Field Calibration of Semipermeable Membrane Devices (SPMDs) for Persistent Organic Pollutant Monitoring in a Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Gas Chromatography /Mass Spectrometric Analysis
2.3. Study Area and Sampling
2.4. Extraction and Cleanup of Passive Samplers
2.5. PRC Dissipation Modelling for Calibration and Water Concentration
3. Results and Discussion
3.1. GC–MS Identification
3.2. Quantitative Analysis for Analytes
3.3. The Study of Blanks and SPMD Recoveries
3.4. Dissipation of PRCs from SPMDs—Calibration Study
3.5. SPMDs Used for Pesticides and PAH Monitoring
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huckins, J.N.; Tubergen, M.W.; Manuweera, G.K. Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 1990, 20, 533–552. [Google Scholar] [CrossRef]
- Marrucci, A.; Marras, B.; Campisi, S.S.; Schintu, M. Using SPMDs to monitor the seawater concentrations of PAHs and PCBs in marine protected areas (Western Mediterranean). Mar. Pollut. Bull. 2013, 75, 69–75. [Google Scholar] [CrossRef] [PubMed]
- UNEP. The Stockholm Convention. 2019. Available online: http://chm.pops.int/Home/tabid/2121/Default.aspx (accessed on 10 October 2022).
- Richardson, B.J.; Tse, E.S.C.; De Luca-Abbott, S.B.; Martin, M.; Lam, P.K. Uptake and depuration of PAHs and chlorinated pesticides by semipermeable membrane devices (SPMDs) and green-lipped mussels (Perna viridis). Mar. Pollut. Bull. 2005, 51, 975–993. [Google Scholar] [CrossRef] [PubMed]
- Huckins, J.; Petty, J.D.; Booij, K. Monitors of Organic Chemicals in the Environment: Semipermeable Membrane Devices; Springer: New York, NY, USA, 2008. [Google Scholar]
- Booij, K.; Sleiderink, H.M.; Smedes, F. Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environ. Toxicol. Chem. Int. J. 1998, 17, 1236–1245. [Google Scholar] [CrossRef]
- Męczykowska, H.; Kobylis, P.; Stepnowski, P.; Caban, M. Calibration of passive samplers for the monitoring of pharmaceuticals in water-sampling rate variation. Crit. Rev. Anal. Chem. 2017, 47, 204–222. [Google Scholar] [CrossRef]
- Chimuka, L.; Cukrowska, E.; Tutu, H. Monitoring of Aquatic Environments Using Passive Samplers. Open Anal. Chem. J. 2008, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Narváez, V.J.F.; López, C.A.; Molina, P.F.J. Passive sampling in the study of dynamic and environmental impact of pesticides in water. Rev. Fac. Ing. Univ. Antioq. 2013, 68, 147–159. [Google Scholar]
- MacKeown, H.; Benedetti, B.; Di Carro, M.; Magi, E. The study of polar emerging contaminants in seawater by passive sampling: A review. Chemosphere 2022, 299, 134448. [Google Scholar] [CrossRef]
- Rong, Q.; Cai, Y.; Chen, B.; Shen, Z.; Yang, Z.; Yue, W.; Lin, X. Field management of a drinking water reservoir basin based on the investigation of multiple agricultural nonpoint source pollution indicators in north China. Ecol. Indic. 2018, 92, 113–123. [Google Scholar] [CrossRef]
- Onydinma, U.P.; Aljerf, L.; Obike, A.; Onah, O.E.; Caleb, N.J. Evaluation of physicochemical characteristics and health risk of polycyclic aromatic hydrocarbons in borehole waters around automobile workshops in Southeastern Nigeria. Groundw. Sustain. Dev. 2021, 14, 100615. [Google Scholar] [CrossRef]
- Ramírez, D.G.; Valderrama, J.F.N.; Tobón, C.A.P.; García, J.J.; Echeverri, J.D.; Sobotka, J.; Vrana, B. Occurrence, sources, and spatial variation of POPs in a mountainous tropical drinking water supply basin by passive sampling. Environ. Pollut. 2023, 318, 120904. [Google Scholar] [CrossRef]
- Marin-Palma, D.; González, J.D.; Narváez, J.F.; Porras, J.; Taborda, N.A.; Hernandez, J.C. Physicochemical Characterization and Evaluation of the Cytotoxic Effect of Particulate Matter (PM10). Water Air Soil Pollut. 2023, 234, 138. [Google Scholar] [CrossRef]
- Arias-Pérez, R.D.; Taborda, N.A.; Gómez, D.M.; Narvaez, J.F.; Porras, J.; Hernandez, J.C. Inflammatory effects of particulate matter air pollution. Environ. Sci. Pollut. Res. 2020, 27, 42390–42404. [Google Scholar] [CrossRef]
- Petty, J.D.; Orazio, C.E.; Huckins, J.N.; Gale, R.W.; Lebo, J.A.; Meadows, J.C.; Cranor, W.L. Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants. J. Chromatogr. A 2000, 879, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bi, Y.; Pfister, G.; Henkelmann, B.; Zhu, K.; Schramm, K.W. Determination of PAH, PCB, and OCP in water from the Three Gorges Reservoir accumulated by semipermeable membrane devices (SPMD). Chemosphere 2009, 75, 1119–1127. [Google Scholar] [CrossRef]
- Booij, K.; Zegers, B.N.; Boon, J.P. Levels of some polybrominated diphenyl ether (PBDE) flame retardants along the Dutch coast as derived from their accumulation in SPMDs and blue mussels (Mytilus edulis). Chemosphere 2002, 46, 683–688. [Google Scholar] [CrossRef]
- Booij, K.; Van Bommel, R.; Mets, A.; Dekker, R. Little effect of excessive biofouling on the uptake of organic contaminants by semipermeable membrane devices. Chemosphere 2006, 65, 2485–2492. [Google Scholar] [CrossRef]
- Valderrama, J.F.N.; Baek, K.; Molina, F.J.; Allan, I.J. Implications of observed PBDE diffusion coefficients in low density polyethylene and silicone rubber. Environ. Sci. Process. Impacts 2016, 18, 87–94. [Google Scholar] [CrossRef]
- Sabaliūnas, D.; Södergren, A. Use of semipermeable membrane devices to monitor pollutants in water and assess their effects: A laboratory test and field verification. Environ. Pollut. 1997, 96, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Booij, K.; Hofmans, H.E.; Fischer, C.V.; Van Weerlee, E.M. Temperature-dependent uptake rates of non-polar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ. Sci. Technol. 2003, 37, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Verweij, F.; Booij, K.; Satumalay, K.; van der Molen, N.; van der Oost, R. Assessment of bioavailable PAH, PCB and OCP concentrations in water, using semipermeable membrane devices (SPMDs), sediments and caged carp. Chemosphere 2004, 54, 1675–1689. [Google Scholar] [CrossRef]
- Wicke, D.; Matzinger, A.; Sonnenberg, H.; Caradot, N.; Schubert, R.L.; Dick, R.; Heinzmann, B.; Dünnbier, U.; von Seggern, D.; Rouault, P. Micropollutants in urban stormwater runoff of different land uses. Water 2021, 13, 1312. [Google Scholar] [CrossRef]
- Gogou, A.; Bouloubassi, I.; Stephanou, E.G. Marine organic geochemistry of the Eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments. Mar. Chem. 2000, 68, 265–282. [Google Scholar] [CrossRef]
- Brillas, E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 2020, 250, 126198. [Google Scholar] [CrossRef]
- Ríos-Sossa, R.; García-Londoño, J.J.; Gil-Ramírez, D.; Patiño, A.C.; Cardona-Maya, W.D.; Quintana-Castillo, J.C.; Narváez-Valderrama, J.F. Assessment of levonorgestrel leaching in a landfill and its effects on placental cell lines and sperm cells. Water 2022, 14, 871. [Google Scholar] [CrossRef]
- Bispo, A.; Jourdain, M.J.; Jauzein, M. Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org. Geochem. 1999, 30, 947–952. [Google Scholar] [CrossRef]
- Qin, N.; He, W.; Kong, X.-Z.; Liu, W.-X.; He, Q.-S.; Yang, B.; Ouyang, H.-L.; Wang, Q.-M.; Xu, F.-L. Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators. Ecol. Indic. 2013, 24, 599–608. [Google Scholar] [CrossRef]
- Valderrama, J.F.N.; Gil, V.C.; Alzate, V.; Tavera, E.A.; Noreña, E.; Porras, J.; Quintana-Castillo, J.C.; Ramos-Contreras, C.; Sanchez, J.B. Effects of polycyclic aromatic hydrocarbons on gestational hormone production in a placental cell line: Application of passive dosing to in vitro tests. Ecotoxicol. Environ. Saf. 2022, 245, 114090. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Y.; Ma, M.; Rao, K.; Wang, Z. Simultaneous passive sampling of hydrophilic and hydrophobic emerging organic contaminants in water. Ecotoxicol. Environ. Saf. 2019, 178, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Colombian Agricultural Institute, ICA Plant Protection Department. Statistics on Commercialization of Chemical Pesticides for Agricultural Use 2012 [Internet]. Boletín técnico Código: 00.02.96.13 [Consultado 2014 Jun 29; citado 2014 Jul 02]. Available online: https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos (accessed on 10 October 2022).
- Correa Zuluaga, S.; Ramos Contreras, C.D.; Tangarife Ramírez, J.C.; Narváez, J.F.; LópezCórdoba, C.A.; Molina Pérez, F.J. Potencial de Lixiviação de Chlorpirifos em um Entisol Colômbio. Rev. EIA 2018, 15, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Ventura, C.; Núñez, M.; Miret, N.; Lamas, D.M.; Randi, A.; Venturino, A.; Rivera, E.; Cocca, C. Differential mechanisms of action are involved in chlorpyrifos effects in estrogen-dependent or-independent breast cancer cells exposed to low or high concentrations of the pesticide. Toxicol. Lett. 2012, 213, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Narváez Valderrama, J.F.; Berrío Puerta, J.A.; Correa Zuluaga, S.; Palacio Baena, J.A.; Molina Pérez, F.J. Degradación hidrolítica de clorpirifos y evaluación de la toxicidad del extracto hidrolizado con Daphnia pulex. Rev. Politéc. Colomb. Jaime Isaza Cadavid 2014, 10, 9–15. [Google Scholar]
- U.S. Geological Survey. Columbia Environmental Research Center [Update April 2012]. Available online: https://www.usgs.gov/centers/columbia-environmental-research-center (accessed on 10 October 2022).
- Diedrich, C.J.; Gerig, B.S.; Paterson, G. Spatial Comparison of Persistent Organic Pollutants in the Boardman River Following Impoundment Removal and Channel Restoration. Bull. Environ. Contam. Toxicol. 2022, 109, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, W.; Henkelmann, B.; Pfister, G.; Schramm, K.W. Organochlorine pesticides accumulated by SPMD-based virtual organisms and feral fish in Three Gorges Reservoir, China. Environ. Pollut. 2015, 202, 160–167. [Google Scholar] [CrossRef]
- Müller, J.F.; Manomanii, K.; Mortimer, M.R.; McLachlan, M.S. Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/water system. Fresenius’ J. Anal. Chem. 2001, 371, 816–822. [Google Scholar] [CrossRef]
Peak No. | Analytes | Rt (min) | Monitor Ions, m/z (Intensity %) | ||
---|---|---|---|---|---|
Target Ion | Q1 | Q2 | |||
1 | Naphthalene (NAPH), | 5.81 | 128 | 127 | 129 |
2 | Acenaphthylene (ACEN) | 7.37 | 152 | 151 | 153 |
3 | Acenaphthene (ACE) | 7.54 | 154 | 152 | 153 |
4 | Fluorene (FL) | 7.97 | 166 | 165 | 167 |
5 | PCB-14 | 8.58 | 224 | 152 | 222 |
6 | Diazinon (DZN) | 8.79 | 137 | 179 | N.D. |
7 | Phenanthrene (PHE) | 8.92 | 178 | 176 | 179 |
8 | Anthracene (ANT) | 8.97 | 178 | 89 | 179 |
9 | PCB-29 | 9.10 | 256 | 186 | 258 |
10 | PCB-50 | 9.19 | 292 | 220 | 290 |
11 | Chlorpyrifos (CPF) | 9.58 | 314 | 197 | 256 |
12 | Parathion (PTN) | 9.63 | N.D. | N.D. | N.D. |
13 | Fluoranthene (FLU) | 10.20 | 202 | 101 | 203 |
14 | Pyrene (PYR) | 10.44 | 202 | 101 | 203 |
Peak No. | Analyte Names | MW | log kow | Rs (L day−1) | LR (µg mL−1) | r2 |
---|---|---|---|---|---|---|
1 | NAPH | 128.2 | 3.5 | 27.8 | 0.05–1.00 | 0.982 |
2 | ACEN | 152.2 | 4.1 | 50.3 | 0.12–1.00 | 0.980 |
3 | ACE | 154.2 | 4.2 | 55.1 | 0.06–1.20 | 0.992 |
4 | FL | 166.2 | 4.4 | 60.1 | 0.01–1.00 | 0.989 |
5 | PCB-14 | 223.1 | 5.3 | 72.6 | 0.002–0.1 | 0.999 |
6 | DZN (N.D.) | 304.3 | 3.3 | 35.8 | 0.01–0.50 | 0.987 |
7 | PHE | 178.2 | 4.5 | 62.3 | 0.09–1.30 | 0.980 |
8 | ANT | 178.2 | 4.5 | 64.4 | 0.02–1.00 | 0.980 |
9 | PCB-29 | 257.5 | 5.6 | 69.8 | 0.002–0.1 | 0.998 |
10 | PCB-50 | 291.9 | 5.6 | 69.3 | 0.002–0.1 | 0.992 |
11 | CPF | 350.6 | 4.9 | 71.0 | 0.01–0.50 | 0.987 |
12 | PTN (N.D.) | 330.4 | 3.8 | 40.1 | 0.01–0.50 | 0.987 |
13 | FLU | 202.3 | 5.2 | 72.7 | 0.05–0.75 | 0.980 |
14 | PYR | 202.1 | 5.3 | 72.5 | 0.07–1.00 | 0.987 |
PAH Congener | Cw (5 Days Sampling) ng L−1 |
---|---|
NAPH | 0.7 |
ACEN | 1.2 |
ACE | 0.7 |
FL | 0.8 |
PHE | 2.3 |
ANT | 0.5 |
FLU | 1.8 |
PYR | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narvaez Valderrama, J.F.; González, J.D.; Porras, J.; Molina, F.J. Field Calibration of Semipermeable Membrane Devices (SPMDs) for Persistent Organic Pollutant Monitoring in a Reservoir. Water 2023, 15, 1428. https://doi.org/10.3390/w15071428
Narvaez Valderrama JF, González JD, Porras J, Molina FJ. Field Calibration of Semipermeable Membrane Devices (SPMDs) for Persistent Organic Pollutant Monitoring in a Reservoir. Water. 2023; 15(7):1428. https://doi.org/10.3390/w15071428
Chicago/Turabian StyleNarvaez Valderrama, Jhon Fredy, Juan D. González, Jazmín Porras, and Francisco J. Molina. 2023. "Field Calibration of Semipermeable Membrane Devices (SPMDs) for Persistent Organic Pollutant Monitoring in a Reservoir" Water 15, no. 7: 1428. https://doi.org/10.3390/w15071428