Effects of Graphene on Soil Water-Retention Curve, van Genuchten Parameters, and Soil Pore Size Distribution—A Comparison with Traditional Soil Conditioners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils and Soil Conditioners’ Characteristics
2.2. Experimental Setup
2.3. Methods of Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Water-Retention Curves
3.2. Statistical Analysis
3.3. Drainage Porosity
3.4. Storage Porosity
3.5. Residual Porosity
3.6. Saturated Water Content
3.7. Parameter a
3.8. WRC Slope at Inflection Point
3.9. Soil Bulk Density
4. Discussion
4.1. WRCs Modeling Issues
4.2. Drainage Porosity Changes
4.3. Storage Porosity Changes
4.4. Residual Porosity Changes
4.5. WRC Slope at Inflection-Point Changes
4.6. Soil Bulk Density Changes
5. Conclusions
- Graphene promoted the largest increase in drainage porosity, total porosity, and the van Genuchten parameter, and the largest decrease in ρb compared to the other conditioners. The effects of graphene were the highest in the finer soil. Compost and biochar showed similar but lower-magnitude effects compared to those of graphene. Zeolites showed quite different behavior by increasing soil ρb with nonevidential effects on improving the physical–hydraulic soil properties of the specific soils.
- When the conditioner increased drainage porosity, there was a high probability of a parallel reduction in storage porosity.
- The S index had a high positive correlation with drainage porosity, and a high negative correlation with storage porosity and ρb.
- Compost is more suited for soils with low fertility compared to graphene or biochar because the improvement in soil’s hydraulic properties is less significant without the parallel enhancement of soil nutritional status.
- The overall performance of zeolites on improving hydraulic soil properties was questionable, and they should be used for improving hydraulic soil properties only after testing with the studied soil.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Chen, J.-Z.; Tan, M.-Z.; Gong, Z.-T. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002, 12, 243–252. [Google Scholar] [CrossRef]
- Blum, W.E.H. Physical Degradation of Soils, Risks and Threats. In Encyclopedia of Agrophysics; Gliński, J., Horabik, J., Lipiec, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 562–563. [Google Scholar] [CrossRef]
- Brevik, E.C. The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security. Agriculture 2013, 3, 398–417. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Bindraban, P.S.; van der Velde, M.; Ye, L.; van den Berg, M.; Materechera, S.; Kiba, D.I.; Tamene, L.; Ragnarsdóttir, K.V.; Jongschaap, R.; Hoogmoed, M.; et al. Assessing the impact of soil degradation on food production. Curr. Opin. Environ. Sustain. 2012, 4, 478–488. [Google Scholar] [CrossRef]
- Ramazan, M.; Khan, G.D.; Hanif, M.; Ali, S. Impact of soil compaction on root length and yield of corn (Zea mays) under irrigated condition. Middle East J. Sci. Res. 2012, 11, 382–385. [Google Scholar]
- Osman, K.T. Physical Deterioration of Soil. In Soil Degradation, Conservation and Remediation; Springer: Dordrecht, The Netherlands, 2014; pp. 45–67. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, Definition, and Framework for Evaluation (A Guest Editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Richard, G.; Cousin, I.; Sillon, J.F.; Bruand, A.; Guérif, J. Effect of compaction on the porosity of a silty soil: Influence on unsaturated hydraulic properties. Eur. J. Soil Sci. 2001, 52, 49–58. [Google Scholar] [CrossRef]
- Startsev, A.D.; McNabb, D.H. Skidder Traffic Effects on Water Retention, Pore-Size Distribution, and van Genuchten Parameters of Boreal Forest Soils. Soil Sci. Soc. Am. J. 2001, 65, 224–231. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Kostopoulou, S.K.; Antonopoulos, V.Z. Methodology to Assess the Effects of Rice Cultivation Under Flooded Conditions on van Genuchten’s Model Parameters and Pore Size Distribution. Transp. Porous Media 2012, 91, 861–876. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Till. Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M. Soil quality indicators: Critical tools in ecosystem restoration. Curr. Opin. Environ. Sci. Health 2018, 5, 47–52. [Google Scholar] [CrossRef]
- Stepniewski, W.; Glinski, J.; Ball, B.C. Effects of compaction on soil aeration properties. In Soil Compaction in Crop Production; Soane, B.D., Van Ouwerkerk, C., Eds.; Elsevier: New York, NY, USA, 1994; pp. 167–169. [Google Scholar]
- Brussaard, L.; Van Faassen, H.G. Effects of compaction on soil biota and soil biological processes. In Soil Compaction in Crop Production; Soane, B.D., Van Ouwerkerk, C., Eds.; Elsevier: New York, NY, USA, 1994; pp. 215–235. [Google Scholar]
- Azizsoltani, E.; Honarjoo, N.; Ayoubi, S. How Soil Pore Distribution Could Help in Soil Quality Studies as an Appropriate Indicator. Eurasian Soil Sci. 2009, 52, 654–660. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R.; Zimmerman, A.R. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci. Total Environ. 2014, 487, 26–36. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Fitch, B.C.; Chong, S.K.; Arosemena, J.; Theseira, G.W. Effects of a Conditioner on Soil Physical Properties. Soil Sci. Soc. Am. J. 1989, 53, 1536–1539. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.-H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef]
- Sivapalan, S. Benefits of treating a sandy soil with a crosslinked-type polyacrylamide. Aust. J. Exp. Agric. 2006, 46, 579–584. [Google Scholar] [CrossRef] [Green Version]
- Alessandrino, L.; Colombani, N.; Aschonitis, V.G.; Mastrocicco, M. Nitrate and Dissolved Organic Carbon Release in Sandy Soils at Different Liquid/Solid Ratios Amended with Graphene and Classical Soil Improvers. Appl. Sci. 2022, 12, 6220. [Google Scholar] [CrossRef]
- Alessandrino, L.; Colombani, N.; Eusebi, A.L.; Aschonitis, V.; Mastrocicco, M. Testing graphene versus classical soil improvers in a sandy calcisol. Catena 2022, 208, 105754. [Google Scholar] [CrossRef]
- Alessandrino, L.; Eusebi, A.L.; Aschonitis, V.; Mastrocicco, M.; Colombani, N. Variation of the hydraulic properties in sandy soils induced by the addition of graphene and classical soil improvers. J. Hydrol. 2022, 612, 128256. [Google Scholar] [CrossRef]
- Aggelides, S.M.; Londra, P.A. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour. Technol. 2000, 71, 253–259. [Google Scholar] [CrossRef]
- Colombani, N.; Mastrocicco, M.; Di Giuseppe, D.; Faccini, B.; Coltorti, M. Batch and column experiments on nutrient leaching in soils amended with Italian natural zeolitites. Catena 2015, 127, 64–71. [Google Scholar] [CrossRef]
- Colombani, N.; Gervasio, M.P.; Castaldelli, G.; Mastrocicco, M. Soil conditioners effects on hydraulic properties, leaching processes and denitrification on a silty-clay soil. Sci. Total Environ. 2020, 733, 139342. [Google Scholar] [CrossRef]
- Faccini, B.; Di Giuseppe, D.; Ferretti, G.; Coltorti, M.; Colombani, N.; Mastrocicco, M. Natural and NH4+-enriched zeolitite amendment effects on nitrate leaching from a reclaimed agricultural soil (Ferrara Province, Italy). Nutr. Cycling Agroecosyst. 2018, 110, 327–341. [Google Scholar] [CrossRef]
- Alessandrino, L.; Gervasio, M.P.; Vincenzi, F.; Colombani, N.; Castaldelli, G.; Mastrocicco, M. Nutrients and carbon fate in two lowland contrasting soils amended with compost. Catena 2021, 206, 105493. [Google Scholar] [CrossRef]
- Alessandrino, L.; Colombani, N.; Aschonitis, V.; Eusebi, A.L.; Mastrocicco, M. Performance of graphene and traditional soil improvers in limiting nutrients and heavy metals leaching from a sandy Calcisol. Sci. Total Environ. 2023, 858, 159806. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhu, S.; Pan, R.; Bu, J.; Liu, Y.; Ding, A. Effects of Rice Husk Biochar on Nitrogen Leaching from Vegetable Soils by 15N Tracing Approach. Water 2022, 14, 3563. [Google Scholar] [CrossRef]
- Wang, D.; Lin, J.Y.; Sayre, J.M.; Schmidt, R.; Fonte, S.J.; Rodrigues, J.L.M.; Scow, K.M. Compost amendment maintains soil structure and carbon storage by increasing available carbon and microbial biomass in agricultural soil—A six-year field study. Geoderma 2022, 427, 116117. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Konvalina, P.; Moudrý, J.; Bárta, J.; Kopecký, M.; Teodorescu, R.I.; Bucur, R.D. Comparative Influence of Biochar and Zeolite on Soil Hydrological Indices and Growth Characteristics of Corn (Zea mays L.). Water 2022, 14, 3506. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Z.; Wang, Y.; Xiang, S.; Xiong, Z.; Gao, M. Manure combined with biochar reduces rhizosphere nitrification potential and amoA gene abundance of ammonia-oxidizing microorganisms in acid purple soil. Appl. Soil Ecol. 2023, 181, 104660. [Google Scholar] [CrossRef]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for composting improvement and contaminants reduction. A review. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Awasthi, M.K.; Li, R.; Park, J.; Pensky, S.M.; Wang, Q.; Wang, J.J.; Zhang, Z. Recent developments in biochar utilization as an additive in organic solid waste composting: A review. Bioresour. Technol. 2017, 246, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of biochar as an additive in organic waste composting. Bioresour. Technol. 2017, 247, 1155–1164. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Kranz, C.N.; McLaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 2020, 261, 110209. [Google Scholar] [CrossRef]
- Albiach, R.; Canet, R.; Pomares, F.; Ingelmo, F. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour. Technol. 2000, 75, 43–48. [Google Scholar] [CrossRef]
- Bauduin, M.; Delcarte, E.; Impens, R. Agronomic valorization of municipal waste composts. Acta Hortic. 1985, 172, 117–124. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of Zeolites for Sustainable Agriculture: A Review on Water and Nutrient Retention. Water Air Soil Pollut. 2017, 228, 464. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Randviir, E.P.; Brownson, D.A.C.; Banks, C.E. A decade of graphene research: Production, applications and outlook. Mater. Today 2014, 17, 426–432. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils 1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity: Electrical Conductivity and Total Dissolved Solids. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: New York, NY, USA, 1996; pp. 417–435. [Google Scholar] [CrossRef]
- Loeppert, R.H.; Suarez, D.L. Carbonate and Gypsum. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: New York, NY, USA, 1996; pp. 437–474. [Google Scholar] [CrossRef]
- Bremner, J.M.; Jenkinson, D.S. Determination of organic carbon in soil. J. Soil Sci. 1960, 11, 394–402. [Google Scholar] [CrossRef]
- Loomis, G.A. Grain size of whiteware clays as determined by the andreasen pipette. J. Am. Ceram. Soc. 1938, 21, 393–399. [Google Scholar] [CrossRef]
- Allison, L.E. Organic Carbon. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: New York, NY, USA, 1965; pp. 1367–1378. [Google Scholar] [CrossRef]
- Sikora, L.J.; Stott, D.E. Soil Organic Carbon and Nitrogen. In Methods for Assessing Soil Quality; John Wiley & Sons, Ltd.: New York, NY, USA, 1997; pp. 157–167. [Google Scholar] [CrossRef]
- Aran, D.; Maul, A.; Masfaraud, J.F. A spectrophotometric measurement of soil cation exchange capacity based on cobaltihexamine chloride absorbance. C. R. Geosci. 2008, 340, 865–871. [Google Scholar] [CrossRef]
- Klute, A. Water Retention: Laboratory Methods. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: New York, NY, USA, 1986; pp. 635–662. [Google Scholar] [CrossRef]
- Schelle, H.; Heise, L.; Jänicke, K.; Durner, W. Water retention characteristics of soils over the whole moisture range: A comparison of laboratory methods. Eur. J. Soil Sci. 2013, 64, 814–821. [Google Scholar] [CrossRef]
- Braudeau, E.; Hovhannissian, G.; Assi, A.T.; Mohtar, R.H. Soil water thermodynamic to unify water retention curve by pressure plates and tensiometer. Front. Earth Sci. 2014, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Cameron, C.K.; Buchan, D.G. Porosity and pore size distribution. In Encyclopedia of Soil Science, 2nd ed.; Lal, R., Ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2006; Volume 2, pp. 1350–1353. [Google Scholar]
- Aschonitis, V.G.; Antonopoulos, V.Z.; Lekakis, E.H.; Litskas, V.D.; Kotsopoulos, S.A.; Karamouzis, D.N. Estimation of field capacity for aggregated soils using changes of the water retention curve under the effects of compaction. Eur. J. Soil Sci. 2013, 64, 688–698. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Salemi, E.; Colombani, N.; Mastrocicco, M. Comparison of Different “S-index” Expressions to Evaluate the State of Physical Soil Properties. Geotech. Geol. Eng. 2015, 33, 1055–1066. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; U.S. Salinity Laboratory, U.S. Department of Agriculture, Agricultural Research Service: Riverside, CA, USA, 1991; p. 93, 9250 1, IAG-DW12933934.
- Bouma, J. Influence of soil macroporosity on environmental quality. Adv. Agron. 1991, 46, 1–37. [Google Scholar] [CrossRef]
- Cameira, M.R.; Fernando, R.M.; Pereira, L.S. Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal. Soil Tillage Res. 2003, 70, 131–140. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Rayhani, M.H.T.; Yanful, E.K.; Fakher, A. Physical modeling of desiccation cracking in plastic soils. Eng. Geol. 2008, 97, 25–31. [Google Scholar] [CrossRef]
- Hargreaves, G.H. Moisture Availability and Crop Production. Trans. ASAE 1975, 18, 980–0984. [Google Scholar] [CrossRef]
- Rossato, L.; Alvalá, R.C.S.; Marengo, J.A.; Zeri, M.; Cunha, A.P.M.A.; Pires, L.B.M.; Barbosa, H.A. Impact of Soil Moisture on Crop Yields over Brazilian Semiarid. Front. Environ. Sci. 2017, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- McGrath, D.; Henry, J. Organic amendments decrease bulk density and improve tree establishment and growth in roadside plantings. Urban For. Urban Green. 2016, 20, 120–127. [Google Scholar] [CrossRef]
- Kladivko, E.J. Tillage systems and soil ecology. Soil Tillage Res. 2001, 61, 61–76. [Google Scholar] [CrossRef]
- Larson, W.E. Soil Parameters for Evaluating Tillage Needs and Operations. Soil Sci. Soc. Am. J. 1964, 28, 118–122. [Google Scholar] [CrossRef]
Parameter | Soil A | Soil B | Soil C | |
---|---|---|---|---|
USDA Class | Loamy Sand (LS) | Loam (L) | Clay (C) | |
Sand | % | 78 | 48 | 32 |
Silt | % | 16 | 38 | 18 |
Clay | % | 6 | 14 | 50 |
ρb | g/cm3 | 1.53 | 1.26 | 0.95 |
pH | - | 7.8 | 7.77 | 7.72 |
EC | ms/cm | 1.138 | 0.991 | 1.334 |
CaCO3 | % | 8 | 5.8 | 9.5 |
SOM | % | 3.22 | 1.51 | 2.34 |
Parameter | Compost | Biochar | Zeolites | Graphene | |
---|---|---|---|---|---|
>63 μm | % | 90 | 81 | 3 | 0 |
2–63 μm | % | 9 | 5 | 8 | 0 |
<2 μm | % | 1 | 14 | 89 | 100 |
C | % | 36.7 | 68.7 | <0.1 | >99.0 |
N | % | 2.44 | 0.44 | <0.1 | <0.1 |
pH | - | 7.42 | 11.33 | 9.42 | 8.61 |
ρb | g/cm3 | 0.7 | 0.28 | 0.62 | 0.01 |
CEC | cmol/kg | 170 | 38 | 221 | 18.3 |
η | % | 73 | 89 | 77 | 99 |
k | m/s | 2.53 × 10−5 | 4.13 × 10−4 | 3.23 × 10−8 | 4.58 × 10−10 |
Source | Sum of Squares | Df | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
Drainage porosity | |||||
Factor A: soil | 0.164 | 2 | 0.082 | 119.71 | <0.0001 |
Factor B: treatment | 0.132 | 8 | 0.016 | 23.97 | <0.0001 |
Factor A × Factor B | 0.117 | 16 | 0.007 | 10.67 | <0.0001 |
Residual | 0.037 | 54 | 0.001 | ||
Total (corrected) | 0.450 | 80 | |||
Storage porosity | |||||
Factor A: soil | 0.062 | 2 | 0.031 | 32.87 | <0.0001 |
Factor B: treatment | 0.028 | 8 | 0.004 | 3.75 | 0.0015 |
Factor A × Factor B | 0.086 | 16 | 0.005 | 5.68 | <0.0001 |
Residual | 0.051 | 54 | 0.001 | ||
Total (corrected) | 0.227 | 80 | |||
Residual porosity | |||||
Factor A: soil | 0.204 | 2 | 0.102 | 211.49 | <0.0001 |
Factor B: treatment | 0.019 | 8 | 0.002 | 5.04 | <0.0001 |
Factor A × Factor B | 0.022 | 16 | 0.001 | 2.88 | 0.0019 |
Residual | 0.026 | 54 | 0.000 | ||
Total (corrected) | 0.272 | 80 | |||
Total porosity (measured θs) | |||||
Factor A: soil | 0.343 | 2 | 0.172 | 492 | <0.0001 |
Factor B: treatment | 0.110 | 8 | 0.014 | 39.31 | <0.0001 |
Factor A × Factor B | 0.018 | 16 | 0.001 | 3.14 | 0.0008 |
Residual | 0.019 | 54 | 0.000 | ||
Total (corrected) | 0.490 | 80 | |||
a | |||||
Factor A: soil | 0.239 | 2 | 0.119 | 37.43 | <0.0001 |
Factor B: treatment | 0.212 | 8 | 0.026 | 8.29 | <0.0001 |
Factor A × Factor B | 0.397 | 16 | 0.025 | 7.78 | <0.0001 |
Residual | 0.172 | 54 | 0.003 | ||
Total (corrected) | 1.020 | 80 | |||
n | |||||
Factor A: soil | 1.444 | 2 | 0.722 | 12.4 | <0.0001 |
Factor B: treatment | 0.230 | 8 | 0.029 | 0.49 | 0.8549 |
Factor A × Factor B | 0.552 | 16 | 0.035 | 0.59 | 0.8758 |
Residual | 3.146 | 54 | 0.058 | ||
Total (corrected) | 5.373 | 80 | |||
θr | |||||
Factor A: soil | 0.074 | 2 | 0.037 | 8.74 | 0.0005 |
Factor B: treatment | 0.025 | 8 | 0.003 | 0.75 | 0.6498 |
Factor A × Factor B | 0.114 | 16 | 0.007 | 1.7 | 0.0761 |
Residual | 0.228 | 54 | 0.004 | ||
Total (corrected) | 0.441 | 80 | |||
|Si| | |||||
Factor A: soil | 1.10 × 10−3 | 2 | 5.50 × 10−4 | 31.15 | <0.0001 |
Factor B: treatment | 1.18 × 10−3 | 8 | 1.47 × 10−4 | 8.33 | <0.0001 |
Factor A × Factor B | 2.02 × 10−3 | 16 | 1.26 × 10−4 | 7.16 | <0.0001 |
Residual | 9.53 × 10−4 | 54 | 1.76 × 10−5 | ||
Total (corrected) | 5.25 × 10−3 | 80 | |||
ρb | |||||
Factor A: soil | 4.288 | 2 | 2.144 | 964.12 | <0.0001 |
Factor B: treatment | 1.162 | 8 | 0.145 | 65.33 | <0.0001 |
Factor A × Factor B | 0.111 | 16 | 0.007 | 3.11 | <0.0001 |
Residual | 0.120 | 54 | 0.002 | ||
Total (corrected) | 5.681 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alessandrino, L.; Pavlakis, C.; Colombani, N.; Mastrocicco, M.; Aschonitis, V. Effects of Graphene on Soil Water-Retention Curve, van Genuchten Parameters, and Soil Pore Size Distribution—A Comparison with Traditional Soil Conditioners. Water 2023, 15, 1297. https://doi.org/10.3390/w15071297
Alessandrino L, Pavlakis C, Colombani N, Mastrocicco M, Aschonitis V. Effects of Graphene on Soil Water-Retention Curve, van Genuchten Parameters, and Soil Pore Size Distribution—A Comparison with Traditional Soil Conditioners. Water. 2023; 15(7):1297. https://doi.org/10.3390/w15071297
Chicago/Turabian StyleAlessandrino, Luigi, Christos Pavlakis, Nicolò Colombani, Micòl Mastrocicco, and Vassilis Aschonitis. 2023. "Effects of Graphene on Soil Water-Retention Curve, van Genuchten Parameters, and Soil Pore Size Distribution—A Comparison with Traditional Soil Conditioners" Water 15, no. 7: 1297. https://doi.org/10.3390/w15071297
APA StyleAlessandrino, L., Pavlakis, C., Colombani, N., Mastrocicco, M., & Aschonitis, V. (2023). Effects of Graphene on Soil Water-Retention Curve, van Genuchten Parameters, and Soil Pore Size Distribution—A Comparison with Traditional Soil Conditioners. Water, 15(7), 1297. https://doi.org/10.3390/w15071297