Environmental Sustainability of Water Resources in Coastal Aquifers, Case Study: El-Qaa Plain, South Sinai, Egypt
Abstract
:1. Introduction
2. Site Description and Hydrogeological Setting of El-Qaa Plain Aquifer System
3. Geologic Setting
4. Materials and Methods
4.1. Site Investigations
4.2. Data Acquisition
4.3. Data Processing
Remote Sensing, Watershed Modeling System (WMS) and Geographic Information System (GIS)
Data Type | Source |
---|---|
Enhanced satellite imagery of the Landsat 7 Thematic Map Planner (ETM+) | http://landsat7.usgs.gov. Accessed on 5 August 2022. |
Systeme Probatoire d’Observation de la Terre (Spot 4) | http://www.spotimage.com/web/en/3319-spot-6-and-spot-7 extending-spot-continuity-to-high-resolution-wide-swath-imagery.php. Accessed on 10 August 2022. |
Digital elevation models (DEMs) (SRTM 90 m, ASTER 30 m resolution (bands 3N and 3B from the ASTER Level 1A dataset) | http://lpdaac.usgs.gov/;https://lpdaac.usgs.gov/lpdaac/products/aster_products_table/on_demand/digital_elevation_model/v1/ast14dem). Accessed on 3 August 2022. |
Sinai topographic maps (scales 1:250,000 and 1:100,000) 2 sheets. | [42]; https://www.intercom.com.eg/home/insights/customers/defense-references/military-survey-department/ Accessed on 7 June 2022. |
4.4. Runoff Calculation
4.5. Mathematical Groundwater Flow Model
5. Results and Discussions
5.1. Hydrochemistry and Isotopes as Guides for Determining Groundwater Recharge Potential
5.2. Runoff Water Management
5.3. Mass Balance and Flow Modeling
5.3.1. Model Calibration
5.3.2. Selection and Testing Scenarios
- (a)
- Avoid complete dewatering of the aquifer system in any part of the development area, where extraction from the system is envisaged;
- (b)
- Keep the pumping head within the acceptable limit for the management period.
- Increasing the rate of discharge due to the implementation of new development activities, especially the new reclaimed lands;
- Possibility of aquifer recharge through the proposed runoff water harvesting structures.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 1–15. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.; van Beek, L.P. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef]
- Ahmad, N.; Khan, S.; Ehsan, M.; Rehman, F.U.; Al-Shuhail, A. Estimating the total volume of running water bodies using geographic information system (GIS): A case study of Peshawar Basin (Pakistan). Sustainability 2022, 14, 3754. [Google Scholar] [CrossRef]
- Sohail, M.T.; Hussan, A.; Ehsan, M.; Al-Ansari, N.; Akhter, M.M.; Manzoor, Z.; Elbeltagi, A. Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan. Appl. Water Sci. 2022, 12, 267. [Google Scholar] [CrossRef]
- Elewa, H.H. Prediction of future drawdown of water levels of the Pleistocene aquifer system of Wadi El-Assiuti Area, Eastern Desert, Egypt, as a criterion for management and conservation. Resour. Conserv. Recycl. 2008, 52, 1006–1014. [Google Scholar] [CrossRef]
- Dawood, F.; Akhtar, M.M.; Ehsan, M. Evaluating urbanization impact on stressed aquifer of Quetta Valley, Pakistan. Desalin. Water Treat. 2021, 222, 103–113. [Google Scholar] [CrossRef]
- Malekzadeh, M.; Kardar, S.; Shabanlou, S. Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundw. Sustain. Dev. 2019, 9, 100279. [Google Scholar] [CrossRef]
- Chen, G.; Meng, T.; Wu, W.; Si, B.; Li, M.; Liu, B.; Wu, S.; Feng, H.; Siddique, K.H. Evaluating potential groundwater recharge in the unsteady state for deep-rooted afforestation in deep loess deposits. Sci. Total Environ. 2023, 858, 159837. [Google Scholar] [CrossRef]
- Lebon, Y.; François, C.; Navel, S.; Vallier, F.; Guillard, L.; Pinasseau, L.; Oxarango, L.; Volatier, L.; Mermillod-Blondin, F. Aquifer recharge by stormwater infiltration basins: Hydrological and vadose zone characteristics control the impacts of basins on groundwater chemistry and microbiology. Sci. Total Environ. 2023, 865, 161115. [Google Scholar] [CrossRef]
- Elewa, H.H.; Zelenakova, M.; Nosair, A.M. Integration of the analytical hierarchy process and GIS spatial distribution model to determine the possibility of runoff water harvesting in dry regions: Wadi Watir in Sinai as a case study. Water 2021, 13, 804. [Google Scholar] [CrossRef]
- Elewa, H.H.; Qaddah, A.A. Groundwater potentiality mapping in the Sinai Peninsula, Egypt, using remote sensing and GIS-watershed-based modeling. Hydrogeol. J. 2011, 19, 613–628. [Google Scholar] [CrossRef] [Green Version]
- Meshref, W.M. Tectonic framework of Egypt. In The Geology of Egypt, 1st ed.; Said, R., Ed.; Balkema: Rotterdam, The Netherlands, 1990; p. 43. [Google Scholar]
- Abdel-Raouf, O.; Mesalam, M. Implementation of magnetic, gravity and resistivity data in identifying groundwater occurrences in El Qaa Plain area, Southern Sinai, Egypt. J. Asian Earth Sci. 2016, 128, 1–26. [Google Scholar]
- Sherief, Y. Flash Floods and Their Effects on the Development in El-Qaá Plain Area in South Sinai, Egypt, a Study in Applied Geomorphology Using GIS and Remote Sensing. 2008. Available online: https://openscience.ub.uni-mainz.de/handle/20.500 (accessed on 20 October 2008).
- Sultan, A.; Abdel Rahman, N.; Ramadan, T.M.; Salem, S. The use of geophysical and remote sensing data analysis in the groundwater assessment of El Qaa Plain, South Sinai, Egypt. Aust. J. Basic Appl. Sci. 2013, 7, 394–400. [Google Scholar]
- Sultan, S.A.; Mohameden, M.I.; Santos, F.M. Hydrogeophysical study of the El Qaa Plain, Sinai, Egypt. Bull. Eng. Geol. Environ. 2009, 68, 525–537. [Google Scholar] [CrossRef]
- Ahmed, M.; Sauck, W.; Sultan, M.; Yan, E.; Soliman, F.; Rashed, M. Geophysical constraints on the hydrogeologic and structural settings of the Gulf of Suez rift-related basins: Case study from the El Qaa Plain, Sinai, Egypt. Surv. Geophys. 2014, 35, 415–430. [Google Scholar] [CrossRef]
- Elewa, H.H.; Ramadan, E.-S.M.; Nosair, A.M. Spatial-based hydro-morphometric watershed modeling for the assessment of flooding potentialities. Environ. Earth Sci. 2016, 75, 1–24. [Google Scholar] [CrossRef]
- Abuzied, S.M.; Alrefaee, H.A. Mapping of groundwater prospective zones integrating remote sensing, geographic information systems and geophysical techniques in El-Qaà Plain area, Egypt. Hydrogeol. J. 2017, 25, 2067–2088. [Google Scholar] [CrossRef]
- Yousif, M.; Hussien, H.M.; Abotalib, A.Z. The respective roles of modern and paleo recharge to alluvium aquifers in continental rift basins: A case study from El Qaa plain, Sinai, Egypt. Sci. Total Environ. 2020, 739, 139927. [Google Scholar] [CrossRef]
- Sultan, M.; Metwally, S.; Milewski, A.; Becker, D.; Ahmed, M.; Sauck, W.; Soliman, F.; Sturchio, N.; Yan, E.; Rashed, M. Modern recharge to fossil aquifers: Geochemical, geophysical, and modeling constraints. J. Hydrol. 2011, 403, 14–24. [Google Scholar] [CrossRef]
- Abouelmagd, A.; Sultan, M.; Sturchio, N.C.; Soliman, F.; Rashed, M.; Ahmed, M.; Kehew, A.E.; Milewski, A.; Chouinard, K. Paleoclimate record in the Nubian sandstone aquifer, Sinai Peninsula, Egypt. Quat. Res. 2014, 81, 158–167. [Google Scholar] [CrossRef]
- Ferede, M.; Haile, A.T.; Walker, D.; Gowing, J.; Parkin, G. Multi-method groundwater recharge estimation at Eshito micro-watershed, Rift Valley Basin in Ethiopia. Hydrol. Sci. J. 2020, 65, 1596–1605. [Google Scholar] [CrossRef]
- Uugulu, S.; Wanke, H. Estimation of groundwater recharge in savannah aquifers along a precipitation gradient using chloride mass balance method and environmental isotopes, Namibia. Phys. Chem. Earth Parts A/B/C 2020, 116, 102844. [Google Scholar] [CrossRef]
- Yenehun, A.; Dessie, M.; Nigate, F.; Belay, A.S.; Azeze, M.; van Camp, M.; Taye, D.F.; Kidane, D.; Adgo, E.; Nyssen, J. Spatial and temporal simulation of groundwater recharge and cross-validation with point estimations in volcanic aquifers with variable topography. J. Hydrol. Reg. Stud. 2022, 42, 101142. [Google Scholar] [CrossRef]
- Gabr, S.; Ghulam, A.; Kusky, T. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev. 2010, 38, 59–69. [Google Scholar] [CrossRef]
- Elewa, H.H.; Nosair, A.M.; Ramadan, E.M. Determination of potential sites and methods for water harvesting in sinai peninsula by the application of RS, GIS, and WMS techniques. In Flash Floods in Egypt; Springer: Berlin/Heidelberg, Germany, 2020; pp. 313–345. [Google Scholar]
- Ayars, J.E.; Christen, E.W.; Hornbuckle, J. Controlled drainage for improved water management in arid regions irrigated agriculture. Agric. Water Manag. 2006, 86, 128–139. [Google Scholar] [CrossRef]
- Rao, Y.S.; Prasad, Y.S. Groundwater flow modeling—A tool for water resources management in the khondalite and sandstone formations. Groundw. Sustain. Dev. 2020, 11, 100454. [Google Scholar]
- Rohais, S.; Rouby, D. Source-to-Sink analysis of the Plio-Pleistocene deposits in the Suez rift (Egypt). In Arabian Plate and Surroundings: Geology, Sedimentary Basins and Georesources; Springer: Berlin/Heidelberg, Germany, 2020; pp. 115–133. [Google Scholar]
- Blair, T.C. Tectonic and hydrologic controls on cyclic alluvial fan, fluvial, and lacustrine rift-basin sedimentation, Jurassic-Lowermost Cretaceous Todos Santos Formation, Chiapas, Mexico. J. Sediment. Res. 1987, 57, 845–862. [Google Scholar]
- JICA—Japan International Cooperation Agency. South Sinai Groundwater Resources Study in the Arab Republic of Egypt Study Report; Pacific Consultants International and Sanyu Consaltants Inc.: Tokyo, Japan, 1999; p. 261. [Google Scholar]
- Gilboa, Y. Post Eocene Clastics Distribution along the El Qaa Plain, Southern Sinai. Isr. J. Earth Sci. 1980, 29, 197–206. [Google Scholar]
- Hammad, F.; Fa, H. Geomorphological and hydrogeological aspects of Sinai Peninsula. Ann. Geol. Surv. Egypt 1980, X, 807–817. [Google Scholar]
- Sultan, M.; Yan, E.; Sturchio, N.; Wagdy, A.; Gelil, K.A.; Becker, R.; Manocha, N.; Milewski, A. Natural discharge: A key to sustainable utilization of fossil groundwater. J. Hydrol. 2007, 335, 25–36. [Google Scholar] [CrossRef]
- Said, R. Geology of Egypt; Balkema Pub: Rotterdam, The Netherlands, 1990; 722p. [Google Scholar]
- Massoud, U.; Santos, F.; El Qady, G.; Atya, M.; Soliman, M. Identification of the shallow subsurface succession and investigation of the seawater invasion to the Quaternary aquifer at the northern part of El Qaa plain, Southern Sinai, Egypt by transient electromagnetic data. Geophys. Prospect. 2010, 58, 267–277. [Google Scholar] [CrossRef]
- McClay, K.; Nichols, G.; Khalil, S.; Darwish, M.; Bosworth, W. Extensional tectonics and sedimentation, eastern Gulf of Suez, Egypt. In Sedimentation and Tectonics in Rift Basins Red Sea:-Gulf of Aden; Springer: Berlin/Heidelberg, Germany, 1998; pp. 223–238. [Google Scholar]
- CONOCO (Continental Oil Company). Geological Map of Egypt (Scale 1: 500,000); Continental Oil Company Inc.; Freie Universitat Berlin—Universitat Berlin: Berlin, Germany, 1987. [Google Scholar]
- Craig, H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 1961, 133, 1833–1834. [Google Scholar] [CrossRef] [PubMed]
- Aquaveo. Water Modeling Solutions. Support Forum for Sub-Watershed Modeling System Software (WMS), 8.1; Aquaveo LLC.: Provo, UT, USA, 2008; Available online: www.aquaveo.com (accessed on 20 August 2009).
- Egyptian Military Survey Department. Sinai Topographic Maps; Egyptian Series; Egyptian Military Survey Department: Cairo, Egypt, 1995.
- Finkel, H.H. Water Resources in Arid Zone Settlement, A Case Study in Arid Zone Settlement. The Israeli Experience, 1st ed.; Golany, G., Ed.; Pergamon Press: New York, NY, USA, 1979. [Google Scholar]
- Górski, J.; Ghodeif, K. Salinization of shallow water aquifer in El-Qaa coastal plain, Sinai, Egypt. In Proceedings of the 16th Salt Water Intrusion Meeting, Wolin Island, Poland, 12–15 June 2000; Volume 80, pp. 63–72. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; US Geological Survey; Superseding Publications: Vienna, Austria, 1988. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. The history of MODFLOW. Ground Water 2003, 41, 280. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.; Fritz, P. Environmental Isotopes in Hydrology; Lewis Publishers: Boca Raton, FL, USA, 1997. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Fisher, D.A.; Koerner, R.M.; Paterson, W.S.B.; Dansgaard, W.; Gundestrup, N.; Reeh, N. Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles. Nature 1983, 301, 205–209. [Google Scholar] [CrossRef]
- Joussaume, S.; Sadourny, R.; Jouzel, J. A general circulation model of water isotope cycles in the atmosphere. Nature 1984, 311, 24–29. [Google Scholar] [CrossRef]
- Jouzel, J.; Merlivat, L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res. Atmos. 1984, 89, 11749–11757. [Google Scholar] [CrossRef]
- Sacks, L.A.; Tihansky, A.B. Geochemical and isotopic composition of ground water, with emphasis on sources of sulfate. In The Upper Floridan Aquifer and Intermediate Aquifer System in Southwest Florida; US Department of the Interior; US Geological Survey; Superseding Publications: Vienna, Austria, 1996; Volume 96. [Google Scholar]
- Subyani, A.M. Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia. Environ. Geol. 2004, 46, 741–749. [Google Scholar] [CrossRef]
- Cook, P.G.; Böhlke, J.-K. Determining timescales for groundwater flow and solute transport. In Environmental Tracers in Subsurface Hydrology; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–30. [Google Scholar]
- Abu Risha, U.; Mosaad, S.; El Abd, E.S.; Hasanein, A.M. The impact of the geologic setting on the Quaternary aquifer, El-Tur area, Southwest Sinai, Egypt. Arab. J. Geosci. 2017, 10, 1–18. [Google Scholar] [CrossRef]
- Collins, A. Geochemistry of Oilfield Waters; Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Elewa, H.H.; Shohaib, R.E.; Qaddah, A.A.; Nousir, A.M. Determining groundwater protection zones for the Quaternary aquifer of northeastern Nile Delta using GIS-based vulnerability mapping. Environ. Earth Sci. 2013, 68, 313–331. [Google Scholar] [CrossRef]
- Revelle, R. Criteria for recognition of the sea water in ground-waters. EOS Trans. Am. Geophys. Union 1941, 22, 593–597. [Google Scholar] [CrossRef]
- Sarada, P.; Bhushanavathi, P. Cl-/(CO3 2- + HCO3 -) ratio to evaluate salt water intrusion: A Case Study of Gnanapuram Area of Visakhapatnam, AP, India. Int. J. Sci. Res. 2015, 4, 1311–1313. [Google Scholar]
- Nosair, A.M.; Shams, M.Y.; AbouElmagd, L.M.; Hassanein, A.E.; Fryar, A.E.; Abu Salem, H.S. Predictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: A case study of the Nile Delta aquifer, Egypt. Environ. Sci. Pollut. Res. 2022, 29, 9318–9340. [Google Scholar] [CrossRef] [PubMed]
- Custodio, E.; Bruggeman, G. Groundwater Problems in Coastal Areas; UNESCO: Paris, France, 1987. [Google Scholar]
- Sonntag, C.; Muennich, K.; Junghans, C.; Klitzsch, E.; Thorweihe, U.; Weistroffer, K.; Loehnert, E.; El-Shazly, E.; Swailem, F. Palaeoclimatic information from deuterium and oxygen-18 in carbon-14-dated north Saharian groundwaters. Groundwater formation in the past. In Isotope Hydrology; International Atomic Enerhy: Vienna, Austria, 1978. [Google Scholar]
- Mazor, E.; Nadler, A.; Molcho, M. Mineral springs in the Suez rift valley—Comparison with waters in the Jordan rift valley and postulation of a marine origin. J. Hydrol. 1973, 20, 289–309. [Google Scholar] [CrossRef]
- Gat, J.R.; Issar, A. Desert isotope hydrology: Water sources of the Sinai Desert. Geochim. Cosmochim. Acta 1974, 38, 1117–1131. [Google Scholar] [CrossRef]
- Wiser, I. Water Isotope System for Data Analysis, Visualization and Electronic Retrieval, Global Isotopes in Precipitation; The GNIP Database; WISER Version 0.7; GNIP: Boulder, CO, USA, 2013. [Google Scholar]
- Tantawi, M.; El-Sayed, E.; Awad, M. Hydrochemical and stable isotope study of groundwater in the Saint Catherine-Wadi Feiran area, south Sinai, Egypt. J. Afr. Earth Sci. 1998, 26, 277–284. [Google Scholar] [CrossRef]
- Gat, J.R.; Magaritz, M. Climatic variations in the eastern Mediterranean Sea area. Naturwissenschaften 1980, 67, 80–87. [Google Scholar] [CrossRef]
- Abd El Samie, S.; Sadek, M. Groundwater recharge and flow in the Lower Cretaceous Nubian Sandstone aquifer in the Sinai Peninsula, using isotopic techniques and hydrochemistry. Hydrogeol. J. 2001, 9, 378–389. [Google Scholar] [CrossRef]
- Yechieli, Y.; Starinsky, A.; Rosenthal, E. Evolution of brackish groundwater in a typical arid region: Northern Arava Rift Valley, southern Israel. Appl. Geochem. 1992, 7, 361–374. [Google Scholar] [CrossRef]
- Chorley, R.J. Climate and morphometry. J. Geol. 1957, 65, 628–638. [Google Scholar] [CrossRef]
- Lyazidi, R.; Hessane, M.A.; Moutei, J.F.; Bahir, M. Developing a methodology for estimating the groundwater levels of coastal aquifers in the Gareb-Bourag plains, Morocco embedding the visual MODFLOW techniques in groundwater modeling system. Groundw. Sustain. Dev. 2020, 11, 100471. [Google Scholar] [CrossRef]
- Karki, R.; Srivastava, P.; Kalin, L.; Mitra, S.; Singh, S. Assessment of impact in groundwater levels and stream-aquifer interaction due to increased groundwater withdrawal in the lower Apalachicola-Chattahoochee-Flint (ACF) River Basin using MODFLOW. J. Hydrol. Reg. Stud. 2021, 34, 100802. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, Y.; Luo, W.; Wang, F.; McClain, M.E.; Wang, X.-S. A numerical assessment on the managed aquifer recharge to achieve sustainable groundwater development in Chaobai River area, Beijing, China. J. Hydrol. 2022, 613, 128392. [Google Scholar] [CrossRef]
- WRRI (Water Resources Research Institute). South Sinai Water Resources; Internal Report; WRRI: St. Thomas, VI, USA, 1999; p. 236. [Google Scholar]
- Abel Hafez, H.M.; Gamal, A.A.; Shawki, S.H.; Safaa, S. Numerical modelling for groundwater potentiality in the Quaternary aquifer in El-Qaa Plain area, south Sinai, Egypt. J. Water Sci. 2008, 44, 1–12. [Google Scholar]
S. No. | TDS (ppm) | pH | K+ | Na+ | Mg2+ | Ca2+ | Cl− | SO4− | HCO3− | CO3− | Na/Cl | Cl/HCO3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | epm | |||||||||||
1 | 716.8 | 7.97 | 2 | 165 | 18 | 48 | 244 | 7.25 | 223 | 0 | 1.04 | 1.88 |
2 | 838.4 | 8.03 | 3 | 184 | 24 | 60 | 280 | 3.71 | 258 | 0 | 1.01 | 1.86 |
3 | 531.2 | 7.82 | 4 | 114 | 23 | 44 | 178 | 15.59 | 157 | 0.0 | 0.99 | 1.95 |
4 | 480 | 7.89 | 3 | 103 | 12 | 48 | 170 | 1.23 | 147 | 0.0 | 0.94 | 1.99 |
5 | 665.6 | 7.9 | 1 | 168 | 13 | 49 | 214 | 20.43 | 192 | 0.0 | 1.21 | 1.92 |
6 | 355 | 7.99 | 1 | 80.5 | 14 | 20 | 132 | 6.03 | 101.5 | 0.0 | 0.94 | 2.23 |
7 | 608 | 7.94 | 1 | 138 | 12 | 50 | 205 | 15.63 | 172 | 0.0 | 1.04 | 2.05 |
8 | 332.8 | 8.1 | 2 | 73.6 | 12 | 21 | 115 | 10.83 | 101 | 0.0 | 0.99 | 1.96 |
9 | 326.4 | 8.08 | 2 | 71.3 | 12 | 19 | 116.3 | 5.99 | 110.5 | 0.0 | 0.95 | 1.81 |
10 | 339.2 | 8.1 | 3 | 75.9 | 12 | 18 | 117 | 98.50 | 95.5 | 0.0 | 1.00 | 2.11 |
11 | 345.6 | 8.1 | 1 | 78.2 | 13 | 19 | 114 | 20.43 | 100.5 | 0.0 | 1.06 | 1.95 |
12 | 364.8 | 8.1 | 2 | 85.1 | 12 | 19 | 125 | 10.83 | 108 | 0.0 | 1.05 | 1.99 |
13 | 518.4 | 7.88 | 3 | 103.5 | 19 | 38 | 175 | 5.99 | 146 | 0.0 | 0.91 | 2.06 |
14 | 332.8 | 8.1 | 3 | 65.6 | 12 | 24 | 112 | 8.57 | 96.5 | 0.0 | 0.90 | 1.99 |
15 | 339.2 | 8.09 | 2 | 67.7 | 12 | 25 | 117 | 12.88 | 100 | 0.0 | 0.89 | 2.01 |
16 | 499.2 | 7.99 | 4 | 105 | 12 | 47 | 170 | 15.59 | 134.5 | 0.0 | 0.95 | 2.17 |
17 | 473.6 | 8.1 | 3 | 106 | 18 | 32 | 165 | 20.4 | 121.5 | 0.0 | 0.99 | 2.33 |
18 | 345.6 | 8.12 | 2 | 70.79 | 12 | 25 | 117 | 19.3 | 98.5 | 0.0 | 0.93 | 2.04 |
19 | 384 | 8.11 | 3 | 86.25 | 12 | 22 | 124 | 22.8 | 109.5 | 0.0 | 1.07 | 1.95 |
20 | 588.8 | 8.09 | 5 | 125 | 14 | 51 | 200 | 10.7 | 157.5 | 0.0 | 0.96 | 2.18 |
21 | 384 | 8.08 | 3 | 84 | 12 | 28 | 130 | 14.7 | 110.5 | 0.0 | 1.00 | 2.02 |
22 | 1256 | 8.01 | 7 | 230 | 51 | 106 | 550 | 25 | 220 | 0 | 0.65 | 4.30 |
23 | 2261 | 8.3 | 8.1 | 378 | 25 | 337 | 1065 | 31 | 292 | 0 | 0.55 | 6.27 |
Sample No. | δO18‰ vs. SMOW | δD%o vs. SMOW | Dexcess |
---|---|---|---|
21 | −6.28 | −29.87 | 21.17 |
8 | −5.26 | −27.9 | 14.18 |
11 | −4.92 | −22.42 | 16.94 |
12 | −4.84 | −21.7 | 17.02 |
13 | −4.98 | −25.04 | 14.8 |
19 | −5.1 | −26.7 | 14.1 |
16 | −4.99 | −28.36 | 10.49 |
Sub-Watershed | Average Volume of Annual Flood (VAF) (m3) | Peak Flood Flow (Qmax) (m3/s) |
---|---|---|
Abyad | 506,763.07 | 30.21 |
Amlaha | 892,588.56 | 53.22 |
Apoura | 440,508.75 | 26.26 |
Araba | 313,212.44 | 18.67 |
El-Aawag Trunk Channel | 1,501,229.91 | 89.50 |
Gebah | 953,211.35 | 56.83 |
Habran | 979,709.81 | 58.41 |
Maier | 1,295,801.21 | 77.26 |
Moreikh | 278,182.19 | 16.59 |
Wagran | 777,908.27 | 46.38 |
Waraka | 514,862.81 | 30.70 |
Abu Retmat | 709,834.27 | 42.32 |
Year | Average Groundwater Extraction (m3/day) (Domestic and Irrigation Purposes) | Source |
---|---|---|
1971 | 2000 | [32] |
1984 | 8550 | |
1987 | 13,040 | |
1990 | 10,270 | |
1992 | 8820 | |
2004 | 17,000 | [75] |
2008 | 18,000 | |
2018 | 21,400 | Current work (based on field investigations and data inventory from the Drinking Water Company, and Water Resource Institute (WRI), South Sinai Branches) |
Observation Well No. | Observed Head | Calculated Head | Error | Absolute Error | Squared Error |
---|---|---|---|---|---|
1 | 5 | 5.8 | 0.8 | 0.8 | 0.64 |
2 | 15 | 14.69 | −0.3 | 0.3 | 0.9 |
3 | 10 | 9.02 | −0.9 | 0.9 | 0.81 |
4 | 20 | 20.8 | 0.8 | 0.8 | 0.64 |
5 | 25 | 25.46 | 0.46 | 0.46 | 0.2116 |
6 | 10 | 10.68 | 0.68 | 0.68 | 0.4624 |
Root Mean Square Error (RMS) = 0.726 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elewa, H.H.; Nosair, A.M.; Zelenakova, M.; Mikita, V.; Abdel Moneam, N.A.; Ramadan, E.M. Environmental Sustainability of Water Resources in Coastal Aquifers, Case Study: El-Qaa Plain, South Sinai, Egypt. Water 2023, 15, 1118. https://doi.org/10.3390/w15061118
Elewa HH, Nosair AM, Zelenakova M, Mikita V, Abdel Moneam NA, Ramadan EM. Environmental Sustainability of Water Resources in Coastal Aquifers, Case Study: El-Qaa Plain, South Sinai, Egypt. Water. 2023; 15(6):1118. https://doi.org/10.3390/w15061118
Chicago/Turabian StyleElewa, Hossam H., Ahmed M. Nosair, Martina Zelenakova, Viktoria Mikita, Nermeen A. Abdel Moneam, and Elsayed M. Ramadan. 2023. "Environmental Sustainability of Water Resources in Coastal Aquifers, Case Study: El-Qaa Plain, South Sinai, Egypt" Water 15, no. 6: 1118. https://doi.org/10.3390/w15061118
APA StyleElewa, H. H., Nosair, A. M., Zelenakova, M., Mikita, V., Abdel Moneam, N. A., & Ramadan, E. M. (2023). Environmental Sustainability of Water Resources in Coastal Aquifers, Case Study: El-Qaa Plain, South Sinai, Egypt. Water, 15(6), 1118. https://doi.org/10.3390/w15061118