3 |
Rank | Parameter | Unit | Description | Type | Range | Adjusted |
---|---|---|---|---|---|---|
1 | CANMX | Mm/H20 | Maximum canopy storage | 1 absval | 0–100 | 80 |
2 | ESCO | - | Soil evaporation compensation coefficient | 1 absval | 0–1 | 0.8 |
3 | LATQ_CO | - | Lateral flow coefficient | 1 absval | 0–1 | 0.98 |
4 | CN2 | - | Curve number condition II | 2 pctchg | −20–20 | −20 |
5 | SLOPE | m/m | Average slope steepness in HRU | 1 absval | 0–0.9 | 0.75 |
6 | SURLAG | days | Surface runoff lag coefficient | 1 absval | 1–24 | 2 |
7 | REVAP_MIN | m | Threshold depth of water in the shallow aquifer needed for re-evaporation or percolation to the deep aquifer to occur | 1 absval | 0–50 | 15 |
8 | FLO_MIN | m | Minimum aquifer storage to allow return flow | 1 absval | 0–50 | 37 |
9 | REVAP_CO | - | Groundwater re-evaporation coefficient | 1 absval | 0.02–0.2 | 0.1 |
10 | AWC | mm_H20/mm | Soil layer’s available water capacity | 2 pctchg | −20–20 | 13.73 |
11 | PERCO | fraction | Percolation coefficient | 1 absval | 0–1 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, M.L.; Juneng, L.; Kuswanto, H.; Do, H.X.; Zhang, F. Impacts of Solar Radiation Management on Hydro-Climatic Extremes in Southeast Asia. Water 2023, 15, 1089. https://doi.org/10.3390/w15061089
Tan ML, Juneng L, Kuswanto H, Do HX, Zhang F. Impacts of Solar Radiation Management on Hydro-Climatic Extremes in Southeast Asia. Water. 2023; 15(6):1089. https://doi.org/10.3390/w15061089
Chicago/Turabian StyleTan, Mou Leong, Liew Juneng, Heri Kuswanto, Hong Xuan Do, and Fei Zhang. 2023. "Impacts of Solar Radiation Management on Hydro-Climatic Extremes in Southeast Asia" Water 15, no. 6: 1089. https://doi.org/10.3390/w15061089
APA StyleTan, M. L., Juneng, L., Kuswanto, H., Do, H. X., & Zhang, F. (2023). Impacts of Solar Radiation Management on Hydro-Climatic Extremes in Southeast Asia. Water, 15(6), 1089. https://doi.org/10.3390/w15061089