The Effect of Functional Ceramsite in a Moving Bed Biofilm Reactor and Its Ammonium Nitrogen Adsorption Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Composition
2.2. Material Characteristics of Functional Ceramsite
2.3. Experimental Set-Up and Operation of MBBR
2.4. Static Adsorption Experiments
2.4.1. Batch Adsorption Analysis
2.4.2. Adsorption Isotherms
2.4.3. Adsorption Kinetics
2.5. Analysis Methods for Water Quality
2.5.1. Water Quality Analysis Method
2.5.2. Evaluation of Biomass and Biological Activity
2.5.3. Extraction and Measurement of EPS
2.5.4. Analysis of Biofilm Morphology
3. Results and Discussion
3.1. Membrane Hanging Start-Up Characteristics of Bio-Ceramsite
3.1.1. Changes in Various Nitrogen during MBBR Start-Up Period
3.1.2. Change Rules of Biomass and Biological Activity
3.1.3. Mechanism of Biofilm Cultivating
3.1.4. Analysis of Biofilm Morphology
3.2. Static Adsorption of Ammonium Nitrogen
3.2.1. Comparison between Fresh Functional Ceramsite and Bio-Ceramsite
3.2.2. Effect of Adsorbent Dosage
3.2.3. Effect of pH
3.2.4. Effect of Ammonium Concentration
3.3. Mechanism of Ammonium Nitrogen Removal
3.3.1. Adsorption Isotherm
- (1)
- Langmuir
- (2)
- Freundlich adsorption model
3.3.2. Adsorption Kinetics
- (1)
- Quasi-first-order kinetic model
- (2)
- Quasi-second-order kinetic model
- (3)
- Intra-particle diffusion
3.3.3. Adsorption Thermodynamics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ibrahim, L.A.; Abu-hashim, M.; Shaghaleh, H.; Elsadek, E.; Hamad, A.A.A.; Alhaj Hamoud, Y. A Comprehensive Review of the Multiple Uses of Water in Aquaculture-Integrated Agriculture Based on International and National Experiences. Water 2023, 15, 367. [Google Scholar] [CrossRef]
- Ramirez, M.; Gomez, J.M.; Aroca, G.; Cantero, D. Removal of ammonia by immobilized Nitrosomonas europaea in a biotrickling filter packed with polyurethane foam. Chemosphere 2009, 74, 1385–1390. [Google Scholar] [CrossRef]
- Faskol, A.S.; Racovieanu, G. Effect of DO, Alkalinity and pH on Nitrification Using Three Different Sunken Materials Types in Biological Aerated Filter BAFs. IOP Conf. Ser. Earth Environ. Sci. 2021, 664, 012079. [Google Scholar] [CrossRef]
- Zulkifli, M.; Abu Hasan, H.; Sheikh Abdullah, S.R.; Muhamad, M.H. A review of ammonia removal using a biofilm-based reactor and its challenges. J. Environ. Manag. 2022, 315, 115162. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhou, M.; Chen, Y.; Hu, Y.; Luo, J. Insight into short-cut of simultaneous nitrification and denitrification process in moving bed biofilm reactor: Effects of carbon to nitrogen ratio. Chem. Eng. J. 2020, 400, 521–528. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, H.; Zhang, X. Simultaneous ammonia nitrogen and phosphorus removal from micro-polluted water by biological aerated filters with different media. Water Air Soil Pollut. 2020, 231, 234. [Google Scholar] [CrossRef]
- He, P.; Zhang, Y.; Zhang, X.; Chen, H. Diverse zeolites derived from a circulating fluidized bed fly ash based geopolymer for the adsorption of lead ions from wastewater. J. Clean. Prod. 2021, 312, 127769. [Google Scholar] [CrossRef]
- Zheng, T.; Li, P.; Ma, X.; Sun, X.; Wu, C.; Wang, Q.; Gao, M. Pilot-scale multi-level biological contact oxidation system on the treatment of high concentration poultry manure wastewater. Process Saf. Environ. Prot. 2018, 120, 187–194. [Google Scholar] [CrossRef]
- Xiong, J.; Zheng, Z.; Yang, X.; Jian, H.; Luo, X.; Gao, B. Mature landfill leachate treatment by the MBBR inoculated with biocarriers from a municipal wastewater treatment plant. Process Saf. Environ. Prot. 2018, 119, 304–310. [Google Scholar] [CrossRef]
- Chaudhary, R.; Barwal, A. To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: A review. Rev. Env. Sci. Biotechnol. 2014, 13, 285–299. [Google Scholar]
- Mehmood, T.; Gaurav, G.K.; Cheng, L.; Klemeš, J.J.; Usman, M.; Bokhari, A.; Lu, J. A review on plant-microbial interactions, functions, mechanisms and emerging trends in bioretention system to improve multi-contaminated stormwater treatment. J. Environ. Manag. 2021, 294, 113108. [Google Scholar] [CrossRef]
- Arabgol, R.; Vanrolleghem, P.A.; Delatolla, R. Influence of MBBR carrier geometrical properties and biofilm thickness restraint on biofilm properties, effluent particle size distribution, settling velocity distribution, and settling behaviour. J. Environ. Sci. 2022, 122, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; You, H.; Li, Z.; Ding, Y.; Ma, B. Impacts of bio-carriers on the characteristics of soluble microbial products in a hybrid membrane bioreactor for treating mariculture wastewater. Sci. Total Environ. 2020, 737, 140287. [Google Scholar] [CrossRef]
- Dong, Z.; Lu, M.; Huang, W.; Xu, X. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. J. Hazard. Mater. 2011, 196, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Jin, N.; Wei, Z.; Jiang, N.; Xiang, H. Experimental research onnitrogen removal by simultaneous nitrification and denitrificationin bio-ceramic filled MBBR. Ind. Water Wastewater 2010, 41, 30–34. [Google Scholar]
- Huang, W.; She, Z.; Gao, M.; Wang, Q.; Jin, C.; Zhao, Y.; Guo, L. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity. Sci. Total Environ. 2019, 651, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Tian, Z.; Zuo, J.; Song, Y. Enhanced nitrite accumulation under mainstream conditions by a combination of free ammonia-based sludge treatment and low dissolved oxygen: Reactor performance and microbiome analysis. RSC Adv. 2020, 10, 2049–2059. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Yong, G.; Qin, C.; Ping, Y. Enhanced nitrogen removal by simultaneous nitrification-denitrification and further denitrification (SND-DN) in a moving bed and constructed wetland (MBCW) integrated bioreactor. Chemosphere 2020, 261, 127744. [Google Scholar] [CrossRef]
- Vadivelu, V.M.; Keller, J.; Yuan, Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter. Water Sci. Technol. 2007, 56, 89–97. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.J.; Zhou, S.W.; Chen, Z.G. Effect of alkalinity on bio-zeolite regeneration in treating cold low-strength ammonium wastewater via adsorption and enhanced regeneration. Environ. Sci. Pollut. R. 2019, 26, 23–38. [Google Scholar] [CrossRef]
- Miladinovic, N.; Weatherley, L.R. Intensification of ammonia removal in a combined ion-exchange and nitrification column. Chem. Eng. J. 2008, 135, 15–24. [Google Scholar] [CrossRef]
- Wang, L.; Shao, Y.; Zhao, Z.; Chen, S.; Shao, X. Optimized utilization studies of dredging sediment for making water treatment ceramsite based on an extreme vertex design. J. Water Process. Eng. 2020, 38, 101603. [Google Scholar] [CrossRef]
- China State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Method; China Environmental Science Press: Beijing, China, 2002; pp. 326–350. [Google Scholar]
- Lananan, F.; Abdul Hamid, S.H.; Din, W.N.S.; Ali, N.A.; Khatoon, H.; Jusoh, A. Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.). Int. Biodeterior. Biodegrad. 2014, 95, 127–134. [Google Scholar] [CrossRef]
- Bashiri, B.; Fallah, N.; Bonakdarpour, A.; Elyasi, S. The development of aerobic granules from slaughterhouse wastewater in treating real dyeing wastewater by Sequencing Batch Reactor (SBR). J. Environ. Chem. Eng. 2018, 4, 221–228. [Google Scholar] [CrossRef]
- Deng, H.; Fu, Q.; Li, D.; Zhang, Y.; He, J.; Feng, D.; Zhao, Y.; Du, G.; Yu, H.; Ge, C. Microplastic-associated biofilm in an intensive mariculture pond: Temporal dynamics of microbial communities, extracellular polymeric substances and impacts on microplastics properties. J. Clean. Prod. 2021, 319, 128774. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, J.; Zeng, G.; Gu, Y.; Chen, Y.; Hu, Y. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. Chemosphere 2017, 180, 396–411. [Google Scholar] [CrossRef]
- Li, H.; Huang, S.; Zhou, S.; Chen, P.; Zhang, Y. Study of extracellular polymeric substances in the biofilms of a suspended biofilter for nitric oxide removal. Appl. Microbiol. Biotechnol. 2016, 100, 9733–9743. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Wang, Y.; He, W.; Wu, M.; Xing, M.; Yang, J.; Gao, N.; Pan, M. Impacts of temperature and nitrifying community on nitrification kinetics in a moving-bed biofilm reactor treating polluted raw water. Chem. Eng. J. 2014, 12, 34–45. [Google Scholar]
- Pan, D.; Shao, S.; Zhong, J.; Wang, M.; Wu, X. Performance and mechanism of simultaneous nitrification–denitrification and denitrifying phosphorus removal in long-term moving bed biofilm reactor (MBBR). Bioresour. Technol. 2022, 348, 126726. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Ren, H.Q.; Geng, J.J.; Xu, K.; Huang, H.; Ding, L.L. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor. Bioresour. Technol. 2015, 180, 345–351. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Tang, R.; Wan, C.; Zhang, C.; Tan, X. Understanding the dependence of start-up and stability of aerobic granule on pH from the perspective of adhesion behavior and properties of extracellular polymeric substances. Environ. Res. 2021, 198, 111311. [Google Scholar] [CrossRef]
- Feng, Q.; Tai, X.; Sun, Y.; Li, M. Influence of turbulent mixing on the composition of extracellular polymeric substances (EPS) and aggregate size of aerated activated sludge. Chem. Eng. J. 2019, 378, 122123. [Google Scholar] [CrossRef]
- Zhang, J.; Miao, Y.; Zhang, Q.; Sun, Y.; Wu, L.; Peng, Y. Mechanism of stable sewage nitrogen removal in a partial nitrification-anammox biofilm system at low temperatures: Microbial community and EPS analysis. Bioresour. Technol. 2020, 297, 122459. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, Y. Evolution of extracellular polymeric substances (EPS) in aerobic sludge granulation: Composition, adherence and viscoelastic properties. Chemosphere 2021, 262, 128033. [Google Scholar] [CrossRef] [PubMed]
- Shitu, A.; Zhu, S.; Qi, W.; Tadda, M.A.; Liu, D.; Ye, Z. Performance of novel sponge biocarrier in MBBR treating recirculating aquaculture systems wastewater: Microbial community and kinetic study. J. Environ. Manag. 2020, 275, 111264. [Google Scholar] [CrossRef]
- Tian, X.; Schopf, A.; Amaral-Stewart, B.; Christensson, M.; Morgan-Sagastume, F.; Vincent, S. Anammox attachment and biofilm development on surface-modified carriers with planktonic- and biofilm-based inoculation. Bioresour. Technol. 2020, 317, 124030. [Google Scholar] [CrossRef]
- Budiman, M.A.; Puteh, M.H.; Yuzir, A.; Othman, M.H.D.; Wahab, R.A.; Abideen, M.Z. Optimizing Ammonia Removal from Landfill Leachate Using Natural and Synthetic Zeolite Through Statically Designed Experiment. Arab. J. Sci. Eng. 2020, 45, 240–248. [Google Scholar]
- Xue, S.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Li, C. Food waste based biochars for ammonia nitrogen removal from aqueous solutions. Bioresour. Technol. 2019, 292, 121927. [Google Scholar] [CrossRef]
- Wang, M.; Xie, R.; Chen, Y.; Pu, X.; Jiang, W.; Yao, L. A novel mesoporous zeolite-activated carbon composite as an effective adsorbent for removal of ammonia-nitrogen and methylene blue from aqueous solution. Bioresour. Technol. 2018, 268, 726–732. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, Q.; Xing, Z. Adsorption of ammonia nitrogen in low temperature domestic wastewater by modification bentonite. J. Clean. Prod. 2019, 233, 720–730. [Google Scholar] [CrossRef]
- Du, L.; Trinh, X.; Chen, Q.; Wang, C.; Liu, S.; Liu, P.; Zhou, Q. Effect of clinoptilolite on ammonia emissions in integrated vertical-flow constructed wetlands (IVCWs) treating swine wastewater. Ecol. Eng. 2018, 122, 153–158. [Google Scholar] [CrossRef]
- Choy, K.; Porter, J.F.; Mckay, G. Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. J. Chem. Eng. Data 2000, 45, 575–584. [Google Scholar] [CrossRef]
- Feng, Y.; Luo, Y.; He, Q.; Zhao, D.; Wang, F. Performance and Mechanism of a Biochar-based Ca-La Composite for the Adsorption of Phosphate from Water. J. Environ. Chem. Eng. 2021, 3, 105267. [Google Scholar] [CrossRef]
- Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3, 38–45. [Google Scholar]
- Huang, X.; Bai, J.; Li, K.; Zhao, Y.; Hu, C. Preparation of Clay/Biochar Composite Adsorption Particle and Performance for Ammonia Nitrogen Removal from Aqueous Solution. J. Ocean Univ. China 2020, 19, 729–739. [Google Scholar] [CrossRef]
- Fu, H.; Li, Y.; Yu, Z.; Shen, J.; Li, J.; Zhang, M. Ammonium removal using a calcined natural zeolite modified with sodium nitrate. J. Hazard. Mater. 2020, 393, 122481. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of solution substances. K. Sven. Vetensk. Handl. Band 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Ohale, P.E.; Onu, C.E.; Nwabanne, J.T.; Aniagor, C.O.; Okey-Onyesolu, C.F.; Ohale, N.J. A comparative optimization and modeling of ammonia–nitrogen adsorption from abattoir wastewater using a novel iron-functionalized crab shell. Appl. Water Sci. 2022, 12, 193. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Fan, T.; Wang, M.; Wang, X.; Chen, Y.; Wang, S.; Zhan, H. Experimental Study of the Adsorption of Nitrogen and Phosphorus by Natural Clay Minerals. Adsorpt. Sci. Technol. 2021, 14, 4158151. [Google Scholar] [CrossRef]
- Ren, Z.; Jia, B.; Zhang, G.; Fu, X.; Wang, Z.; Wang, P.; Lv, L. Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater. Chemosphere 2021, 262, 127895. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Huo, J.; Yin, H.; Wang, A. Adsorption Kinetics, Isotherms, and Thermodynamics of Cr(III), Pb(II), and Cu(II) on Porous Hydroxyapatite Nanoparticles. J. Nanosci. Nanotechnol. 2018, 18, 3484–3491. [Google Scholar]
- Bai, W.; Qian, M.; Li, Q.; Atkinson, S.; Wang, J. Rice husk-based adsorbents for removing ammonia: Kinetics, thermodynamics and adsorption mechanism. J. Environ. Chem. Eng. 2021, 2, 105793. [Google Scholar] [CrossRef]
- Puchongkawarin, C.; Jaiharn, W.; Thongfuang, S.; Umpuch, C. Comprehensive Studies on Methylene Blue Adsorption onto Na-bentonite Clay and its Kinetics, Isotherm and Thermodynamics. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022013. [Google Scholar] [CrossRef]
- Shin, J.; Lee, S.H.; Kim, S.; Ochir, D.; Chon, K. Effects of physicochemical properties of biochar derived from spent coffee grounds and commercial activated carbon on adsorption behavior and mechanisms of strontium ions (Sr2+). Environ. Sci. Pollut. Res. 2020, 2, 134–140. [Google Scholar] [CrossRef]
Primary Nutrients | Trace Elements | ||
---|---|---|---|
Components | Concentration (mg/L) | Components | Concentration (mg/L) |
NH4Cl | 100 | CuSO4 | 0.005 |
Glucose | 167 | CoCl2·6H2O | 0.021 |
NaHCO3 | 107 | Na2MoO4·2H2O | 0.016 |
KH2PO4 | 10.2 | ZnSO4·7H2O | 0.041 |
FeSO4·7H2O | 2.51 | H3BO3 | 0.15 |
MgSO4·7H2O | 5.71 | MnCl2·4H2O | 0.211 |
CaCl2·2H2O | 1.54 | Vitamin D | 0.0002 |
Items | Functional Ceramsite | Criterion 1 |
---|---|---|
Sum of the Breaking rate and Wear rate (%) | 1.63 | ≤6.00 |
Silt carrying capacity (%) | 0.21 | ≤1.00 |
Solubility in hydrochloric acid (%) | 0.94 | ≤2.00 |
Void fraction (%) | 70.23 | ≥40.00 |
BET specific surface area (m2/g) | 52.68 | ≥0.5 |
Apparent density (g/cm3) | 1.62 | -- |
Bulk density (g/cm3) | 0.78 | -- |
Compressive strength (MPa) | 2.3 | -- |
Porosity (%) | 53.93 | -- |
pHzpc | 4.43 | -- |
CEC | 99.87 | -- |
Time | Characteristics of Biofilm Culturing |
---|---|
1 d | There was light yellow thin mucosa at the initial stage of biofilm formation. |
5 d | The biofilm was thin, incomplete, and unevenly distributed. |
13 d | The yellow mucous membrane on the surface thickened, and biofilm appeared on most of the surface of ceramsite. |
21 d | The surface of the filler was entirely covered by a smooth biofilm with a complete and dense structure. The biofilm surface was yellowish brown. |
29 d | The surface biofilm of ceramsite was yellowish brown, while the internal biofilm was black gray, and were inhabited by aerobic and anaerobic microorganisms, respectively. |
Temp (°C) | qe, exp (mg/g) | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
qmax, fitted (mg/g) | KL (L/mg) | R2 | 1/n | KF (mg/g)/(mg/L)1/n | R2 | ||
5 | 1.0682 | 1.0094 | 0.1458 | 0.9523 | 0.3723 | 0.1809 | 0.9896 |
20 | 1.2557 | 1.3237 | 0.1883 | 0.9799 | 0.3911 | 0.2561 | 0.9804 |
35 | 1.4468 | 1.3723 | 0.3613 | 0.9771 | 0.3017 | 0.3888 | 0.9830 |
Temp (°C) | C0 (mg/L) | ||||||
---|---|---|---|---|---|---|---|
5 | 8 | 10 | 15 | 25 | 35 | 50 | |
5 | 0.5784 | 0.4068 | 0.2554 | 0.1206 | 0.0790 | 0.0642 | 0.0437 |
20 | 0.5151 | 0.3469 | 0.2098 | 0.0960 | 0.0623 | 0.0504 | 0.0342 |
35 | 0.3563 | 0.2168 | 0.1216 | 0.0525 | 0.0334 | 0.0269 | 0.0181 |
Dynamic Adsorption Model | Equations | R2 | qe, exp (mg/g) | Parameters |
---|---|---|---|---|
first-order model | y = q × (1 − exp(−k × x)) | 0.9559 | 1.0057 | qe1 0.9362 (mg/g) |
k1 0.0105 (min−1) | ||||
second-order model | y = k × q2 × x/(1 + k × q × x) | 0.9701 | 1.0057 | qe2 1.1398 (mg/g) |
k2 0.0106 (g/(mg·min)) |
Intra-Particle Diffusion Model | Equations | k | c | R2 |
---|---|---|---|---|
(mg/(g min1/2)) | (mg/g) | |||
First stage (0~60 min) | y = 0.1048 × x1/2 − 0.2743 | 0.1048 | −0.2743 | 0.9450 |
Second stage (60~300 min) | y = 0.0383 × x1/2 + 0.2462 | 0.0383 | 0.2462 | 0.9707 |
Third stage (300~480 min) | y = 0.0244 × x1/2 + 0.4702 | 0.0244 | 0.4702 | 0.6159 |
C0 | T | R2 | |||
---|---|---|---|---|---|
mg/L | (K) | (kJ/mol) | (kJ/mol) | (kJ/mol) | |
5 | 278.15 | −12.995 | 26.4593 | 0.1419 | 0.9859 |
293.15 | −15.123 | ||||
308.15 | −17.250 | ||||
8 | 278.15 | −11.449 | 42.4238 | 0.1937 | 0.9910 |
293.15 | 14.354 | ||||
308.15 | −17.260 | ||||
10 | 278.15 | −10.108 | 30.4218 | 0.1457 | 0.9658 |
293.15 | −12.293 | ||||
308.15 | −14.479 | ||||
15 | 278.15 | −8.386 | 26.0594 | 0.12384 | 0.9632 |
293.15 | −10.243 | ||||
308.15 | −12.101 | ||||
25 | 278.15 | −8.107 | 16.1682 | 0.0873 | 0.9997 |
293.15 | −9.416 | ||||
308.15 | −10.725 | ||||
35 | 278.15 | −7.827 | 14.1762 | 0.0791 | 0.9994 |
293.15 | −9.013 | ||||
308.15 | −10.200 | ||||
50 | 278.15 | −6.953 | 11.4525 | 0.0662 | 0.9961 |
293.15 | −7.945 | ||||
308.15 | −8.938 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhu, N.; Shaghaleh, H.; Mao, X.; Shao, X.; Wang, Q.; Hamoud, Y.A. The Effect of Functional Ceramsite in a Moving Bed Biofilm Reactor and Its Ammonium Nitrogen Adsorption Mechanism. Water 2023, 15, 1362. https://doi.org/10.3390/w15071362
Wang L, Zhu N, Shaghaleh H, Mao X, Shao X, Wang Q, Hamoud YA. The Effect of Functional Ceramsite in a Moving Bed Biofilm Reactor and Its Ammonium Nitrogen Adsorption Mechanism. Water. 2023; 15(7):1362. https://doi.org/10.3390/w15071362
Chicago/Turabian StyleWang, Liangkai, Ningyuan Zhu, Hiba Shaghaleh, Xinyu Mao, Xiaohou Shao, Qilin Wang, and Yousef Alhaj Hamoud. 2023. "The Effect of Functional Ceramsite in a Moving Bed Biofilm Reactor and Its Ammonium Nitrogen Adsorption Mechanism" Water 15, no. 7: 1362. https://doi.org/10.3390/w15071362
APA StyleWang, L., Zhu, N., Shaghaleh, H., Mao, X., Shao, X., Wang, Q., & Hamoud, Y. A. (2023). The Effect of Functional Ceramsite in a Moving Bed Biofilm Reactor and Its Ammonium Nitrogen Adsorption Mechanism. Water, 15(7), 1362. https://doi.org/10.3390/w15071362