Development and Application of a Methodology for the Identification of Potential Groundwater Recharge Zones: A Case Study in the Virvini Micro-Basin, Tiraque, Bolivia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Procedures
- A slope map created from the digital elevation model (DEM) downloaded from the Shuttle Radar Topography Mission, NASA [55];
- A land use map [56];
- A soil textural map [56];
- A lithological map [56];
- A map of the percentage of vegetation cover. To obtain this input, the normalized difference vegetation index (NDVI, from the Sentinel-2 satellite) was used to derive the fraction of vegetation coverage (FVC) using the relationship proposed by Carlson and Ripley [57]:
- RP = groundwater recharge score
- S = slope
- T = soil texture
- R = rock type (from the lithological map)
- CV = % of vegetation cover
- LU = land use
2.2.1. Adjustment of the Initial Methodology to Local Conditions
2.2.2. Incorporating Academic and Non-Academic Knowledge through the Delphi Method
2.2.3. Application of the Adjusted Approach for the Identification of Groundwater Recharge Zones
2.2.4. Validation of the Adjusted Approach
3. Results and Discussion
3.1. Initial Identification of Groundwater Recharge Zones
3.2. Inclusion of a Meteorological Variable in the Adjusted Approach
3.3. Considerations Regarding the Vegetation Cover and Its Influence on the Recharge Process
3.4. Results of the Recategorization and Reweighing of the Algorithm’s Variables through the Delphi Method
3.5. Application of the EARLI Model to the Virvini Micro-Basin
3.6. Validation of the EARLI Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viceministerio de Riego, V. Plan Nacional de Desarrollo del Riego “Para Vivir Bien” 2007–2011; Dirección General de Riego: La Paz, Bolivia, 2007. [Google Scholar]
- Viceministro de Recursos Hídricos y Riego(VEHR). Agenda del Riego 2025: Contribución a la Agenda Patriótica del Bicentenario; Agenda del Riego: La Paz, Bolivia, 2013. [Google Scholar]
- Bradley, R.S.; Vuille, M.; Diaz, H.F.; Vergara, W. Threats to Water Supplies in the Tropical Andes. Science 2006, 312, 1755–1756. [Google Scholar] [CrossRef]
- Kinouchi, T.; Nakajima, T.; Mendoza, J.; Fuchs, P.; Asaoka, Y. Water security in high mountain cities of the Andes under a growing population and climate change: A case study of La Paz and El Alto, Bolivia. Water Secur. 2019, 6, 100025. [Google Scholar] [CrossRef]
- Kruse, T. “Guerra Del Agua” En Cochabamba, Bolivia: Terrenos Complejos, Convergencias Nuevas. In Sindicatos y Nuevos Movimientos Sociales en América Latina; Enrique de la Garza Toledo: Buenos Aires, Argentina, 2005; pp. 121–161. Available online: http://bibliotecavirtual.clacso.org.ar/ar/libros/grupos/sindi/kruse.pdf (accessed on 3 November 2022).
- Andrade, M.F. La Economía del Cambio Climático en Bolivia: Validación de Modelos Climáticos; Banco Interamericano de Desarrollo: Washington, DC, USA, 2014. [Google Scholar]
- Calvo Cárdenas, N. La Economía del Cambio Climático en Bolivia: Cambios en La Demanda Hídrica; Banco Interamericano de Desarrollo: Washington, DC, USA, 2014. [Google Scholar]
- Matus, O. Elaboración Participativa de Una Metodología para la Identificación de Zonas Potenciales de Recarga Hídrica en Subcuencas Hidrográficas, Aplicada a la Subcuenca del Río Jucuapa, Matagalpa Nicaragua; Centro Agronómico Tropical de Investigación y Enseñanza: Turrialba, Costa Rica, 2007; Volume Magister S. [Google Scholar]
- Wheeler, T.; Von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–511. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Barreteau, O.; Hunt, R.J.; Rinaudo, J.-D.; Ross, A.; Arshad, M.; Hamilton, S. Integrated Groundwater Management: An Overview of Concepts and Challenges. In Integrated Groundwater Management; Jakeman, A.J., Ed.; Spinger: Cham, Switzerland, 2016; pp. 3–20. [Google Scholar]
- Mora-Jiménez, L.D.; Ruiz-Valverde, J. Determinación de Áreas de Recarga Hídrica En Las Subcuencas de Los Ríos Frijoles y Guacalito, Upala, Costa Rica. Repert. Científico 2018, 21, 23–36. [Google Scholar] [CrossRef]
- Helvetas, S.I. Valoración de Efectos e Impactos de Intervenciones de Gestión, Manejo y Protección de Áreas de Recarga Hídrica; HELVETAS Swiss Intercooperation: Zürich, Switzerland, 2014. [Google Scholar]
- Sáenz-López, Á.A.; Bravo-Peña, L.C.; Torres-Olave, M.E.; Alatorre-Cejudo, C. Localización de Zonas Con Potencial Natural de Recarga Hídrica: Ensayo de Enfoque Multiescalar En El Acuífero Cuauhtémoc. In Proceedings of the Memorias de Resúmenes en Extenso SELPER-XXI-México-UACJ-2015, Ciudad Juárez, Mexico, 12–16 October 2015. [Google Scholar]
- Smith, M.; Cross, K.; Paden, M.; Laban, P. Acuíferos: Gestión Sostenible de Aguas Subterraneas; UICN ORMACC: San Jose, Costa Rica, 2016; ISBN 978-2-8317-2083-8. [Google Scholar]
- United Nations. Groundwater: Making the Invisible Visible; United Nations: Paris, France, 2022. [Google Scholar]
- McCaffrey, S.C. The International Law Commission Adopts Draft Articles on International Watercourses. Am. J. Int. Law 1995, 89, 395. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, S.M.T.; Hasan, M.M.; Saha, A.K.; Rannu, R.P.; Van Uytven, E.; Willems, P.; Huysmans, M. Multi-model approach to quantify groundwater-level prediction uncertainty using an ensemble of global climate models and multiple abstraction scenarios. Hydrol. Earth Syst. Sci. 2019, 23, 2279–2303. [Google Scholar] [CrossRef] [Green Version]
- Noori, R.; Maghrebi, M.; Mirchi, A.; Tang, Q.; Bhattarai, R.; Sadegh, M.; Noury, M.; Haghighi, A.T.; Kløve, B.; Madani, K. Anthropogenic depletion of Iran’s aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024221118. [Google Scholar] [CrossRef]
- Fares, A. Emerging Issues in Groundwater Resources; Springer: Cham, Switzerland, 2016; ISBN 9783319320069. [Google Scholar]
- Peñuela-Arévalo, L.A.; Carrillo-Rivera, J.J. Discharge areas as a useful tool for understanding recharge areas, study case: Mexico Catchment. Environ. Earth Sci. 2013, 68, 999–1013. [Google Scholar] [CrossRef]
- Seiler, K.-P.; Gat, J.R. Groundwater Recharge from Run-off, Infiltration and Percolation; Springer International Publishing: Dordrecht, The Netherlands, 2007; ISBN 978-0-306-48065-2. [Google Scholar]
- Pineda, F. Propuesta Metodológica Para la Identificación, Delimitación y Preservación de Zonas de Recarga Hídrica de Acuíferos; Universidad Libre: Bogotá, Colombia, 2011. [Google Scholar]
- Ramírez, E.J.; Sánchez, C.; Enríquez, M.; Gutiérrez, M. Identificación de Sitios Potenciales de Recarga de Acuíferos Mediante Uso de Vehículos Aéreos No Tripulados En La Universidad Del Mar Campus Puerto Ángel. Cienc. Mar 2018, 21, 13–18. [Google Scholar]
- Bierkens, M.F.P.; Wada, Y. Non-renewable groundwater use and groundwater depletion: A review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- Bierkens, M.F.P. Global hydrology 2015: State, Trends, and Directions. Water Resour. Res. 2015, 51, 4923–4947. [Google Scholar] [CrossRef]
- Konikow, L.F.; Kendy, E. Groundwater Depletion: A Global Problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Konikow, L.F. Long-Term Groundwater Depletion in the United States. Groundwater 2015, 53, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Steward, D.R.; Allen, A.J. Peak Groundwater Depletion in the High Plains Aquifer, Projections from 1930 to 2110. Agric. Water Manag. 2016, 170, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Kollet, S.J.; Zlotnik, V.A. Stream Depletion Predictions Using Pumping Test Data from a Heterogeneous Stream–Aquifer System (a case study from the Great Plains, USA). J. Hydrol. 2003, 281, 96–114. [Google Scholar] [CrossRef]
- Dangar, S.; Asoka, A.; Mishra, V. Causes and Implications of Groundwater Depletion in India: A Review. J. Hydrol. 2021, 596, 126103. [Google Scholar] [CrossRef]
- Long, D.; Chen, X.; Scanlon, B.R.; Wada, Y.; Hong, Y.; Singh, V.P.; Chen, Y.; Wang, C.; Han, Z.; Yang, W. Have GRACE Satellites Overestimated Groundwater Depletion in the Northwest India Aquifer? Sci. Rep. 2016, 6, 24398. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-Based Estimates of Groundwater Depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Maghrebi, M.; Noori, R.; Partani, S.; Araghi, A.; Barati, R.; Farnoush, H.; Haghighi, A.T. Iran’s Groundwater Hydrochemistry. Earth Space Sci. 2021, 8, e2021EA001793. [Google Scholar] [CrossRef]
- Cossío, V.; Wilk, J. A Paradigm Confronting Reality: The River Basin Approach and Local Water Management Spaces in the Pucara Basin, Bolivia. Water Altern. 2017, 10, 181–194. Available online: https://www.water-alternatives.org/index.php/alldoc/articles/vol10/v10issue1/348-a10-1-10/file?auid=913 (accessed on 3 November 2022).
- Figueredo, J.L. Metodología para Determinar Zonas de Recarga Hídrica en Municipios o Comunidades con Recursos Financieros Limitados. Ph.D. Thesis, Universidad Militar Nueva Granada, Bogotá, Colombia, 2019. [Google Scholar]
- Amaya, A.G.; Ortiz, J.; Durán, A.; Villazon, M. Hydrogeophysical methods and hydrogeological models: Basis for groundwater sustainable management in Valle Alto (Bolivia). Sustain. Water Resour. Manag. 2019, 5, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Saldias, C. Revelando la Distribución del Agua: Abanico Punata, Área de Influencia de la Cuenca Pucara, Bolivia. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2009. [Google Scholar]
- Helga, G.; Joost, D.; Paul, B.J.; Marijke, D. Power relations in the co-creation of water policy in Bolivia: Beyond the tyranny of participation. Water Policy 2022, 24, 569–587. [Google Scholar] [CrossRef]
- Huarita, M. Recarga del Sistema Acuífero de Cliza: Cochabamba-Bolivia. Master’s Thesis, Universidad Mayor, Real y Pontificia De San Francisco Xavier De Chuquisaca Vicerrectorado, Sucre, Bolivia, 2015. [Google Scholar]
- Mayta, A.; Felipe, M.; Pereyra, C. Disponibilidad de Agua Subterranea en el Municipio de Cliza; University of Calgary: Calgary, Canada, 2016. [Google Scholar]
- Zapata, S. Potencial de Explotación de Agua Subterránea en Cliza—Cochabamba. Master’s Thesis, Universidad Mayor, Real y Pontificia de San Francisco Xavier de Chuquisaca, Bogotá, Colombia, 2015. [Google Scholar]
- Barreno, I. Comparación de Metodologías para Identificación de Zonas Potrnciales de Recarga Hídrica en la Microcuenca del Río Agua Tibia, Zona 24, Guatemala. Ph.D. Thesis, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala, 2016. [Google Scholar]
- Sutton, J.C. Groundwater Recharge Areas: Identification and Protection within the Central Coast Regional Water Quality Control Board Jurisdiction. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2011. [Google Scholar]
- Gonzales, A.; Barmen, G.; Muñoz, G. A Multidisciplinary Approach for Clarifying the Recharge Processes and Origin of Saline Water in the Semi-Arid Punata Alluvial Fan in Bolivia. Water 2018, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Schosinsky, G. Cálculo de La Recarga Potencial de Acuíferos Mediante Un Balance Hídrico de Suelos. Rev. Geol. Am. Cent. 2006, 34–35, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Matus, O.; Faustino, J.; Jiménez, F. Guía para la Identificación Participativa de Zonas con Potencial de Recarga Hídrica [Guide for the Participatory Identification of Areas with Potential for Water Recharge]; Centro Agronómico Tropical de Investigación y Enseñanza: Turrialba, Costa Rica, 2009. [Google Scholar]
- Lu, Y.; Nakicenovic, N.; Visbeck, M.; Stevance, A.-S. Five Priorities for the UN Sustainable Development Goals. Nature 2015, 520, 7–8. [Google Scholar] [CrossRef] [Green Version]
- United Nation. SDG 6 Synthesis Report 2018 on Water and Sanitation; United Nation: Geneva, Switzerland, 2018; ISBN 9789213626740. [Google Scholar]
- Orellana, R. Plan de Gestón Integral de los Recursos Hídricos de la Comunidad de Virvini del Municipio de Tiraque. Master’s Thesis, Universidad Mayor de San Simón, Cochabamba, Bolivia, 2019. [Google Scholar]
- Gobierno Autonomo Municipal de Tiraque. Plan Territorial de Desarrollo Integral Tiraque 2016–2020; Gobierno Autonomo Municipal de Tiraque: Tiraque, Bolivia, 2016. [Google Scholar]
- Stein, J.L. An Enhanced Pfafstetter Catchment Reference System. Water Resour. Res. 2018, 54, 9951–9963. [Google Scholar] [CrossRef] [Green Version]
- Cruz, R. Estudio Hidrologico de la Micro Region Tiraque-Valle; Asignación del Agua en la Microregión Tiraque: Cochabamba, Bolivia, 2009. [Google Scholar]
- Navarro, G.; Ferreira, W. Mapa de Vegetación de Bolivia [CD-ROM Interactivo]; The Nature Conservancy/Rumbo: Cochabamba, Bolivia, 2007. [Google Scholar]
- Carrasco, W.D.C. Manejo y Protección de Zonas de Recarga Hídrica y Fuentes de Agua para Consumo Humano en la Subcuenca del Río Zaratí, Panamá; Centro Agronómico Tropical de Investigación y Enseñanza: Turrialba, Costa Rica, 2011. [Google Scholar]
- NASA. Shuttle Radar Topography Mission; NASA: Washington, DC, USA, 2013. [Google Scholar]
- Servicio Departamental de Cuencas, Gobierno Autonomo Departamental de Cochabamba, Bolivia. Estudio Información Cartográfica y Evaluación de Tierras Del Valle Alto; Autonomous Departmental Government of Cochabamba: Cochabamba, Bolivia, 2018. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote. Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- SENAMHI. Sistema de Procesamiento de Datos Meteorológicos; SENAMHI: Lima, Perú, 2020. [Google Scholar]
- United States Army Corps of Engineers. HEC-4: Monthly Streamflow Simulation—User’s Manual; United States Army Corps of Engineers: Washington, DC, USA, 1971. [Google Scholar]
- Sveinsson, O.G.; Salas, J.D. Progress in Stochastic Analysis Modeling and Simulation: SAMS-2003. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2003; pp. 165–175. [Google Scholar]
- Vogel, R.M. Stochastic watershed models for hydrologic risk management. Water Secur. 2017, 1, 28–35. [Google Scholar] [CrossRef]
- WMO. Guide to Climatological Practices 2018 Edition; WMO: Geneva, Switzerland, 2018; ISBN 9789263101006. [Google Scholar]
- Daly, C.; Michael, H.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtisb, J.; Pasterisb, P.P. Physiographically Sensitive Mapping of Climatological Temperature and Precipitation across the Conterminous United States. Int. J. Climatol. 2008, 2029, 2011–2029. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical Approaches for Incorporating Elevation into the Spatial Interpolation of Rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Astigarraga, E. El Metodo Delphi; University of Deusto: Bilbao, Spain, 2003. [Google Scholar]
- Linstone, H.; Turoff, M. The Delphi Method: Techniques and Applications; Addison-Wesley: Boston, MA, USA, 2002. [Google Scholar]
- Gordon, T.J. The Delphi Method. Future Res. Methodol. 1994, 2, 29–31. [Google Scholar]
- Megan, M.G.; George, W. Delphi Method. Wiley StatsRef Stat. Ref. Online 2016, 1–6. [Google Scholar] [CrossRef]
- Hasson, F.; Keeney, S. Enhancing rigour in the Delphi technique research. Technol. Forecast. Soc. Chang. 2011, 78, 1695–1704. [Google Scholar] [CrossRef]
- Valdés, M.G.; Marín, M.S. Delphi Method for the Expert Consultation in the Scientific Research. Rev. Cuba. Salud Publica 2013, 39, 253–267. [Google Scholar]
- Ameyaw, E.E.; Hu, Y.; Shan, M.; Chan, A.P.C.; Le, Y. Application of Delphi Method in Construction Engineering and Management Research: A Quantitative Perspective. J. Civ. Eng. Manag. 2016, 22, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- Soilmoisture Equipment Corp. 2830K1 Double Ring Infiltrometer Kit, Operating Instructions; Soilmoisture Equipment Corp.: Santa Barbara, CA, USA, 2009. [Google Scholar]
- Batelaan, O.; De Smedt, F. GIS-based recharge estimation by coupling surface–subsurface water balances. J. Hydrol. 2007, 337, 337–355. [Google Scholar] [CrossRef]
- Abdollahi, K.; Bashir, I.; Verbeiren, B.; Harouna, M.R.; Van Griensven, A.; Huysmans, M.; Batelaan, O. A distributed monthly water balance model: Formulation and application on Black Volta Basin. Environ. Earth Sci. 2017, 76, 198. [Google Scholar] [CrossRef]
- Mustafa, S.M.T.; Abdollahi, K.; Verbeiren, B.; Huysmans, M. Identification of the influencing factors on groundwater drought and depletion in north-western Bangladesh. Hydrogeol. J. 2017, 25, 1357–1375. [Google Scholar] [CrossRef]
- Alcalá, F.J. Recarga a los Acuíferos Españoles Mediante Balance Hidrogeoquímico; Universitat Politecnica de Catalanya: Barcelona, Spain, 2005. [Google Scholar]
- Teklebirhan, A.; Dessie, N.; Tesfamichael, G. Groundwater Recharge, Evapotranspiration and Surface Runoff Estimation Using WetSpass Modeling Method in Illala Catchment, Northern Ethiopia. Momona Ethiop. J. Sci. 2012, 4, 96. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.Y.; Chen, D. Comparison of Seven Models for Estimation of Evapotranspiration and Groundwater Recharge Using Lysimeter Measurement Data in Germany. Hydrol. Process. 2005, 19, 3717–3734. [Google Scholar] [CrossRef]
- Navarro, G.; Maldonado, M. Ecología de Bolivia. Vegetación y Ambientes Acuáticos; Editorial Centro de Ecología Simón Patiño: Cochabamba, Bolivia, 2002. [Google Scholar]
- Feki, H.; Slimani, M.; Cudennec, C. Incorporating Elevation in Rainfall Interpolation in Tunisia Using Geostatistical Methods. Hydrol. Sci. J. 2012, 57, 1294–1314. [Google Scholar] [CrossRef]
- Song, L.; Chen, M.; Gao, F.; Cheng, C.; Chen, M.; Yang, L.; Wang, Y. Elevation Influence on Rainfall and a Parameterization Algorithm in the Beijing Area. J. Meteorol. Res. 2019, 33, 1143–1156. [Google Scholar] [CrossRef]
- Apaza-Coria, C.J.; Rodriguez-Levy, I.E.; Soruco, M.D.; Huysmans, M. Determination of the natural potential groundwater recharge in the Valle Alto basin, Bolivia, through a soil water balance. Hydrogeol. J. 2022, 30, 2341–2357. [Google Scholar] [CrossRef]
- Paredes, W.R. Relación Entre Altura y Precipitación Mensual, Datos Medidos por el Sensor TRMM y Estaciones Pluviométricas, en la Cuenca Pucara; Universidad Mayor de San Simón: Cochabamba, Bolivia, 2009. [Google Scholar]
- SEI. Atlas Geografico de la Formulación y Actualización del Plan Director de la Cuenca del Río Rocha, Bajo un Enfoque de Adaptación Al Cambio Climático; Universidad Mayor de San Simón: Cochabamba, Bolivia, 2018. [Google Scholar]
- Blanco, J.A. Bosques, Suelo y Agua: Explorando Sus Interacciones. Ecosistemas 2017, 26, 1–9. [Google Scholar] [CrossRef]
- Bonnesoeur, V.; Locatelli, B.; Ochoa-Tocachi, B.F. Impactos de la Forestación en el Agua y los Suelos de los Andes: Qué Sabemos? Resumen de Políticas; Proyecto “Infraestructura Natural Para La Seguridad Hídrica” (INSH); Condesan: Lima, Perú, 2019. [Google Scholar]
- Acharya, B.S.; Kharel, G.; Zou, C.B.; Wilcox, B.P.; Halihan, T. Woody Plant Encroachment Impacts on Groundwater Recharge: A Review. Water 2018, 10, 1466. [Google Scholar] [CrossRef] [Green Version]
- Piyaruwan, H.I.G.S.; Jayasinghe, P.K.S.C.; Leelamanie, D.A.L. Water Repellency in Eucalyptus and Pine Plantation Forest Soils and Its Relation to Groundwater Levels Estimated with Multi-Temporal Modeling. J. Hydrol. Hydromech. 2020, 68, 382–391. [Google Scholar] [CrossRef]
- Enku, T.; Melesse, A.M.; Ayana, E.K.; Tilahun, S.A.; Abate, M.; Steenhuis, T.S. Groundwater Use of a Small Eucalyptus Patch during the Dry Monsoon Phase. Biologia 2020, 75, 853–864. [Google Scholar] [CrossRef]
- Mattos, T.S.; de Oliveira, P.T.S.; Lucas, M.C.; Wendland, E. Groundwater Recharge Decrease Replacing Pasture by Eucalyptus Plantation. Water 2019, 11, 1213. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.R.; Menegasse, L.N.; Duarte, U. Impacto Ambiental Do Eucalipto Na Recarga de Água Subterrânea Em Área de Cerrado, No Médio Vale Do Jequitinhonha, Minas Gerais. In Proceedings of the 2002: SUPPLEMENT—Proceedings of the XII Brazilian Congress on Groundwater, Natal, Brazil, 7–11 October 2002; pp. 1–10. [Google Scholar]
- van Dijk, A.I.; Hairsine, P.B.; Arancibia, J.P.; Dowling, T.I. Reforestation, water availability and stream salinity: A multi-scale analysis in the Murray-Darling Basin, Australia. For. Ecol. Manag. 2007, 251, 94–109. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Scott, D.F.; Colvin, C. A Review of Information on Interactions between Vegetation and Groundwater. Water SA 1999, 25, 137–152. [Google Scholar]
- Ilstedt, U.; Bargués Tobella, A.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; et al. Intermediate Tree Cover Can Maximize Groundwater Recharge in the Seasonally Dry Tropics. Sci. Rep. 2016, 6, 21930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comber, A.; Wadsworth, R.; Fisher, P. Using Semantics to Clarify the Conceptual Confusion between Land Cover and Land Use: The Example of “Forest. ” J. Land Use Sci. 2008, 3, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Rogan, J.; Chen, D.M. Remote Sensing Technology for Mapping and Monitoring Land-Cover and Land-Use Change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Swift, J. Editorial: Land Use or Land Cover. J. Land Use Sci. 2008, 3, 199–201. [Google Scholar] [CrossRef]
- Navarro, G.; Molina, J.A.; De La Barra, N. Classification of the High-Andean Polylepis Forests in Bolivia. Plant Ecol. 2005, 176, 113–130. [Google Scholar] [CrossRef]
- Kosztra, B.; Büttner, G.; Hazeu, G.; Arnold, S. Updated CLC Illustrated Nomenclature Guidelines; Final Report; European Environment Agency: Wien, Austria, 2017. [Google Scholar]
- IDEAM. Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover Adaptada para Colombia Escala 1:100.000; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia, 2010. [Google Scholar]
- Noriega, J.P. Determinación de las Áreas Principales de Recarga Hídrica Natural en la Microcuenca del Río Sibacá, Chinique, Quiché; Universidad de San Carlos de Guatemala: Guatemala City, Guatemala, 2005. [Google Scholar]
- Anuraga, T.S.; Ruiz, L.; Kumar, M.S.M.; Sekhar, M.; Leijnse, A. Estimating Groundwater Recharge Using Land Use and Soil Data: A Case Study in South India. Agric. Water Manag. 2006, 84, 65–76. [Google Scholar] [CrossRef]
- Moreno, A.M. Efectos del Cambio de Uso de Suelo en la Capacidad de Recarga de Agua Subterránea en la Cuenca del Río Teusacá, Subcuenca Hidrográfica del Río Bogotá; Universidad de los Andes: Bogotá, Colombia, 2019. [Google Scholar]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-Arid Environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, B.R.; Reedy, R.C.; Stonestrom, D.A.; Prudic, D.E.; Dennehy, K.F. Impact of Land Use and Land Cover Change on Groundwater Recharge and Quality in the Southwestern US. Glob. Chang. Biol. 2005, 11, 1577–1593. [Google Scholar] [CrossRef]
- Bustamante, R.; Antequera, N.; Galindo, G. Comprendiendo La Relación Con El Clima En La Zona de Tiraque. Resultados Del Proyecto Concepción Andina Del Clima. In Visiones Sobre el Clima y Gestión del Riesgo Climático. Estudios y Propuestas de Estrategias de Adaptación al Cambio Climático; Departamental del Libro de La Paz: La Paz, Bolivia, 2019; p. 260. ISBN 9788578110796. [Google Scholar]
- Cruz, R. Modelo de Gestión del Agua de la Cuenca Pucara; Cochabamba, Bolivia, 2011. [Google Scholar]
- Gutiérrez, Z.; Claure, W. El Proceso Social en la Definición de la Distribución del Agua de La Represa de Totora Khocha en la Zona de Riego Punata; Wageningen Agricultural University: Wageningen, The Netherlands, 1995. [Google Scholar]
- Buytaert, W.; Iñiguez, V.; Bièvre, B. De The Effects of Afforestation and Cultivation on Water Yield in the Andean Páramo. For. Ecol. Manag. 2007, 251, 22–30. [Google Scholar] [CrossRef]
- Suárez, E.; Arcos, E.; Moreno, C.; Encalada, A.; Álvarez, M. Influence of Vegetation Types and Ground Cover on Soil Water Infiltration Capacity in a High-Altitude Páramo Ecosystem. Av. Cienc. Ing. 2013, 5, B14–B21. [Google Scholar]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global Synthesis of Groundwater Recharge in Semiarid and Arid Regions. Hydrol. Process. 2006, 3370, 3335–3370. [Google Scholar] [CrossRef]
- Lorenz, D.L.; Delin, G.N. A Regression Model to Estimate Regional Ground Water Recharge. Ground Water 2007, 45, 196–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwen, R.; Taillieu, T. Multi-Party Collaboration as Social Learning for Interdependence: Developing Relational Knowing for Sustainable Natural Resource Management. J. Community Appl. Soc. Psychol. 2004, 14, 137–153. [Google Scholar] [CrossRef]
- Varela, D.; Vélez, I.; Rátiva, S. Tierra y Derechos en Aguas Turbulentas. Aportes Metodológicos para la Construcción de Cartografías Sociales; Universidad Nacional de Colombia: Bogotá, Colombia, 2011. [Google Scholar]
- Velez, I.; Rátiva, S.; Varela, D. Cartografía Social Como Metodología Participativa y Colaborativa de Investigación En El Territorio Afrodescendiente de La Cuenca Alta Del Río Cauca. Cuad. Geogr. Rev. Colomb. Geogr. 2012, 21, 59–73. [Google Scholar] [CrossRef] [Green Version]
Groundwater Recharge Probability | Range |
---|---|
Very high | 4.1–5 |
High | 3.5–4.09 |
Moderate | 2.6–3.49 |
Low | 2–2.59 |
Very low | 1–1.99 |
Permanent Vegetation Cover (Percentage) | Recharge Probability | Weighting |
---|---|---|
70–80 | Very high | 5 |
>80 | High | 4 |
50–70 | Moderate | 3 |
30–50 | Low | 2 |
<30 | Very low | 1 |
LULC Categories | Recharge Probability | Weighting | CORINE Land Cover Classes 1 |
---|---|---|---|
Successional shrubland of the Kewiña forest (Polylepis spp., native species) | Very high | 5 | 3.2.3 Sclerophyllous vegetation |
Successional scrubs of riparian species | High | 4 | 3.2.1.1.2.2 Dense grassland flooded with trees |
Temporary potato farming; Pastoral use; Land without a current use Kewiña successional shrubs interspersed with Eucalyptus plantations (Eucalyptus spp.) Plantations of exotic species (Pinus spp.) Open successional scrub/grassland of Tola (Baccharis tola, native species) | 2.1.5.1 Potato farming | ||
Moderate | 3 | 2.3.1 Pastures, meadows, and other permanent grasslands under agricultural use | |
3.3.3 Sparsely vegetated areas | |||
3.1.3 Mixed forest | |||
3.1.5.1 Coniferous forest | |||
3.2.1 Natural grassland | |||
Plantations of exotic species (Eucalyptus) Open successional scrub/scrubland of Tola interspersed with Eucalyptus plantations Intensive potato farming | Low | 2 | 3.1.1.1.1 Tall, dense mainland forest 3.1.3 Mixed forest 2.4.1 Crop mosaic |
Urban ground | Very low | 1 | 1.1.2 Discontinuous urban fabric |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Levy, I.E.; Centellas-Levy, M.A.; Ferreira, W.J.; Mustafa, S.M.T.; Rivera-Rodriguez, L.; Gonzales Amaya, A.; Huysmans, M. Development and Application of a Methodology for the Identification of Potential Groundwater Recharge Zones: A Case Study in the Virvini Micro-Basin, Tiraque, Bolivia. Water 2023, 15, 1268. https://doi.org/10.3390/w15071268
Rodriguez-Levy IE, Centellas-Levy MA, Ferreira WJ, Mustafa SMT, Rivera-Rodriguez L, Gonzales Amaya A, Huysmans M. Development and Application of a Methodology for the Identification of Potential Groundwater Recharge Zones: A Case Study in the Virvini Micro-Basin, Tiraque, Bolivia. Water. 2023; 15(7):1268. https://doi.org/10.3390/w15071268
Chicago/Turabian StyleRodriguez-Levy, Inti E., Miguel A. Centellas-Levy, Wanderley J. Ferreira, Syed Md Touhidul Mustafa, Lilian Rivera-Rodriguez, Andres Gonzales Amaya, and Marijke Huysmans. 2023. "Development and Application of a Methodology for the Identification of Potential Groundwater Recharge Zones: A Case Study in the Virvini Micro-Basin, Tiraque, Bolivia" Water 15, no. 7: 1268. https://doi.org/10.3390/w15071268
APA StyleRodriguez-Levy, I. E., Centellas-Levy, M. A., Ferreira, W. J., Mustafa, S. M. T., Rivera-Rodriguez, L., Gonzales Amaya, A., & Huysmans, M. (2023). Development and Application of a Methodology for the Identification of Potential Groundwater Recharge Zones: A Case Study in the Virvini Micro-Basin, Tiraque, Bolivia. Water, 15(7), 1268. https://doi.org/10.3390/w15071268