Reviews and Syntheses: Promoting the Advancement of Hillslope Hydrology and Stability in Taiwan from the Perspective of Critical Zone Science
Abstract
:1. Introduction
2. Background of Hillslope Hydrology and Stability in Taiwan
3. Critical Zone Science
4. Research Progress in Hillslope Hydrology and Stability
5. Challenges of Hillslope Hydrology and Stability
6. Promoting the Research of Hillslope Hydrology and Stability in Taiwan
6.1. Process-Based Integrated Monitoring Strategy
6.2. Interdisciplinary Perspective
6.3. Developing a Scalable and Coupled Analysis Framework and Model
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jakob, M.; Hungr, O.; Jakob, D.M. Debris-Flow Hazards and Related Phenomena; Springer: Berlin, Germany, 2005. [Google Scholar]
- Tsou, C.-Y.; Feng, Z.-Y.; Chigira, M. Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology 2011, 127, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.T.; Chiang, S.H. An integrated model for predicting rainfall-induced landslides. Geomorphology 2009, 105, 366–373. [Google Scholar] [CrossRef]
- Wu, C.H.; Chen, S.C. Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method. Geomorphology 2009, 112, 190–204. [Google Scholar] [CrossRef]
- Shou, K.-J.; Yang, C.-M. Predictive analysis of landslide susceptibility under climate change conditions—A study on the Chingshui River Watershed of Taiwan. Eng. Geol. 2015, 192, 46–62. [Google Scholar] [CrossRef]
- Lin, S.; Ke, M.; Lo, C. Evolution of landslide hotspots in Taiwan. Landslides 2017, 14, 1491–1501. [Google Scholar] [CrossRef]
- Lin, G.W.; Chen, H. The relationship of rainfall energy with landslides and sediment delivery. Eng. Geol. 2012, 125, 108–118. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chang, K.T.; Chiu, Y.J.; Lau, S.M.; Lee, H.Y. Quantifying rainfall controls on catchment-scale landslide erosion in Taiwan. Earth Surf. Process. Landf. 2013, 38, 372–382. [Google Scholar] [CrossRef]
- Chen, C.-W.; Saito, H.; Oguchi, T. Rainfall intensity–duration conditions for mass movements in Taiwan. Prog. Earth Planet. Sci. 2015, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.M.; Chen, H.; Jou, B.J.D.; Tsou, N.C.; Lin, G.W. Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan. Eng. Geol. 2017, 231, 81–87. [Google Scholar] [CrossRef]
- Chen, C.W.; Oguchi, T.; Hayakawa, Y.S.; Saito, H.; Chen, H. Relationship between landslide size and rainfall conditions in Taiwan. Landslides 2017, 14, 1235–1240. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hung, C.; Lin, G.-W.; Liou, J.-J.; Lin, S.-Y.; Li, H.-C.; Chen, Y.-M.; Chen, H. Preliminary establishment of a mass movement warning system for Taiwan using the soil water index. Landslides 2022, 19, 1779–1789. [Google Scholar] [CrossRef]
- Liang, W.-L. Dynamics of pore water pressure at the soil–bedrock interface recorded during a rainfall-induced shallow landslide in a steep natural forested headwater catchment, Taiwan. J. Hydrol. 2020, 587, 125003. [Google Scholar] [CrossRef]
- Sidle, R.C.; Bogaard, T.A. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Lu, N.; Godt, J.W. Hillslope Hydrology and Stability; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Coutinho, R.Q.; Silva, M.M.; Santos, A.N.d.; Lacerda, W.A. Geotechnical Characterization and Failure Mechanism of Landslide in Granite Residual Soil. J. Geotech. Geoenviron. Eng. 2019, 145, 05019004. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Marc, O.; Stumpf, A.; Malet, J.-P.; Gosset, M.; Uchida, T.; Chiang, S.-H. Initial insights from a global database of rainfall-induced landslide inventories: The weak influence of slope and strong influence of total storm rainfall. Earth Surf. Dyn. 2018, 6, 903–922. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Huang, R.; Li, X. Hydro-Mechanical Analysis of Rainfall-Induced Landslides; Science Press: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Bogaard, T.A.; Greco, R. Landslide hydrology: From hydrology to pore pressure. Wiley Interdiscip. Rev. Water 2016, 3, 439–459. [Google Scholar] [CrossRef]
- Brantley, S.L.; Goldhaber, M.B.; Ragnarsdottir, K.V. Crossing disciplines and scales to understand the critical zone. Elements 2007, 3, 307–314. [Google Scholar] [CrossRef]
- National Research Council. Basic Research Opportunities in Earth Science; National Academies Press: Washington, DC, USA, 2001; p. 168. [Google Scholar]
- Anderson, S.P.; von Blanckenburg, F.; White, A.F. Physical and chemical controls on the critical zone. Elements 2007, 3, 315–319. [Google Scholar] [CrossRef]
- Lin, H.S. Earth′s Critical Zone and hydropedology: Concepts, characteristics, and advances. Hydrol. Earth Syst. Sci. 2010, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Amundson, R.; Richter, D.D.; Humphreys, G.S.; Jobbágy, E.G.; Gaillardet, J. Coupling between biota and earth materials in the critical zone. Elements 2007, 3, 327–332. [Google Scholar] [CrossRef]
- Li, Y.H. Denudation of Taiwan island since the Pliocene epoch. Geology 1976, 4, 105–107. [Google Scholar] [CrossRef]
- Willett, S.D.; Fisher, D.; Fuller, C.; En-Chao, Y.; Chia-Yu, L. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 2003, 31, 945–948. [Google Scholar] [CrossRef] [Green Version]
- Shieh, S. User’s Guide for Typhoon Forecasting in the Taiwan Area (VIII); Central Weather Bureau: Taipei, Taiwan, 2000. [Google Scholar]
- Chen, C.-S.; Chen, Y.-L. The Rainfall Characteristics of Taiwan. Mon. Weather Rev. 2003, 131, 1323–1341. [Google Scholar] [CrossRef]
- Henny, L.; Thorncroft, C.D.; Hsu, H.-H.; Bosart, L.F. Extreme Rainfall in Taiwan: Seasonal Statistics and Trends. J. Clim. 2021, 34, 4711–4731. [Google Scholar] [CrossRef]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Hsieh, M.-L.; Willett, S.D.; Hu, J.-C.; Horng, M.-J.; Chen, M.-C.; Stark, C.P. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 2003, 426, 648–651. [Google Scholar] [CrossRef]
- National Fire Agency, M.O.I. Natural Disaster Statistics. 2022. Available online: https://www.nfa.gov.tw/pro/index.php?code=list&ids=385 (accessed on 1 February 2022).
- Wu, C.-H.; Chen, S.-C.; Chou, H.-T. Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan. Eng. Geol. 2011, 123, 13–21. [Google Scholar] [CrossRef]
- Chang, P.Y.; Chen, C.C.; Chang, S.K.; Wang, T.B.; Wang, C.Y.; Hsu, S.K. An investigation into the debris flow induced by Typhoon Morakot in the Siaolin Area, Southern Taiwan, using the electrical resistivity imaging method. Geophys. J. Int. 2012, 188, 1012–1024. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.-S.; Tsai, Y.-J.; Chen, Y.-S.; Shieh, C.-L.; Miyamoto, K.; Itoh, T. Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot. Landslides 2013, 10, 191–202. [Google Scholar] [CrossRef]
- Wu, J.-H.; Chen, J.-H.; Lu, C.-W. Investigation of the Hsien-du-Shan rock avalanche caused by typhoon Morakot in 2009 at Kaohsiung county, Taiwan. Int. J. Rock Mech. Min. Sci. 2013, 60, 148–159. [Google Scholar] [CrossRef]
- Chen, J.-C.; Chuang, M.-R. Discharge of landslide-induced debris flows: Case studies of Typhoon Morakot in southern Taiwan. Nat. Hazards Earth Syst. Sci. 2014, 14, 1719. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-H.; Chen, S.-C.; Feng, Z.-Y. Formation, failure, and consequences of the Xiaolin landslide dam, triggered by extreme rainfall from Typhoon Morakot, Taiwan. Landslides 2014, 11, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-H.; Lin, M.-L. Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng. Geol. 2015, 197, 172–187. [Google Scholar] [CrossRef]
- Tsai, F.; Hwang, J.-H.; Chen, L.-C.; Lin, T.-H. Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Nat. Hazards Earth Syst. Sci. 2010, 10, 2179. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-W.; Chang, W.-S.; Liu, S.-H.; Tsai, T.-T.; Lee, S.-P.; Tsang, Y.-C.; Shieh, C.-L.; Tseng, C.-M. Landslides triggered by the 7 August 2009 Typhoon Morakot in southern Taiwan. Eng. Geol. 2011, 123, 3–12. [Google Scholar] [CrossRef]
- Chen, C.-Y. Landslide and debris flow initiated characteristics after typhoon Morakot in Taiwan. Landslides 2016, 13, 153–164. [Google Scholar] [CrossRef]
- Peng, S.-H.; Lu, S.-C. FLO-2D simulation of mudflow caused by large landslide due to extremely heavy rainfall in southeastern Taiwan during Typhoon Morakot. J. Mt. Sci. 2013, 10, 207–218. [Google Scholar] [CrossRef]
- Li, H.-C.; Hsieh, L.-S.; Chen, L.-C.; Lin, L.-Y.; Li, W.-S. Disaster investigation and analysis of Typhoon Morakot. J. Chin. Inst. Eng. 2014, 37, 558–569. [Google Scholar] [CrossRef]
- Fan, M.-F. Disaster governance and community resilience: Reflections on Typhoon Morakot in Taiwan. J. Environ. Plann. Manag. 2015, 58, 24–38. [Google Scholar] [CrossRef]
- Hsu, M.; Howitt, R.; Miller, F. Procedural vulnerability and institutional capacity deficits in post-disaster recovery and reconstruction: Insights from Wutai Rukai experiences of Typhoon Morakot. Hum. Organ. 2015, 74, 308–318. [Google Scholar] [CrossRef]
- Wei, L.-W.; Lee, C.-F.; Huang, C.-M.; Huang, W.-K.; Lin, H.-H.; Chi, C.-C. A Prelimilary Study of the Rainfall Threshold and Early Warning System for Landslide in Taiwan, in Engineering Geology for Society and Territory-Volume 2; Springer: Cham, Switzerland, 2015; pp. 1571–1574. [Google Scholar]
- Wei, L.-W.; Huang, C.-M.; Chen, H.; Lee, C.-T.; Chi, C.-C.; Chiu, C.-L. Adopting the I 3-R 24 rainfall index and landslide susceptibility for the establishment of an early warning model for rainfall-induced shallow landslides. Nat. Hazards Earth Syst. Sci. 2018, 18, 1717–1733. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.; Haung, W.-K.; Lee, C.-F.; Wei, L.-W.; Lin, H.-H.; Chi, C.-C. Combination of Rainfall Thresholds and Susceptibility Maps for Early Warning Purposes for Shallow Landslides at Regional Scale in Taiwan. In Workshop on World Landslide Forum; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Lin, G.-W.; Kuo, H.-L.; Chen, C.-W.; Wei, L.-W.; Zhang, J.-M. Using a tank model to determine hydro-meteorological thresholds for large-scale landslides in Taiwan. Water 2020, 12, 253. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-W.; Chen, C.-Y. Warning Models for Landslide and Channelized Debris Flow under Climate Change Conditions in Taiwan. Water 2022, 14, 695. [Google Scholar] [CrossRef]
- Tsai, Y.-J.; Syu, F.-T.; Shieh, C.-L.; Chung, C.-R.; Lin, S.-S.; Yin, H.-Y. Framework of Emergency Response System for Potential Large-Scale Landslide in Taiwan. Water 2021, 13, 712. [Google Scholar] [CrossRef]
- Lee, C.-T. Review and Prospect on Landslide and Debris Flow Hazard Analysis. Taiwan Public Eng. J. 2009, 5, 1–29. (In Chinese) [Google Scholar]
- Bachmair, S.; Weiler, M. New Dimensions of Hillslope Hydrology. In Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions; Levia, D.F., Carlyle-Moses, D., Tanaka, T., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2011; pp. 455–481. [Google Scholar] [CrossRef]
- Chorover, J.; Troch, P.A.; Rasmussen, C.; Brooks, P.D.; Pelletier, J.D.; Breshears, D.D.; Huxman, T.E.; Kurc, S.A.; Lohse, K.A.; McIntosh, J.C. How water, carbon, and energy drive critical zone evolution: The Jemez–Santa Catalina Critical Zone Observatory. Vadose Zone J. 2011, 10, 884–899. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, C.; Pelletier, J.D.; Troch, P.A.; Swetnam, T.L.; Chorover, J. Quantifying topographic and vegetation effects on the transfer of energy and mass to the critical zone. Vadose Zone J. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Hopmans, J.W.; Richter, D.B. Interdisciplinary sciences in a global network of critical zone observatories. Vadose Zone J. 2011, 10, 781–785. [Google Scholar] [CrossRef]
- Field, J.P.; Breshears, D.D.; Law, D.J.; Villegas, J.C.; López-Hoffman, L.; Brooks, P.D.; Chorover, J.; Barron-Gafford, G.A.; Gallery, R.E.; Litvak, M.E. Critical Zone services: Expanding context, constraints, and currency beyond ecosystem services. Vadose Zone J. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.P.; Bales, R.C.; Duffy, C.J. Critical Zone Observatories: Building a network to advance interdisciplinary study of Earth surface processes. Mineral. Mag. 2008, 72, 7–10. [Google Scholar] [CrossRef]
- Banwart, S.; Bernasconi, S.M.; Bloem, J.; Blum, W.; Brandao, M.; Brantley, S.; Chabaux, F.; Duffy, C.; Kram, P.; Lair, G. Soil processes and functions in critical zone observatories: Hypotheses and experimental design. Vadose Zone J. 2011, 10, 974–987. [Google Scholar] [CrossRef]
- Richter, D.D.; Billings, S.A. ‘One physical system’: Tansley’s ecosystem as Earth’s critical zone. New Phytol. 2015, 206, 900–912. [Google Scholar] [CrossRef]
- Brantley, S.L.; DiBiase, R.A.; Russo, T.A.; Shi, Y.; Lin, H.; Davis, K.J.; Kaye, M.; Hill, L.; Kaye, J.; Eissenstat, D.M. Designing a suite of measurements to understand the critical zone. Earth Surf. Dyn. 2016, 4, 211–235. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Lin, H. Critical zone research and observatories: Current status and future perspectives. Vadose Zone J. 2016, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Brantley, S.; White, T.; White, A.; Sparks, D.; Richter, D.; Pregitzer, K.; Derry, L.; Chorover, J.; Chadwick, O.; April, R. Frontiers in exploration of the Critical Zone. In Proceedings of the Report of a Workshop Sponsored by the National Science Foundation (NSF), Newark, DE, USA, 24–26 October 2005; p. 30. [Google Scholar]
- Brantley, S.L.; McDowell, W.H.; Dietrich, W.E.; White, T.S.; Kumar, P.; Anderson, S.P.; Chorover, J.; Lohse, K.A.; Bales, R.C.; Richter, D.D.; et al. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth. Earth Surf. Dyn. 2017, 5, 841–860. [Google Scholar] [CrossRef] [Green Version]
- White, T.; Brantley, S.; Banwart, S.; Chorover, J.; Dietrich, W.; Derry, L.; Lohse, K.; Anderson, S.; Aufdendkampe, A.; Bales, R.; et al. Chapter 2—The Role of Critical Zone Observatories in Critical Zone Science. In Developments in Earth Surface Processes; Giardino, J.R., Houser, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 19, pp. 15–78. [Google Scholar]
- Dietrich, W.E.; Lohse, K. Common questions of the US NSF–supported Critical Zone Observatories. In A Guide Prepared by CZO PIs; CZO: USA, 2014. [Google Scholar]
- Rasmussen, C.; Troch, P.A.; Chorover, J.; Brooks, P.; Pelletier, J.; Huxman, T.E. An open system framework for integrating critical zone structure and function. Biogeochemistry 2011, 102, 15–29. [Google Scholar] [CrossRef]
- Zapata-Rios, X.; Brooks, P.D.; Troch, P.A.; McIntosh, J.; Rasmussen, C. Influence of climate variability on water partitioning and effective energy and mass transfer in a semi-arid critical zone. Hydrol. Earth Syst. Sci. 2016, 20, 1103–1115. [Google Scholar] [CrossRef] [Green Version]
- Keller, C.K. Carbon Exports from Terrestrial Ecosystems: A Critical-Zone Framework. Ecosystems 2019, 22, 1691–1705. [Google Scholar] [CrossRef]
- Vicca, S.; Stocker, B.D.; Reed, S.; Wieder, W.R.; Bahn, M.; Fay, P.A.; Janssens, I.A.; Lambers, H.; Peñuelas, J.; Piao, S. Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environ. Res. Lett. 2018, 13, 125006. [Google Scholar] [CrossRef] [Green Version]
- Harpold, A.A.; Molotch, N.P. Sensitivity of soil water availability to changing snowmelt timing in the western US. Geophys. Res. Lett. 2015, 42, 8011–8020. [Google Scholar] [CrossRef]
- Wlostowski, A.N.; Gooseff, M.N.; McKnight, D.M.; Jaros, C.; Lyons, W.B. Patterns of hydrologic connectivity in the McMurdo Dry Valleys, Antarctica: A synthesis of 20 years of hydrologic data. Hydrol. Process. 2016, 30, 2958–2975. [Google Scholar] [CrossRef]
- King, E.K.; Pett-Ridge, J.C. Reassessing the dissolved molybdenum isotopic composition of ocean inputs: The effect of chemical weathering and groundwater. Geology 2018, 46, 955–958. [Google Scholar] [CrossRef]
- Chorover, J.; Derry, L.A.; McDowell, W.H. Concentration-Discharge Relations in the Critical Zone: Implications for Resolving Critical Zone Structure, Function, and Evolution. Water Resour. Res. 2017, 53, 8654–8659. [Google Scholar] [CrossRef]
- Lerouge, C.; Debure, M.; Henry, B.; Fernandez, A.-M.; Blessing, M.; Proust, E.; Madé, B.; Robinet, J.-C. Origin of dissolved gas (CO2, O2, N2, alkanes) in pore waters of a clay formation in the critical zone (Tégulines Clay, France). Appl. Geochem. 2020, 116, 104573. [Google Scholar] [CrossRef]
- Zapata-Rios, X.; McIntosh, J.; Rademacher, L.; Troch, P.A.; Brooks, P.D.; Rasmussen, C.; Chorover, J. Climatic and landscape controls on water transit times and silicate mineral weathering in the critical zone. Water Resour. Res. 2015, 51, 6036–6051. [Google Scholar] [CrossRef]
- Moraetis, D.; Paranychianakis, N.V.; Nikolaidis, N.P.; Banwart, S.A.; Rousseva, S.; Kercheva, M.; Nenov, M.; Shishkov, T.; de Ruiter, P.; Bloem, J. Sediment provenance, soil development, and carbon content in fluvial and manmade terraces at Koiliaris River Critical Zone Observatory. J. Soils Sediments 2015, 15, 347–364. [Google Scholar] [CrossRef]
- Stone, M.M.; DeForest, J.L.; Plante, A.F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biol. Biochem. 2014, 75, 237–247. [Google Scholar] [CrossRef]
- Stone, M.M.; Kan, J.; Plante, A.F. Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory. Soil Biol. Biochem. 2015, 80, 273–282. [Google Scholar] [CrossRef]
- Brewer, T.E.; Aronson, E.L.; Arogyaswamy, K.; Billings, S.A.; Botthoff, J.K.; Campbell, A.N.; Dove, N.C.; Fairbanks, D.; Gallery, R.E.; Hart, S.C.; et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBio 2019, 10, e01318-19. [Google Scholar] [CrossRef] [Green Version]
- Sparks, D.L.; Banwart, S.A. Quantifying and Managing Soil Functions in Earth’s Critical Zone: Combining Experimentation and Mathematical Modelling; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Hahm, W.J.; Rempe, D.M.; Dralle, D.N.; Dawson, T.E.; Lovill, S.M.; Bryk, A.B.; Bish, D.L.; Schieber, J.; Dietrich, W.E. Lithologically Controlled Subsurface Critical Zone Thickness and Water Storage Capacity Determine Regional Plant Community Composition. Water Resour. Res. 2019, 55, 3028–3055. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water–ecosystem–economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.-R.; Li, X.-Y.; Yang, X.-F. The impact of micro-topography on the interplay of critical zone architecture and hydrological processes at the hillslope scale: Integrated geophysical and hydrological experiments on the Qinghai-Tibet Plateau. J. Hydrol. 2020, 583, 124618. [Google Scholar] [CrossRef]
- Riebe, C.S.; Hahm, W.J.; Brantley, S.L. Controls on deep critical zone architecture: A historical review and four testable hypotheses. Earth Surf. Process. Landf. 2017, 42, 128–156. [Google Scholar] [CrossRef]
- Brooks, P.D.; Chorover, J.; Fan, Y.; Godsey, S.E.; Maxwell, R.M.; McNamara, J.P.; Tague, C. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour. Res. 2015, 51, 6973–6987. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Lü, Y.; Fu, B.; Harris, P.; Wu, L.; Comber, A. When multi-functional landscape meets Critical Zone science: Advancing multi-disciplinary research for sustainable human well-being. Natl. Sci. Rev. 2019, 6, 349–358. [Google Scholar] [CrossRef]
- Fan, Y.; Clark, M.; Lawrence, D.M.; Swenson, S.; Band, L.; Brantley, S.L.; Brooks, P.; Dietrich, W.E.; Flores, A.; Grant, G. Hillslope hydrology in global change research and Earth system modeling. Water Resour. Res. 2019, 55, 1737–1772. [Google Scholar] [CrossRef] [Green Version]
- Minor, J.; Pearl, J.K.; Barnes, M.L.; Colella, T.R.; Murphy, P.C.; Mann, S.; Barron-Gafford, G.A. Critical Zone Science in the Anthropocene: Opportunities for biogeographic and ecological theory and praxis to drive earth science integration. Prog. Phys. Geogr. Earth Environ. 2020, 44, 50–69. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jackson, B.M.; Clothier, B.E.; Dominati, E.J.; Marchant, S.C.; Cooper, D.M.; Bristow, K.L. Advances in soil ecosystem services: Concepts, models, and applications for earth system life support. Vadose Zone J. 2013, 12, vzj2013.01.0027. [Google Scholar] [CrossRef] [Green Version]
- Banwart, S.; Menon, M.; Bernasconi, S.M.; Bloem, J.; Blum, W.E.; de Souza, D.M.; Davidsdotir, B.; Duffy, C.; Lair, G.J.; Kram, P. Soil processes and functions across an international network of Critical Zone Observatories: Introduction to experimental methods and initial results. Comptes Rendus Geosci. 2012, 344, 758–772. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. Policy relevance of Critical Zone science. Land Use Policy 2015, 49, 86–91. [Google Scholar] [CrossRef]
- Angermann, L.; Jackisch, C.; Allroggen, N.; Sprenger, M.; Zehe, E.; Tronicke, J.; Weiler, M.; Blume, T. Form and function in hillslope hydrology: Characterization of subsurface ow based on response observations. Hydrol. Earth Syst. Sci. 2017, 21, 3727–3748. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.W.; Brierley, G. The influence of landscape connectivity and landslide dynamics upon channel adjustments and sediment flux in the Liwu Basin, Taiwan. Earth Surf. Process. Landf. 2014, 39, 2038–2055. [Google Scholar] [CrossRef]
- Regmi, N.R.; Giardino, J.R.; McDonald, E.V.; Vitek, J.D. A review of mass movement processes and risk in the critical zone of Earth. In Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2015; Volume 19, pp. 319–362. [Google Scholar]
- Wieczorek, G.F. Landslides: Investigation and mitigation. Chapter 4-Landslide triggering mechanisms. Transp. Res. Board Spec. Rep. 1996, 247, 76–90. [Google Scholar]
- Chen, H.; Dadson, S.; Chi, Y.-G. Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology 2006, 77, 112–125. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and processes. Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslides: Investigation and mitigation. Chapter 3-Landslide types and processes. Transp. Res. Board Spec. Rep. 1996, 247, 36–75. [Google Scholar]
- Froude, M.J.; Petley, D. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Highland, L.; Bobrowsky, P.T. The Landslide Handbook: A Guide to Understanding Landslides; US Geological Survey Reston: Reston, WV, USA, 2008. [Google Scholar]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Sarkar, S.; Kanungo, D.P. An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm. Eng. Remote Sens. 2004, 70, 617–625. [Google Scholar] [CrossRef]
- Martelloni, G.; Segoni, S.; Fanti, R.; Catani, F. Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 2012, 9, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Borga, M.; Dalla Fontana, G.; Da Ros, D.; Marchi, L. Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ. Geol. 1998, 35, 81–88. [Google Scholar] [CrossRef]
- Weidner, L.; DePrekel, K.; Oommen, T.; Vitton, S. Investigating large landslides along a river valley using combined physical, statistical, and hydrologic modeling. Eng. Geol. 2019, 259, 105169. [Google Scholar] [CrossRef]
- He, J.; Qiu, H.; Qu, F.; Hu, S.; Yang, D.; Shen, Y.; Zhang, Y.; Sun, H.; Cao, M. Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models. Catena 2021, 197, 104999. [Google Scholar] [CrossRef]
- Sidle, R.C.; Onda, Y. Hydrogeomorphology: Overview of an emerging science. Hydrol. Process. 2004, 18, 597–602. [Google Scholar] [CrossRef]
- Lin, H.; Bouma, J.; Pachepsky, Y.; Western, A.; Thompson, J.; Van Genuchten, R.; Vogel, H.J.; Lilly, A. Hydropedology: Synergistic integration of pedology and hydrology. Water Resour. Res. 2006, 42, W05301. [Google Scholar] [CrossRef]
- Mirus, B.B.; Smith, J.B.; Baum, R.L. Hydrologic impacts of landslide disturbances: Implications for remobilization and hazard persistence. Water Resour. Res. 2017, 53, 8250–8265. [Google Scholar] [CrossRef]
- Bittelli, M.; Valentino, R.; Salvatorelli, F.; Pisa, P.R. Monitoring soil-water and displacement conditions leading to landslide occurrence in partially saturated clays. Geomorphology 2012, 173, 161–173. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability. J. Geophys.Res. Earth Surf. 2009, 114, F01031. [Google Scholar] [CrossRef] [Green Version]
- Katsura, S.Y.; Kosugi, K.I.; Yamakawa, Y.; Mizuyama, T. Field evidence of groundwater ridging in a slope of a granite watershed without the capillary fringe effect. J. Hydrol. 2014, 511, 703–718. [Google Scholar] [CrossRef]
- Sidle, R.; Ochiai, H. Processes, Prediction, and Land Use. In Water Resources Monograph; American Geophysical Union: Washington, WA, USA, 2006. [Google Scholar]
- Korup, O.; Densmore, A.L.; Schlunegger, F. The role of landslides in mountain range evolution. Geomorphology 2010, 120, 77–90. [Google Scholar] [CrossRef]
- Scherrer, S.; Naef, F. A decision scheme to indicate dominant hydrological flow processes on temperate grassland. Hydrol. Process. 2003, 17, 391–401. [Google Scholar] [CrossRef]
- Sidle, R.C.; Hirano, T.; Gomi, T.; Terajima, T. Hortonian overland flow from Japanese forest plantations—An aberration, the real thing, or something in between? Hydrol.Process. Int. J. 2007, 21, 3237–3247. [Google Scholar] [CrossRef]
- Kienzler, P.M.; Naef, F. Subsurface storm flow formation at different hillslopes and implications for the ‘old water paradox’. Hydrol.Process. Int. J. 2008, 22, 104–116. [Google Scholar] [CrossRef]
- Jackisch, C.; Angermann, L.; Allroggen, N.; Sprenger, M.; Blume, T.; Tronicke, J.; Zehe, E. Form and function in hillslope hydrology: In situ imaging and characterization of flow-relevant structures. Hydrol. Earth Syst. Sci. 2017, 21, 3749–3775. [Google Scholar] [CrossRef] [Green Version]
- Lanni, C.; McDonnell, J.; Hopp, L.; Rigon, R. Simulated effect of soil depth and bedrock topography on near-surface hydrologic response and slope stability. Earth Surf. Process. Landf. 2013, 38, 146–159. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E.; Heffner, J.T. Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding. Water Resour. Res. 2002, 38, 10-11-10-18. [Google Scholar] [CrossRef]
- Moradi, S.; Huisman, J.; Class, H.; Vereecken, H. The effect of bedrock topography on timing and location of landslide initiation using the local factor of safety concept. Water 2018, 10, 1290. [Google Scholar] [CrossRef] [Green Version]
- Kosugi, K.i.; Uchida, T.; Mizuyama, T. Numerical calculation of soil pipe flow and its effect on water dynamics in a slope. Hydrol. Process. 2004, 18, 777–789. [Google Scholar] [CrossRef]
- Gabrielli, C.P.; McDonnell, J.; Jarvis, W. The role of bedrock groundwater in rainfall–runoff response at hillslope and catchment scales. J. Hydrol. 2012, 450, 117–133. [Google Scholar] [CrossRef]
- Blahůt, J.; Jaboyedoff, M.; Thiebes, B. “Novel Approaches in Landslide Monitoring and Data Analysis” Special Issue: Trends and Challenges. Appl. Sci. 2021, 11, 10453. [Google Scholar] [CrossRef]
- Anderson, R.S.; Rajaram, H.; Anderson, S.P. Climate driven coevolution of weathering profiles and hillslope topography generates dramatic differences in critical zone architecture. Hydrol. Process. 2019, 33, 4–19. [Google Scholar] [CrossRef] [Green Version]
- West, N.; Kirby, E.; Nyblade, A.A.; Brantley, S.L. Climate preconditions the Critical Zone: Elucidating the role of subsurface fractures in the evolution of asymmetric topography. Earth Planet. Sci. Lett. 2019, 513, 197–205. [Google Scholar] [CrossRef]
- Johnson, M.S.; Lehmann, J. Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience 2006, 13, 324–333. [Google Scholar] [CrossRef]
- Yu, Y.; Loiskandl, W.; Kaul, H.-P.; Himmelbauer, M.; Wei, W.; Chen, L.; Bodner, G. Estimation of runoff mitigation by morphologically different cover crop root systems. J. Hydrol. 2016, 538, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Scanlan, C.; Hinz, C. Insights into the processes and effects of root-induced changes to soil hydraulic properties. In Proceedings of the 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 1–6. [Google Scholar]
- Lu, J.; Zhang, Q.; Werner, A.D.; Li, Y.; Jiang, S.; Tan, Z. Root-induced changes of soil hydraulic properties–A review. J. Hydrol. 2020, 589, 125203. [Google Scholar] [CrossRef]
- Operstein, V.; Frydman, S. The influence of vegetation on soil strength. Proc. Inst. Civ. Eng.-Ground Improv. 2000, 4, 81–89. [Google Scholar] [CrossRef]
- Wang, X.; Ma, C.; Wang, Y.; Wang, Y.; Li, T.; Dai, Z.; Li, M. Effect of root architecture on rainfall threshold for slope stability: Variabilities in saturated hydraulic conductivity and strength of root-soil composite. Landslides 2020, 17, 1965–1977. [Google Scholar] [CrossRef]
- Stokes, A.; Atger, C.; Bengough, A.G.; Fourcaud, T.; Sidle, R.C. Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 2009, 324, 1–30. [Google Scholar] [CrossRef]
- Dhakal, A.S.; Sidle, R.C. Long-term modelling of landslides for different forest management practices. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2003, 28, 853–868. [Google Scholar] [CrossRef]
- Minder, J.R.; Roe, G.H.; Montgomery, D.R. Spatial patterns of rainfall and shallow landslide susceptibility. Water Resour. Res. 2009, 45, W04419. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Salamon, P.; Pappenberger, F.; Wetterhall, F.; Thielen, J. Operational early warning systems for water-related hazards in Europe. Environ. Sci. Policy 2012, 21, 35–49. [Google Scholar] [CrossRef]
- Canli, E.; Loigge, B.; Glade, T. Spatially distributed rainfall information and its potential for regional landslide early warning systems. Nat. Hazards 2018, 91, 103–127. [Google Scholar] [CrossRef] [Green Version]
- Chiang, S.-H.; Chang, K.-T. Application of radar data to modeling rainfall-induced landslides. Geomorphology 2009, 103, 299–309. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Melillo, M.; Peruccacci, S.; Ciabatta, L.; Brocca, L. How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens. Environ. 2018, 210, 65–75. [Google Scholar] [CrossRef]
- Hong, Y.; Adler, R.F.; Negri, A.; Huffman, G.J. Flood and landslide applications of near real-time satellite rainfall products. Nat. Hazards 2007, 43, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Brantley, S.L.; Lebedeva, M.I.; Balashov, V.N.; Singha, K.; Sullivan, P.L.; Stinchcomb, G. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills. Geomorphology 2017, 277, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Rempe, D.M.; Dietrich, W.E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl. Acad. Sci. USA 2018, 115, 2664–2669. [Google Scholar] [CrossRef] [Green Version]
- Stieglitz, M.; Shaman, J.; McNamara, J.; Engel, V.; Shanley, J.; Kling, G.W. An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Glob. Biogeochem. Cycles 2003, 17, 1105. [Google Scholar] [CrossRef]
- McNamara, J.P.; Chandler, D.; Seyfried, M.; Achet, S. Soil moisture states, lateral flow, and streamflow generation in a semi-arid, snowmelt-driven catchment. Hydrol. Process. Int. J. 2005, 19, 4023–4038. [Google Scholar] [CrossRef]
- Lehmann, P.; Hinz, C.; McGrath, G.; Tromp-van Meerveld, H.; McDonnell, J.J. Rainfall threshold for hillslope outflow: An emergent property of flow pathway connectivity. Hydrol. Earth Syst. Sci. 2007, 11, 1047–1063. [Google Scholar] [CrossRef] [Green Version]
- Gomi, T.; Sidle, R.C.; Miyata, S.; Kosugi, K.i.; Onda, Y. Dynamic runoff connectivity of overland flow on steep forested hillslopes: Scale effects and runoff transfer. Water Resour. Res. 2008, 44, W08411. [Google Scholar] [CrossRef]
- Houston, S.L. It is Time to Use Unsaturated Soil Mechanics in Routine Geotechnical Engineering Practice. J. Geotech. Geoenviron. Eng. 2019, 145, 02519001. [Google Scholar] [CrossRef]
- Lu, N. Unsaturated Soil Mechanics: Fundamental Challenges, Breakthroughs, and Opportunities. J. Geotech. Geoenviron. Eng. 2020, 146, 02520001. [Google Scholar] [CrossRef] [Green Version]
- Angeli, M.-G.; Pasuto, A.; Silvano, S. A critical review of landslide monitoring experiences. Eng. Geol. 2000, 55, 133–147. [Google Scholar] [CrossRef]
- Beven, K. Searching for the Holy Grail of scientific hydrology: Q t=(S, R, Δt) A as closure. Hydrol. Earth Syst. Sci. 2006, 10, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Richter, D.d.; Mobley, M.L. Monitoring Earth’s critical zone. Science 2009, 326, 1067–1068. [Google Scholar] [CrossRef]
- Harpold, A.A.; Marshall, J.A.; Lyon, S.W.; Barnhart, T.; Fisher, B.; Donovan, M.; Brubaker, K.; Crosby, C.; Glenn, N.F.; Glennie, C. Laser vision: Lidar as a transformative tool to advance critical zone science. Hydrol. Earth Syst. Sci. 2015, 19, 2881–2897. [Google Scholar] [CrossRef] [Green Version]
- Harman, C.J.; Lohse, K.A.; Troch, P.A.; Sivapalan, M. Spatial patterns of vegetation, soils, and microtopography from terrestrial laser scanning on two semiarid hillslopes of contrasting lithology. J. Geophys. Res. Biogeosci. 2014, 119, 163–180. [Google Scholar] [CrossRef]
- Parsekian, A.D.; Singha, K.; Minsley, B.J.; Holbrook, W.S.; Slater, L. Multiscale geophysical imaging of the critical zone. Rev. Geophys. 2015, 53, 1–26. [Google Scholar] [CrossRef]
- Kowalsky, M.B.; Finsterle, S.; Peterson, J.; Hubbard, S.; Rubin, Y.; Majer, E.; Ward, A.; Gee, G. Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resour. Res. 2005, 41, W11425. [Google Scholar] [CrossRef] [Green Version]
- Ferré, T.; Bentley, L.; Binley, A.; Linde, N.; Kemna, A.; Singha, K.; Holliger, K.; Huisman, J.A.; Minsley, B. Critical steps for the continuing advancement of hydrogeophysics. Eos Trans. Am. Geophys. Union 2009, 90, 200. [Google Scholar] [CrossRef] [Green Version]
- Herckenrath, D.; Fiandaca, G.; Auken, E.; Bauer-Gottwein, P. Sequential and joint hydrogeophysical inversion using a field-scale groundwater model with ERT and TDEM data. Hydrol. Earth Syst. Sci. 2013, 17, 4043–4060. [Google Scholar] [CrossRef] [Green Version]
- Jongmans, D.; Garambois, S. Geophysical investigation of landslides: A review. Bull. Soc. Geol. Fr. 2007, 178, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Hack, R. Geophysics for slope stability. Surv. Geophys. 2000, 21, 423–448. [Google Scholar] [CrossRef]
- Supper, R.; Römer, A.; Jochum, B.; Bieber, G.; Jaritz, W. A complex geo-scientific strategy for landslide hazard mitigation–from airborne mapping to ground monitoring. Adv. Geosci. 2008, 14, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Schrott, L.; Sass, O. Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies. Geomorphology 2008, 93, 55–73. [Google Scholar] [CrossRef]
- Springman, S.M.; Thielen, A.; Kienzler, P.; Friedel, S. A long-term field study for the investigation of rainfall-induced landslides. Geotechnique 2013, 63, 1177–1193. [Google Scholar] [CrossRef]
- Renalier, F.; Jongmans, D.; Campillo, M.; Bard, P.Y. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. J. Geophys.Res. Earth Surf. 2010, 115, F03032. [Google Scholar] [CrossRef] [Green Version]
- Chambers, J.; Wilkinson, P.; Kuras, O.; Ford, J.; Gunn, D.; Meldrum, P.; Pennington, C.; Weller, A.; Hobbs, P.; Ogilvy, R. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 2011, 125, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, A.; Malet, J.-P.; Delacourt, C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens. Environ. 2017, 189, 40–55. [Google Scholar] [CrossRef]
- Bièvre, G.; Jongmans, D.; Winiarski, T.; Zumbo, V. Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrol. Process. 2012, 26, 2128–2142. [Google Scholar] [CrossRef] [Green Version]
- Deiana, M.; Cervi, F.; Pennisi, M.; Mussi, M.; Bertrand, C.; Tazioli, A.; Corsini, A.; Ronchetti, F. Chemical and isotopic investigations (δ 18 O, δ 2 H, 3 H, 87 Sr/86 Sr) to define groundwater processes occurring in a deep-seated landslide in flysch. Hydrogeol. J. 2018, 26, 2669–2691. [Google Scholar] [CrossRef]
- Perrone, A.; Iannuzzi, A.; Lapenna, V.; Lorenzo, P.; Piscitelli, S.; Rizzo, E.; Sdao, F. High-resolution electrical imaging of the Varco d’Izzo earthflow (southern Italy). J. Appl. Geophys. 2004, 56, 17–29. [Google Scholar] [CrossRef]
- Whiteley, J.S.; Chambers, J.E.; Uhlemann, S.; Wilkinson, P.B.; Kendall, J.M. Geophysical Monitoring of Moisture-Induced Landslides: A Review. Rev. Geophys. 2019, 57, 106–145. [Google Scholar] [CrossRef] [Green Version]
- Crawford, M.M.; Bryson, L.S. Assessment of active landslides using field electrical measurements. Eng. Geol. 2017, 233, 146–159. [Google Scholar] [CrossRef]
- Crawford, M.M.; Bryson, L.S.; Woolery, E.W.; Wang, Z. Using 2-D electrical resistivity imaging for joint geophysical and geotechnical characterization of shallow landslides. J. Appl. Geophys. 2018, 157, 37–46. [Google Scholar] [CrossRef]
- Boyd, J.; Chambers, J.; Wilkinson, P.; Peppa, M.; Watlet, A.; Kirkham, M.; Jones, L.; Swift, R.; Meldrum, P.; Uhlemann, S.; et al. A linked geomorphological and geophysical modelling methodology applied to an active landslide. Landslides 2021, 18, 2689–2704. [Google Scholar] [CrossRef]
- Pazzi, V.; Morelli, S.; Fanti, R. A review of the advantages and limitations of geophysical investigations in landslide studies. Int. J. Geophys. 2019, 2019, 2983087. [Google Scholar] [CrossRef] [Green Version]
- Hopp, L.; McDonnell, J.J. Connectivity at the hillslope scale: Identifying interactions between storm size, bedrock permeability, slope angle and soil depth. J. Hydrol. 2009, 376, 378–391. [Google Scholar] [CrossRef]
- Cervi, F.; Ronchetti, F.; Martinelli, G.; Bogaard, T.; Corsini, A. Origin and assessment of deep groundwater inflow in the Ca’Lita landslide using hydrochemistry and in situ monitoring. Hydrol. Earth Syst. Sci. 2012, 16, 4205–4221. [Google Scholar] [CrossRef] [Green Version]
- Bogaard, T.; Guglielmi, Y.; Marc, V.; Emblanch, C.; Bertrand, C.; Mudry, J. Hydrogeochemistry in landslide research: A review. Bull. Société Géologique Fr. 2007, 178, 113–126. [Google Scholar] [CrossRef]
- Van Gaelen, N.; Verheyen, D.; Ronchi, B.; Struyf, E.; Govers, G.; Vanderborght, J.; Diels, J. Identifying the transport pathways of dissolved organic carbon in contrasting catchments. Vadose Zone J. 2014, 13, vzj2013.11.0199. [Google Scholar] [CrossRef]
- Wenninger, J.; Uhlenbrook, S.; Tilch, N.; Leibundgut, C. Experimental evidence of fast groundwater responses in a hillslope/floodplain area in the Black Forest Mountains, Germany. Hydrol. Process. 2004, 18, 3305–3322. [Google Scholar] [CrossRef]
- Flerchinger, G.; Seyfried, M. Comparison of methods for estimating evapotranspiration in a small rangeland catchment. Vadose Zone J. 2014, 13, 1–11. [Google Scholar] [CrossRef]
- Kim, H.; Dietrich, W.E.; Thurnhoffer, B.M.; Bishop, J.K.; Fung, I.Y. Controls on solute concentration-discharge relationships revealed by simultaneous hydrochemistry observations of hillslope runoff and stream flow: The importance of critical zone structure. Water Resour. Res. 2017, 53, 1424–1443. [Google Scholar] [CrossRef] [Green Version]
- Balmford, A.; Crane, P.; Dobson, A.; Green, R.E.; Mace, G.M. The 2010 challenge: Data availability, information needs and extraterrestrial insights. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Soulsby, C.; Neal, C.; Laudon, H.; Burns, D.; Mérot, P.; Bonell, M.; Dunn, S.; Tetzlaff, D. Catchment data for process conceptualization: Simply not enough? Hydrol. Process. 2008, 22, 2057–2061. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Lü, G.; Yue, S.; Wen, Y.; Lan, Z.; Zhang, S. A data sharing method in the open web environment: Data sharing in hydrology. J. Hydrol. 2020, 587, 124973. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamies. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Broxton, P.D.; Troch, P.A.; Lyon, S.W. On the role of aspect to quantify water transit times in small mountainous catchments. Water Resour. Res. 2009, 45, W0842. [Google Scholar] [CrossRef] [Green Version]
- Lin, H. Hydropedology: Bridging disciplines, scales, and data. Vadose Zone J. 2003, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Burt, T.; Pinay, G. Linking hydrology and biogeochemistry in complex landscapes. Prog. Phys. Geogr. 2005, 29, 297–316. [Google Scholar] [CrossRef]
- Elshorbagy, A.; Corzo, G.; Srinivasulu, S.; Solomatine, D. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 1: Concepts and methodology. Hydrol. Earth Syst. Sci. 2010, 14, 1931–1941. [Google Scholar] [CrossRef] [Green Version]
- Pinder, G.F.; Gray, W.G. Finite Element Simulation in Surface and Subsurface Hydrology; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Sivapalan, M. Pattern, process and function: Elements of a unified theory of hydrology at the catchment scale. Encycl. Hydrol. Sci. 2006, 13, 139–219. [Google Scholar] [CrossRef] [Green Version]
- Binley, A.M.; Beven, K.J.; Calver, A.; Watts, L. Changing responses in hydrology: Assessing the uncertainty in physically based model predictions. Water Resour. Res. 1991, 27, 1253–1261. [Google Scholar] [CrossRef]
- Troch, P.A.; Carrillo, G.A.; Heidbüchel, I.; Rajagopal, S.; Switanek, M.; Volkmann, T.H.; Yaeger, M. Dealing with landscape heterogeneity in watershed hydrology: A review of recent progress toward new hydrological theory. Geogr. Compass 2009, 3, 375–392. [Google Scholar] [CrossRef]
- McDonnell, J.; Sivapalan, M.; Vaché, K.; Dunn, S.; Grant, G.; Haggerty, R.; Hinz, C.; Hooper, R.; Kirchner, J.; Roderick, M. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour. Res. 2007, 43, W07301. [Google Scholar] [CrossRef] [Green Version]
- Schulz, K.; Seppelt, R.; Zehe, E.; Vogel, H.J.; Attinger, S. Importance of spatial structures in advancing hydrological sciences. Water Resour. Res. 2006, 42, W03S03. [Google Scholar] [CrossRef] [Green Version]
- Vogel, H.-J.; Clothier, B.; Li, X.-Y.; Lin, H. Hydropedology—A perspective on current research. Vadose Zone J. 2013, 12, vzj2013.09.0161. [Google Scholar] [CrossRef] [Green Version]
- Jansen, B.; Kalbitz, K.; McDowell, W.H. Dissolved organic matter: Linking soils and aquatic systems. Vadose Zone J. 2014, 13, 1–4. [Google Scholar] [CrossRef] [Green Version]
- van Asch, T.W.; Malet, J.-P.; van Beek, L.P.; Amitrano, D. Techniques, issues and advances in numerical modelling of landslide hazard. Bull. Soc. Geol. Fr. 2007, 178, 65–88. [Google Scholar] [CrossRef]
- Gerke, H.H. Preferential flow descriptions for structured soils. J. Plant Nutr. Soil Sci. 2006, 169, 382–400. [Google Scholar] [CrossRef]
- Köhne, J.M.; Köhne, S.; Šimůnek, J. A review of model applications for structured soils: A Water flow and tracer transport. J. Contam. Hydrol. 2009, 104, 4–35. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Bogaard, T.; Bakker, M.; Greco, R. Quantification of the influence of preferential flow on slope stability using a numerical modelling approach. Hydrol. Earth Syst. Sci. 2015, 19, 2197–2212. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.-H.; Nguyen, T.S.; Rahardjo, H.; Lin, D.-G. Deformation characteristics of unstable shallow slopes triggered by rainfall infiltration. Bull. Eng. Geol. Environ. 2020, 80, 317–344. [Google Scholar] [CrossRef]
- Alonso, E.; Gens, A.; Delahaye, C. Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: A case study. Hydrogeol. J. 2003, 11, 174–192. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Cheuk, C.; Tham, L. Deformation and crack development of a nailed loose fill slope subjected to water infiltration. Landslides 2009, 6, 299. [Google Scholar] [CrossRef]
- Leung, A.K.; Ng, C.W.W. Field investigation of deformation characteristics and stress mobilisation of a soil slope. Landslides 2016, 13, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Wu, W.; Yin, K.; Wang, S.; Lei, G. A hydro-mechanical coupled analysis of rainfall induced landslide using a hypoplastic constitutive model. Comput. Geotech. 2019, 112, 284–292. [Google Scholar] [CrossRef]
- Sun, D.a.; Wang, L.; Li, L. Stability of unsaturated soil slopes with cracks under steady-infiltration conditions. Int. J. Geomech. 2019, 19, 04019044. [Google Scholar] [CrossRef]
- Zeng, L.; Xiao, L.-Y.; Zhang, J.-H.; Gao, Q.-F. Effect of the characteristics of surface cracks on the transient saturated zones in colluvial soil slopes during rainfall. Bull. Eng. Geol. Environ. 2019, 79, 699–709. [Google Scholar] [CrossRef]
- Yang, L.; Liu, E. Numerical Analysis of the Effects of Crack Characteristics on the Stress and Deformation of Unsaturated Soil Slopes. Water 2020, 12, 194. [Google Scholar] [CrossRef] [Green Version]
- Seibert, J.; McDonnell, J.J. On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resour. Res. 2002, 38, 23-21-23-14. [Google Scholar] [CrossRef]
- Meerveld, I.T.-V.; Weiler, M. Hillslope dynamics modeled with increasing complexity. J. Hydrol. 2008, 361, 24–40. [Google Scholar] [CrossRef]
- Lai, Y.-C. Controlling complex, non-linear dynamical networks. Natl. Sci. Rev. 2014, 1, 339–341. [Google Scholar] [CrossRef] [Green Version]
- Willemen, L.; Veldkamp, A.; Verburg, P.; Hein, L.; Leemans, R. A multi-scale modelling approach for analysing landscape service dynamics. J. Environ. Manag. 2012, 100, 86–95. [Google Scholar] [CrossRef]
- Samaniego, L.; Kumar, R.; Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour. Res. 2010, 46, W05523. [Google Scholar] [CrossRef] [Green Version]
- Schaake, J.C.; Koren, V.I.; Duan, Q.Y.; Mitchell, K.; Chen, F. Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res. Atmos. 1996, 101, 7461–7475. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.-F.; Large, W.G.; Lawrence, D.; Lindsay, K. The community earth system model: A framework for collaborative research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Clark, M.P.; Fan, Y.; Lawrence, D.M.; Adam, J.C.; Bolster, D.; Gochis, D.J.; Hooper, R.P.; Kumar, M.; Leung, L.R.; Mackay, D.S. Improving the representation of hydrologic processes in Earth System Models. Water Resour. Res. 2015, 51, 5929–5956. [Google Scholar] [CrossRef]
- Miguez Macho, G.; Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res. Atmos. 2012, 117, D15113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-S.; Yeh, H.-F.; Huang, C.-C.; Chen, H.-Y. Reviews and Syntheses: Promoting the Advancement of Hillslope Hydrology and Stability in Taiwan from the Perspective of Critical Zone Science. Water 2023, 15, 1234. https://doi.org/10.3390/w15061234
Yang Y-S, Yeh H-F, Huang C-C, Chen H-Y. Reviews and Syntheses: Promoting the Advancement of Hillslope Hydrology and Stability in Taiwan from the Perspective of Critical Zone Science. Water. 2023; 15(6):1234. https://doi.org/10.3390/w15061234
Chicago/Turabian StyleYang, Ya-Sin, Hsin-Fu Yeh, Chia-Chi Huang, and Hsin-Yu Chen. 2023. "Reviews and Syntheses: Promoting the Advancement of Hillslope Hydrology and Stability in Taiwan from the Perspective of Critical Zone Science" Water 15, no. 6: 1234. https://doi.org/10.3390/w15061234