Water Footprint Assessment of Major Crops in Henan Province and Reduction Suggestions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Footprint Estimation
2.2.1. CROPWAT 8.0 Model
2.2.2. WF of Wheat/Maize Production
2.3. Sustainability of Blue Water Footprint
2.4. Blue Water Footprint Reduction
2.4.1. Blue Water Footprint Benchmark Level (BWF Benchmark Level)
2.4.2. Blue Water Footprint Reduction
3. Results
3.1. The WF of Wheat/Maize Production
3.2. Sustainability of Blue Water Footprints of Wheat and Maize Production
3.2.1. Wheat
3.2.2. Maize
3.3. Blue Water Footprint Reduction
The Optimal/Sub-Optimal BWF Benchmark Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.Y.; Hu, L.M. China Agriculture Yearbook 2020, 1st ed.; China Agriculture Press: Beijing, China, 2021. [Google Scholar]
- Ren, Q. The Water Resources Bulletin of Henan Province 2021, 1st ed.; Department of Water Resources of Henan Province Publications: Zhengzhou, China, 2022. [Google Scholar]
- UN. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; UN, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2015. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. Virtual Water Trade: Proceedings of the International Expert Meeting on Virtual Water Trade; IHE: Delft, The Netherlands, 2003. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability of the blue water footprint of crops. Adv. Water Resour. 2020, 143, 103679. [Google Scholar] [CrossRef]
- Siebert, S.; Doll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Pfister, S.; Bayer, P. Monthly water stress: Spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 2014, 73, 52–62. [Google Scholar] [CrossRef]
- Sun, S.K.; Wu, P.T.; Wang, Y.B.; Zhao, X.N. The virtual water content of major grain crops and virtual water flows between regions in China. J. Sci. Food Agric. 2013, 93, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.K.; Wu, P.T.; Wang, Y.B.; Zhao, X.N.; Liu, J.; Zhang, X.H. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Sci. Total Environ. 2013, 444, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard, 1st ed.; Earthscan: London, UK, 2011; pp. 123–234. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Water footprint benchmarks for crop production: A first global assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Martin, S. CROPWAT, 8.0; FAO Land and Water Development Division: Rome, Italy, 2009. [Google Scholar]
- Cao, X.C.; Wu, P.T.; Wang, Y.B.; Zhao, X.N. Assessing blue and green water utilisation in wheat production of China from the perspectives of water footprint and total water use. Hydrol. Earth Syst. Sci. 2014, 18, 3165–3178. [Google Scholar] [CrossRef] [Green Version]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 2015, 19, 4581–4608. [Google Scholar] [CrossRef] [Green Version]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, R.J.; Mekonnen, M.M. Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef] [Green Version]
- Brauman, K.A.; Siebert, S.; Foley, J.A. Improvements in crop water productivity increase water sustainability and food security-a global analysis. Environ. Res. Lett. 2013, 8, 7. [Google Scholar] [CrossRef]
- Rockström, J.; Lannerstad, M.; Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl. Acad. Sci. USA 2007, 104, 6253–6260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.Y. The Water Footprint of Modern Consumer Society; Routledge: London, UK, 2013; p. 224. [Google Scholar]
- Hoekstra, A.Y. Wise Freshwater Allocation: Water Footprint Caps by River Basin, Benchmarks by Product and Fair Water Footprint Shares by Community; Value of Water Research Report Series No. 63; UNESCO-IHE: Delft, The Netherlands, 2013. [Google Scholar]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef] [Green Version]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogeboom, R.J.; de Bruin, D.; Schyns, J.F.; Krol, M.S.; Hoekstra, A.Y. Capping Human Water Footprints in the World’s River Basins. Earth Future 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
Year | Wheat | Maize | ||||||
---|---|---|---|---|---|---|---|---|
Blue WF | Green WF | WF | Proportion of BWF in WF (%) | Blue WF | Green WF | WF | Proportion of BWF (%) | |
(Million m3/year) | (Million m3/year) | |||||||
2006 | 7984 | 19,962 | 27,946 | 29% | 80 | 9634 | 9714 | 1% |
2007 | 8199 | 20,453 | 28,651 | 29% | 0 | 10,067 | 10,067 | 2% |
2008 | 7239 | 21,721 | 28,960 | 25% | 76 | 10,430 | 10,505 | 3% |
2009 | 5438 | 20,965 | 26,403 | 21% | 413 | 10,568 | 10,981 | 4% |
2010 | 12,093 | 15,791 | 27,884 | 43% | 201 | 10,829 | 11,029 | 4% |
2011 | 9839 | 16,709 | 26,548 | 37% | 228 | 10,803 | 11,030 | 5% |
2012 | 7237 | 19,872 | 27,109 | 27% | 201 | 12,466 | 12,667 | 4% |
2013 | 11,356 | 17,592 | 28,948 | 39% | 2419 | 12,549 | 14,968 | 18% |
2014 | 4884 | 20,618 | 25,502 | 19% | 2525 | 9866 | 12,392 | 20% |
2015 | 3667 | 24,569 | 28,236 | 13% | 1248 | 13,065 | 14,312 | 9% |
2016 | 9116 | 20,145 | 29,260 | 31% | 344 | 14,077 | 14,421 | 2% |
Average | 7914 | 19,854 | 27,768 | 28% | 703 | 11,305 | 12,008 | 7% |
City Name | Blue Water Footprint Benchmark Levels (m3/t) | |||||||
---|---|---|---|---|---|---|---|---|
Wheat | Maize | |||||||
First | Second | Third | Fourth | First | Second | Third | Fourth | |
Zhengzhou | 251 | 422 | 454 | 591 | 65 | 70 | 73 | 97 |
Kaifeng | 227 | 382 | 411 | 535 | 52 | 56 | 58 | 78 |
Luoyang | 230 | 386 | 415 | 540 | 58 | 62 | 65 | 87 |
Ping Dingshan | 179 | 300 | 323 | 420 | 59 | 64 | 66 | 89 |
Anyang | 255 | 428 | 461 | 600 | 38 | 41 | 43 | 57 |
Hebi | 259 | 434 | 467 | 608 | 34 | 37 | 39 | 52 |
Xinxiang | 267 | 449 | 483 | 629 | 17 | 19 | 19 | 26 |
Jiaozuo | 251 | 420 | 453 | 589 | 18 | 20 | 20 | 27 |
Puyang | 251 | 421 | 454 | 590 | 19 | 20 | 21 | 28 |
Xuchang | 208 | 349 | 376 | 489 | 44 | 48 | 50 | 67 |
Luohe | 243 | 408 | 439 | 571 | 52 | 57 | 59 | 79 |
San Menxia | 247 | 414 | 445 | 579 | 90 | 97 | 101 | 136 |
Nanyang | 149 | 250 | 269 | 350 | 20 | 22 | 22 | 30 |
Shangqiu | 208 | 349 | 376 | 489 | 0 | 0 | 0 | 0 |
Xinyang | 49 | 82 | 89 | 115 | 17 | 18 | 19 | 25 |
Zhoukou | 33 | 55 | 60 | 78 | 22 | 24 | 24 | 33 |
Zhu Madian | 26 | 43 | 46 | 60 | 0 | 0 | 0 | 0 |
Jiyuan | 226 | 379 | 408 | 531 | 19 | 21 | 21 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yin, Y.; Zhang, W. Water Footprint Assessment of Major Crops in Henan Province and Reduction Suggestions. Water 2023, 15, 1135. https://doi.org/10.3390/w15061135
Li Y, Yin Y, Zhang W. Water Footprint Assessment of Major Crops in Henan Province and Reduction Suggestions. Water. 2023; 15(6):1135. https://doi.org/10.3390/w15061135
Chicago/Turabian StyleLi, Yanbin, Yuyi Yin, and Wenge Zhang. 2023. "Water Footprint Assessment of Major Crops in Henan Province and Reduction Suggestions" Water 15, no. 6: 1135. https://doi.org/10.3390/w15061135