Membrane Processes Treatment and Possibility of Agriculture Reuse of Textile Effluents: Study Case in Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling Site
2.2. Textile Effluent Treatment
2.3. Water Irrigation
2.4. Experimental Setup
2.5. Soil Sampling and Analysis
2.6. Water Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Quality of Treated Textile Effluent (TTE)
3.1.1. Biological Treatment
3.1.2. Membrane Treatments
3.2. Impact of Irrigation by TTE on Soil Quality
Complementary Treatments | Ranges and Maximum Tolerable of ETM in the Soil (mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|
IS | W | BT | UF | NF | RO | [64] | [66] | |
pH | 7.4 ± 0.13 a * | 7.5 ± 0.29 a | 8.7 ± 0.19 c | 8.2 ± 0.11 b | 8.3 ± 0.08 bc | 7.3 ± 0.07 a | ||
ECe (dS/m) | 1.21 ± 0.07 a | 5.24 ± 0.03 b | 10.90 ± 0.71 e | 8.31 ± 0.30 d | 6.66 ± 0.26 c | 1.53 ± 0.20 a | ||
Cations | ||||||||
Ca2+ (me/L) | 5.60 ± 0.65 a | 13.00 ± 2.12 a | 39.63 ± 4.42 b | 30.10 ± 9.38 b | 15.50 ± 6.01 a | 5.50 ± 1.00 a | ||
Mg2+ (me/L) | 3.7 ± 0.27 a | 9.50 ± 1.68 b | 14.88 ± 2.87 b | 12.00 ± 4.47 b | 9.50 ± 2.52 b | 2.00 ± 0.50 a | ||
K+ (me/L) | 0.34 ± 0.01 ab | 0.49 ± 0.11 bc | 0.59 ± 0.08 c | 0,50 ± 0.11 bc | 0.50 ± 0,13 bc | 0.20 ± 0.02 a | ||
Na+ (me/L) | 4.44 ± 0.27 a | 30.24 ± 1.97 b | 52.02 ± 0.95 d | 39.78 ± 6.67 bc | 41.71 ± 9.21 cd | 7.95 ± 0.53 a | ||
Anions | ||||||||
Cl− (me/L) | 6.77 ± 1.18 a | 33.13 ± 1.43 b | 54.68 ± 15.43 c | 40.63 ± 3.62 b | 33.54 ± 7.21 b | 6.77 ± 1.20 a | ||
HCO3− (me/L) | 2.50 ± 0.00 a | 4.37 ± 0.48 ab | 11.50 ± 1.78 c | 7.60 ± 2.86 b | 3.80 ± 0.27 a | 3.83 ± 1.26 a | ||
SO42− (me/L) | 2.25 ± 0.67 a | 15.66 ± 1.36 a | 43.37 ± 13.47 b | 35.25 ± 5.28 b | 30.65 ± 6.30 b | 4.36 ± 1.31 a | ||
MTE | ||||||||
Cd (mg/kg) | 0.66 ± 0.38 abc | 0.76 ± 0.09 bc | 0.96 ± 0.02 c | 0.86 ± 0.04 bc | 0.55 ± 0.09 ab | 0.37± 0.04 a | 0.08–1.61 | 4 |
Co (mg/kg) | 0.89 ± 0.50 a | 1.64 ± 0.42 b | 1.77 ± 0.31 b | 1.71 ± 0.15 b | 1.36 ± 0.17 ab | 1.02 ± 0.15 a | 3–58 | - |
Cr (mg/kg) | 4.12 ± 0.61 bc | 3.47 ± 0.28 ab | 5.21 ± 0.26 d | 4.26 ± 0.31 c | 4.21 ± 0.26 c | 3.16 ± 0.28 a | 4–1100 | - |
Ni (mg/kg) | 2.83 ± 0.83 ab | 2.40 ± 0.76 ab | 3.50 ± 0.22 c | 2.79 ± 0.26 ab | 2.56 ± 0.19 ab | 1.96 ± 0.97 a | 3–110 | 107 |
3.3. Impact of TTE on Sesbania Plants
3.3.1. Effects on Biomass
3.3.2. Effect on the Aerial Parts
3.3.3. Effect on the Root
3.3.4. Effect on the Mineral Composition of Sesbania
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Gisi, S.; Notarnicola, M. Industrial Wastewater Treatment. In Encyclopedia of Sustainable Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–42. ISBN 978-0-12-804792-7. [Google Scholar]
- Saravanan, N.; Sasikumar, K.S.K. Waste Water Treatment Process Using Nano TiO2. Mater. Today Proc. 2020, 33, 2570–2572. [Google Scholar] [CrossRef]
- Djelal, H.; Rigail, M.; Boyer, L. Les effluents industriels et leur traitement. Manag. Avenir 2008, 20, 275. [Google Scholar] [CrossRef]
- Zafar, S.; Bukhari, D.A.; Rehman, A. Azo Dyes Degradation by Microorganisms—An Efficient and Sustainable Approach. Saudi J. Biol. Sci. 2022, 29, 103437. [Google Scholar] [CrossRef]
- Mansour, H.B.; Boughzala, O.; Dridi, dorra; Barillier, D.; Chekir-Ghedira, L.; Mosrati, R. Les colorants textiles sources de contamination de l’eau: CRIBLAGE de la toxicité et des méthodes de traitement. J. Water Sci. 2011, 24, 209–238. [Google Scholar] [CrossRef] [Green Version]
- Bottino, A.; Capannelli, C.; Del Borghi, A.; Colombino, M.; Conio, O. Water Treatment for Drinking Purpose: Ceramic Microfiltration Application. Desalination 2001, 141, 75–79. [Google Scholar] [CrossRef]
- Lau, W.-J.; Ismail, A.F. Polymeric Nanofiltration Membranes for Textile Dye Wastewater Treatment: Preparation, Performance Evaluation, Transport Modelling, and Fouling Control—A Review. Desalination 2009, 245, 321–348. [Google Scholar] [CrossRef]
- Mahzoura, M.; Tahri, N.; Daramola, M.O.; Duplay, J.; Schäfer, G.; Ben Amar, R. Comparative Investigation of Indigo Blue Dye Removal Efficiency of Activated Carbon and Natural Clay in Adsorption/Ultrafiltration System. DWT 2019, 164, 326–338. [Google Scholar] [CrossRef]
- Park, W.; Jeong, S.; Im, S.-J.; Jang, A. High Turbidity Water Treatment by Ceramic Microfiltration Membrane: Fouling Identification and Process Optimization. Environ. Technol. Innov. 2020, 17, 100578. [Google Scholar] [CrossRef]
- Singh, R.; Hankins, N.P. Introduction to Membrane Processes for Water Treatment. In Emerging Membrane Technology for Sustainable Water Treatment; Elsevier: Amsterdam, The Netherlands, 2016; pp. 15–52. ISBN 978-0-444-63312-5. [Google Scholar]
- Fatone, F.; Bolzonella, D.; Battistoni, P.; Cecchi, F. Removal of Nutrients and Micropollutants Treating Low Loaded Wastewaters in a Membrane Bioreactor Operating the Automatic Alternate-Cycles Process. Desalination 2005, 183, 395–405. [Google Scholar] [CrossRef]
- Norton-Brandão, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of Used Urban Waters for Irrigation Purposes—A Review of Treatment Technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef]
- Petrinić, I.; Andersen, N.P.R.; Šostar-Turk, S.; Le Marechal, A.M. The Removal of Reactive Dye Printing Compounds Using Nanofiltration. Dye Pigment. 2007, 74, 512–518. [Google Scholar] [CrossRef]
- Adam, M.R.; Hubadillah, S.K.; Esham, M.I.M.; Othman, M.H.D.; Rahman, M.A.; Ismail, A.F.; Jaafar, J. Adsorptive Membranes for Heavy Metals Removal from Water. In Membrane Separation Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 361–400. ISBN 978-0-12-812815-2. [Google Scholar]
- Pal, P. Introduction to Membrane-Based Technology Applications. In Membrane-Based Technologies for Environmental Pollution Control; Elsevier: Amsterdam, The Netherlands, 2020; pp. 71–100. ISBN 978-0-12-819455-3. [Google Scholar]
- Saini, P.; Bulasara, V.K.; Reddy, A.S. Performance of a New Ceramic Microfiltration Membrane Based on Kaolin in Textile Industry Wastewater Treatment. Chem. Eng. Commun. 2019, 206, 227–236. [Google Scholar] [CrossRef]
- Kang, G.; Cao, Y. Application and Modification of Poly(Vinylidene Fluoride) (PVDF) Membranes—A Review. J. Membr. Sci. 2014, 463, 145–165. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Saravanan, A. Sustainable Wastewater Treatments in Textile Sector. In Sustainable Fibres and Textiles; Elsevier: Amsterdam, The Netherlands, 2017; pp. 323–346. ISBN 978-0-08-102041-8. [Google Scholar]
- Barredo-Damas, S.; Alcaina-Miranda, M.I.; Bes-Piá, A.; Iborra-Clar, M.I.; Iborra-Clar, A.; Mendoza-Roca, J.A. Ceramic Membrane Behavior in Textile Wastewater Ultrafiltration. Desalination 2010, 250, 623–628. [Google Scholar] [CrossRef]
- Costa, J.M.; da Costa, J.G.d.R.; Almeida Neto, A.F.D. Techniques of Nickel(II) Removal from Electroplating Industry Wastewater: Overview and Trends. J. Water Process Eng. 2022, 46, 102593. [Google Scholar] [CrossRef]
- Crini, G.; Montiel, A.J.; Badot, P.M. Traitement et Épuration Des Eaux Industrielles Polluées: Procédés Membranaires, Bioadsorption et Oxydation Chimique; Presses Universitaires de Franche-Comté: Besançon, France, 2007; p. 352. ISBN 9782848671970. [Google Scholar]
- Aouni, A.; Fersi, C.; Cuartas-Uribe, B.; Bes-Pía, A.; Alcaina-Miranda, M.I.; Dhahbi, M. Reactive Dyes Rejection and Textile Effluent Treatment Study Using Ultrafiltration and Nanofiltration Processes. Desalination 2012, 297, 87–96. [Google Scholar] [CrossRef]
- Vishnu, G.; Joseph, K. Decolorization of Reactive Dyebath Containing High Exhaust and Low Salt Dyes by Nanofiltration and Its Reuse. Environ. Prog. 2008, 27, 30–39. [Google Scholar] [CrossRef]
- Hammack, R. Current and Emerging Practices for Managing Coalbed Methane Produced Water in the United States. In Coal Bed Methane; Elsevier: Amsterdam, The Netherlands, 2014; pp. 219–240. ISBN 978-0-12-800880-5. [Google Scholar]
- Abid, M.F.; Zablouk, M.A.; Abid-Alameer, A.M. Experimental Study of Dye Removal from Industrial Wastewater by Membrane Technologies of Reverse Osmosis and Nanofiltration. J. Environ. Health Sci. Eng. 2012, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Gil, A.; Galeano, L.A.; Vicente, M.Á. Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2019; Volume 67, ISBN 978-3-319-76881-6. [Google Scholar]
- Pathak, V.; Ambrose, R.P.K. Starch-Based Biodegradable Hydrogel as Seed Coating for Corn to Improve Early Growth under Water Shortage. J. Appl. Polym. Sci. 2019, 137, 12. [Google Scholar] [CrossRef]
- Younas, S.; Rizvi, H.; Ali, S.; Abbas, F. Irrigation of Zea Mays with UASB-Treated Textile Wastewater; Effect on Early Irrigation of Zea Mays with UASB-Treated Textile Wastewater; Effect on Early Growth and Physiology. Environ. Sci. Pollut. Res. 2020, 27, 15305–15324. [Google Scholar] [CrossRef]
- Ben Boubaker, H. L’eau en Tunisie: Faut-Il s’Attendre au Pire ? Centre of Mediterranean and International Studies, Konrad Adenauer Stiftung: Tunis, Tunisie, 2016; p. 12. [Google Scholar]
- Tyagi, J.; Ahmad, S.; Malik, M. Nitrogenous Fertilizers: Impact on Environment Sustainability, Mitigation Strategies, and Challenges. Int. J. Environ. Sci. Technol. 2022, 19, 11649–11672. [Google Scholar] [CrossRef]
- Zhou, J.; Gu, B.; Schlesinger, W.H.; Ju, X. Significant Accumulation of Nitrate in Chinese Semi-Humid Croplands. Sci. Rep. 2016, 6, 25088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahar, K.; Chowdhury, M.A.K.; Chowdhury, M.A.H.; Rahman, A.; Mohiuddin, K.M. Heavy Metals in Handloom-Dyeing Effluents and Their Biosorption by Agricultural Byproducts. Environ. Sci. Pollut. Res. 2018, 25, 7954–7967. [Google Scholar] [CrossRef]
- Belaid, N.; Neel, C.; Lenain, J.F.; Buzier, R.; Kallel, M.; Ayoub, T.; Ayadi, A.; Baudu, M. Assessment of Metal Accumulation in Calcareous Soil and Forage Crops Subjected to Long-Term Irrigation Using Treated Wastewater: Case of El Hajeb-Sfax, Tunisia. Agric. Ecosyst. Environ. 2012, 158, 83–93. [Google Scholar] [CrossRef]
- Gemeda, F.T.; Guta, D.D.; Wakjira, F.S.; Gebresenbet, G. Occurrence of Heavy Metal in Water, Soil, and Plants in Fields Irrigated with Industrial Wastewater in Sabata Town, Ethiopia. Environ. Sci. Pollut. Res. 2021, 28, 12382–12396. [Google Scholar] [CrossRef] [PubMed]
- Kouchou, A.; Rais, N.; Thoisy, J.-C.; Duplay, J.; Ghazi, M.; Elsass, F.; Ijjaali, M.; El Ghachtouli, N. Behavior of Enzyme Activities Exposed to Contamination by Heavy Metals and Dissolved Organic Carbon in Calcareous Agricultural Soils. Soil Sediment Contam. Int. J. 2017, 26, 259–276. [Google Scholar] [CrossRef]
- Kammoun, M.A.; Gassara, S.; Palmeri, J.; Ben Amar, R.; Deratani, A. Nanofiltration Performance Prediction for Brackish Water Desalination: Case Study of Tunisian Groundwater. Desalination Water Treat. 2020, 181, 27–39. [Google Scholar] [CrossRef]
- Gharsallah, A.; Tahri, N.; Duplay, J.; Ben Amar, R. Performances of NF and RO Applied in Combined System and Separately for the Treatment and Recycling of Biologically Pretreated Real Textile Wastewater. J. Phase Change Mater. 2022, 2, 24–47. [Google Scholar]
- Allison, L.E.; Brown, J.W.; Hayward, H.E.; Richards, A.; Bernstein, L.; Fireman, M.; Pearson, G.A.; Bower, C.A.; Hatcher, J.T.; Reeve, R.C. Diagnosis and Improvement of Saline and Alkali Soils; United States Salinity Laboratory Staff; U.S. Department of Agriculture: Washington, DC, USA, 1954; p. 166. [Google Scholar]
- ISO 14869-1:2001(F); Qualité Du Sol—Mise En Solution Pour La Détermination Des Teneurs Élémentaires Totales—Partie 1: Mise En Solution Par l’acide Fluorhydrique et l’acide Perchlorique. ISO: Geneva, Switzerland, 2001.
- Chockalingam, N.; Banerjee, S.; Muruhan, S. Characterization of Physicochemical Parameters of Textile Effluents and Its Impacts on Environment. Environ. Nat. Resour. J. 2019, 17, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Vigneshpriya, D.; Shanthi, E. Physicochemical Characterization of Textile Waste Water. Int. J. Innov. Res. Dev. 2015, 4, 4. [Google Scholar]
- Gebrati, L.; El Achaby, M.; Chatoui, H.; Laqbaqbi, M.; El Kharraz, J.; Aziz, F. Inhibiting Effect of Textile Wastewater on the Activity of Sludge from the Biological Treatment Process of the Activated Sludge Plant. Saudi J. Biol. Sci. 2019, 26, 1753–1757. [Google Scholar] [CrossRef]
- Malliga, P.; Bela, R.B.; Shanmugapriya, N. Conversion of Textile Effluent Wastewater into Fertilizer Using Marine Cyanobacteria along with Different Agricultural Waste. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Elsevier: Amsterdam, The Netherlands, 2020; pp. 87–111. ISBN 978-0-12-817951-2. [Google Scholar]
- Sahinkaya, E.; Tuncman, S.; Koc, I.; Guner, A.R.; Ciftci, S.; Aygun, A.; Sengul, S. Performance of a Pilot-Scale Reverse Osmosis Process for Water Recovery from Biologically-Treated Textile Wastewater. J. Environ. Manag. 2019, 249, 109382. [Google Scholar] [CrossRef] [PubMed]
- Tara, N.; Iqbal, M.; Mahmood Khan, Q.; Afzal, M. Bioaugmentation of Floating Treatment Wetlands for the Remediation of Textile Effluent: Bioaugmentation of Floating Treatment Wetlands. Water Environ. J. 2019, 33, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Özgün, H.; Sakar, H.; Ağtaş, M.; Koyuncu, İ. Investigation of Pre-Treatment Techniques to Improve Membrane Performance in Real Textile Wastewater Treatment. Int. J. Environ. Sci. Technol. 2023, 20, 1539–1550. [Google Scholar] [CrossRef]
- Abdelkader, B.A. Nanofiltration as a Pretreatment Step in Seawater Desalination: A Review. Arab. J. Sci. Eng. 2018, 43, 4413–4432. [Google Scholar] [CrossRef]
- Hilal, N.; Al-Zoubi, H.; Mohammad, A.W.; Darwish, N.A. Nanofiltration of Highly Concentrated Salt Solutions up to Seawater Salinity. Desalination 2005, 184, 315–326. [Google Scholar] [CrossRef]
- Liu, M.; Lü, Z.; Chen, Z.; Yu, S.; Gao, C. Comparison of Reverse Osmosis and Nanofiltration Membranes in the Treatment of Biologically Treated Textile Effluent for Water Reuse. Desalination 2011, 281, 372–378. [Google Scholar] [CrossRef]
- Preuß, V.; Riedel, C.; Koch, T.; Thűrmer, K.; Domańska, M. Nanofiltration as an Effective Tool of Reducing Sulphate Concentration in Mine Water. Archit. Civ. Eng. Environ. 2012, 3, 127–132. [Google Scholar]
- Laskowska, E.; Turek, M.; Mitko, K.; Dydo, P. Concentration of Mine Saline Water in High-Efficiency Hybrid RO-NF System. DWT 2018, 128, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Tehrani-Bagha, A.R.; Mahmoodi, N.M.; Menger, F.M. Degradation of a Persistent Organic Dye from Colored Textile Wastewater by Ozonation. Desalination 2010, 260, 34–38. [Google Scholar] [CrossRef]
- Mohammed Ali, N.S.; Alalwan, H.A.; Alminshid, A.H.; Mohammed, M.M. Synthesis and Characterization of Fe3O4- SiO2 Nanoparticles as Adsorbent Material for Methyl Blue Dye Removal from Aqueous Solutions. Pollution 2022, 8, 295–302. [Google Scholar] [CrossRef]
- Ali, I.; AL-Othman, Z.A.; Alwarthan, A. Molecular Uptake of Congo Red Dye from Water on Iron Composite Nano Particles. J. Mol. Liq. 2016, 224, 171–176. [Google Scholar] [CrossRef]
- Alalwan, H.; Alminshid, A.; Mohammed, M.; Mohammed, M. Reviewing of Using Nanomaterials for Wastewater Treatment. Pollution 2022, 8, 995–1013. [Google Scholar] [CrossRef]
- Hendaoui, K.; Ayari, F.; Rayana, I.B.; Amar, R.B.; Darragi, F.; Trabelsi-Ayadi, M. Real Indigo Dyeing Effluent Decontamination Using Continuous Electrocoagulation Cell: Study and Optimization Using Response Surface Methodology. Process Saf. Environ. Prot. 2018, 116, 578–589. [Google Scholar] [CrossRef]
- Lee, J.W.; Chun, J.I.; Jung, H.J.; Kwak, D.H.; Ramesh, T.; Shim, W.G.; Moon, H. Comparative Studies on Coagulation and Adsorption as a Pretreatment Method for the Performance Improvement of Submerged MF Membrane for Secondary Domestic Wastewater Treatment. Sep. Sci. Technol. 2005, 40, 2613–2632. [Google Scholar] [CrossRef]
- Vigneswaran, S.; Chaudhary, D.S.; Ngo, H.H.; Shim, W.G.; Moon, H. Application of a PAC-Membrane Hybrid System for Removal of Organics from Secondary Sewage Effluent: Experiments and Modelling. Sep. Sci. Technol. 2003, 38, 2183–2199. [Google Scholar] [CrossRef]
- Rosu, C.; Pistea, I.; Roba, C.; Nes, M.; Ozunu, A. Groundwater Quality and Its Suitability for Drinking and Agricultural Use in a Rural Area from Cluj Country (Floresti Village). Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2014, 14, 247–252. [Google Scholar]
- Safiur Rahman, M.; Saha, N.; Islam, A.R.M.T.; Shen, S.; Bodrud-Doza, M. Evaluation of Water Quality for Sustainable Agriculture in Bangladesh. Water Air Soil Pollut. 2017, 228, 16. [Google Scholar] [CrossRef]
- Raju, N.J. Hydrogeochemical Parameters for Assessment of Groundwater Quality in the Upper Gunjanaeru River Basin, Cuddapah District, Andhra Pradesh, South India. Environ. Geol. 2007, 52, 1067–1074. [Google Scholar] [CrossRef]
- Kaur, A.; Vats, S.; Rekhi, S.; Bhardwaj, A.; Goel, J.; Tanwar, R.S.; Gaur, K.K. Physico-Chemical Analysis of the Industrial Effluents and Their Impact on the Soil Microflora. Procedia Environ. Sci. 2010, 2, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Sheoran, P.; Basak, N.; Kumar, A.; Yadav, R.K.; Singh, R.; Sharma, R.; Kumar, S.; Singh, R.K.; Sharma, P.C. Ameliorants and Salt Tolerant Varieties Improve Rice-Wheat Production in Soils Undergoing Sodification with Alkali Water Irrigation in Indo–Gangetic Plains of India. Agric. Water Manag. 2021, 243, 106492. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001; ISBN 978-0-8493-1575-6. [Google Scholar]
- Awasthi, O.P.; Pathak, R.K.; Pandey, S.D. Sodicity and Salinity on Survival and Nutrient Status of Four Scion Cultivars Budded on Indian Jujube (Zizyphus mauritiana Lamk.). Trop. Agric. 1997, 74, 238–242. [Google Scholar]
- WHO. WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater, Volume 1 Policy and Regulatory Aspects; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Ding, X.; Wang, J.; Huang, Q.; Hu, S.; Wu, Y.; Wang, L. The Effects of Waste Cement on the Bioavailability, Mobility, and Leaching of Cadmium in Soil. Int. J. Environ. Res. Public Health 2021, 18, 8885. [Google Scholar] [CrossRef]
- Arabi, Z.; Rinklebe, J.; El-Naggar, A.; Hou, D.; Sarmah, A.K.; Moreno-Jiménez, E. (Im)Mobilization of Arsenic, Chromium, and Nickel in Soils via Biochar: A Meta-Analysis. Environ. Pollut. 2021, 286, 117199. [Google Scholar] [CrossRef] [PubMed]
- Gandois, L.; Probst, A.; Dumat, C. Modelling Trace Metal Extractability and Solubility in French Forest Soils by Using Soil Properties. Eur. J. Soil Sci. 2010, 61, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhang, P.; Yang, M.; Liu, Y.; Zhang, X.; Feng, S.; Guo, D.; Dang, X. Biochar Is an Effective Amendment to Remediate Cd-Contaminated Soils—A Meta-Analysis. J. Soils Sediments 2020, 20, 3884–3895. [Google Scholar] [CrossRef]
- Abd-Elwahed, M.S. Influence of Long-Term Wastewater Irrigation on Soil Quality and Its Spatial Distribution. Ann. Agric. Sci. 2018, 63, 191–199. [Google Scholar] [CrossRef]
- Bastida, F.; Kandeler, E.; Moreno, J.L.; Ros, M.; García, C.; Hernández, T. Application of Fresh and Composted Organic Wastes Modifies Structure, Size and Activity of Soil Microbial Community under Semiarid Climate. Appl. Soil Ecol. 2008, 40, 318–329. [Google Scholar] [CrossRef]
- Mahmoud, A.; Athar, M.; Qadri, R.; Mahmood, N. Effect of NaCl Salinity on Growth, Nodulation and Total Nitrogen Content in Sesbania Sesban. Agric. Conspec. Sci. 2008, 73, 137–141. [Google Scholar]
- Chérifi, K.; Anagri, A.; Boufous, E.H.; Mousadik, A.E. Effet du Chlorure de sodium (NaCl) sur la croissance de six espèces d’Acacia. Am. J. Innov. Res. Appl. Sci. 2017, 4, 105–113. [Google Scholar]
- Shakirov, Z.S.; Khakimov, S.A.; Shomurodov, K.F. Effect of Salinity and Drought on Symbiotical and Bi-Ochemical Properties of Onobrychis and Alfalfa. Agric. Sci. 2012, 3, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Abd_Allah, E.F.; Hashem, A.; Alqarawi, A.A.; Bahkali, A.H.; Alwhibi, M.S. Enhancing Growth Performance and Systemic Acquired Resistance of Medicinal Plant Sesbania sesban (L.) Merr Using Arbuscular Mycorrhizal Fungi under Salt Stress. Saudi J. Biol. Sci. 2015, 22, 247–283. [Google Scholar] [CrossRef]
- Ben Khaled, L.; Ouarraqi, E.M.; Zid, E. Impact du NaCl sur la croissance et la nutrition de la variété de blé dur Massa cultivée en milieu hydroponique. Acta Bot. Gall. 2007, 154, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Kopriva, S.; Rennenberg, H. Control of Sulphate Assimilation and Glutathione Synthesis: Interaction with N and C Metabolism. J. Exp. Bot. 2004, 55, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Varin, S.; Cliquet, J.-B.; Personeni, E.; Avice, J.-C.; Lemauviel-Lavenant, S. How Does Sulphur Availability Modify N Acquisition of White Clover (Trifolium repens L.)? J. Exp. Bot. 2010, 61, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.; Schintlmeister, A.; Becana, M.; Wagner, M.; Woebken, D.; Wienkoop, S. Sulfate Is Transported at Significant Rates through the Symbiosome Membrane and Is Crucial for Nitrogenase Biosynthesis. Plant Cell Environ. 2019, 42, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.C.; Howard, J.B. Nitrogenase: Standing at the Crossroads. Curr. Opin. Chem. Biol. 2000, 4, 559–566. [Google Scholar] [CrossRef]
- Gaude, N.; Tippmann, H.; Flemetakis, E.; Katinakis, P.; Udvardi, M.; Dörmann, P. The Galactolipid Digalactosyldiacylglycerol Accumulates in the Peribacteroid Membrane of Nitrogen-Fixing Nodules of Soybean and Lotus. J. Biol. Chem. 2004, 279, 34624–34630. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.J.; Spencer, D. Sulphur in Nitrogen Metabolism of Legumes and Non-Legumes. Aust. J. Sci. Res. B 1950, 3, 431–449. [Google Scholar] [CrossRef] [Green Version]
- Allen, O.N.; Allen, E.K. The Leguminosae, a Source Book of Characteristics, Uses, and Nodulation; University of Wisconsin Press: Madison, WI, USA, 1981; ISBN 978-0-299-08400-4. [Google Scholar]
- Tu, J.C. Effect of Salinity on Rhizobium-Root-Hair Interaction, Nodulation and Growth of Soybean. Can. J. Plant Sci. 1981, 61, 231–239. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Maatallah, S.; Denden, M. Effet du stress salin sur l’efficience d’utilisation d’azote et les bilans ioniques chez deux variétés de maïs (Zea mays L.) fourragères. J. Anim. Plant Sci. 2015, 24, 3787–3801. [Google Scholar]
- Farissi, M.; Faghire, M.; Bargaz, A.; Bouizgaren, A.; Makoudi, B.; Sentenac, H.; Ghoulam, C. Growth, Nutrients Concentrations, and Enzymes Involved in Plants Nutrition of Alfalfa Populations under Saline Conditions. J. Agr. Sci. Tech. 2014, 16, 301–314. [Google Scholar]
- Rodrıguez-Navarro, A.; Rubio, F. High-Affinity Potassium and Sodium Transport Systems in Plants. J. Exp. Bot. 2006, 57, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Maathuis, F.J.M. Regulation of Na+ Fluxes in Plants. Front. Plant Sci. 2014, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haouala, F.; Ferjani, H.; Hadj, S.B.E. Effet de la salinité sur la répartition des cations (Na+, K+ et Ca2+) et du chlore (Cl−) dans les parties aériennes et les racines du ray-grass anglais et du chiendent. Biotechnol. Agron. Soc. Environ. 2007, 11, 235–244. [Google Scholar]
- Souguir, D.; El Ferjani, E.; Ledoigt, G.; Goupil, P. Transcript Accumulation of Stress-Related Genes in Vicia faba Roots under a Short Exposure to Cadmium. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2015, 149, 280–288. [Google Scholar] [CrossRef]
- Benito, B.; Haro, R.; Amtmann, A.; Cuin, T.A.; Dreyer, I. The Twins K+ and Na+ in Plants. J. Plant Physiol. 2014, 171, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Pinto, E.; Ferreira, I.M.P.L.V.O. Cation Transporters/Channels in Plants: Tools for Nutrient Biofortification. J. Plant Physiol. 2015, 179, 64–82. [Google Scholar] [CrossRef] [Green Version]
- Cramer, G.; Alberico, G.; Schmidt, C. Salt Tolerance Is Not Associated With the Sodium Accumulation of Two Maize Hybrids. Aust. J. Plant Physiol. 1994, 21, 675–692. [Google Scholar] [CrossRef]
- Singh, S.; Sengar, R.S. Evaluation of Selected Indian Bread Wheat (Triticum aestivum L.) Genotypes for Morpho-Physiological and Biochemical Characterization under Salt Stress Conditions. Cereal Res. Commun. 2016, 44, 341–348. [Google Scholar] [CrossRef] [Green Version]
- El-Iklil, Y.; Karrou, M.; Mrabet, R.; Benichou, M. Effet du stress salin sur la variation de certains metabolites chez Lycopersicon esculentum et Lycopersicon sheesmanii. Can. J. Plant Sci. 2002, 82, 177–183. [Google Scholar] [CrossRef]
- Cramer, G.R.; Läuchli, A.; Polito, V.S. Displacement of Ca2+ by Na+ from the Plasmalemma of Root Cells: A Primary Response to Salt Stress? Plant Physiol. 1985, 79, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, F.; Biasioli, M.; Ajmone-Marsan, F. Availability and Bioaccessibility of Metals in Fine Particles of Some Urban Soils. Arch. Environ. Contam. Toxicol. 2008, 55, 21–32. [Google Scholar] [CrossRef] [PubMed]
Parameters | UF Membrane [8] | NF Membrane NF 270 [36,37] | RO Membrane BW30 [36,37] |
---|---|---|---|
Material | TiO2 | Polyamide | Polyamide |
Membrane area (m2) | 0.155 | 2.5 | 2.5 |
Molecular weight cut-off (MWCO) | 150 kDa | 200–400 Da | >100 Da |
Manufacturer | Dow Filmtec, Santa Ana, CA, USA | Dow Filmtec, Santa Ana, CA, USA | Dow Filmtec, Santa Ana, CA, USA |
Salt rejection (%) | - | 99.4 | |
NaCl rejection (%) | 50 | - | |
MgSO4 rejection (%) | 98 | - | |
Pure water permeability | |||
(L/m2 h. bar) | 220 ± 15 | 7.6 ± 0.2 | 3.2 ± 0.2 |
Complementary Treatments | Tunisian Standards | ||||||
---|---|---|---|---|---|---|---|
W | BT | UF | NF | RO | NT 106.02 | 106.03 | |
Cations | |||||||
pH | 7.2 ± 0.14 a * | 8.6 ± 0.17 a | 7.9 ± 1.80 a | 8.4 ± 0.46 a | 7.1± 1.04 a | 6.5–9 | 6.5–8.5 |
Ecw (dS/m) | 2.20 ± 0.12 b | 8.13 ± 0.63 d | 7.01 ± 0.37 c | 2.62 ± 0.20 b | 0.20 ± 0.03 a | 5 | 7 |
Ca2+ (me/L) | 8.90 ± 1.29 b | 11.80 ± 1,82 b | 8.60 ± 4.26 b | 2.10 ± 0.22 a | ND | ||
Mg2+ (me/L) | 6.20 ± 0.27 b | 15.30 ± 0.97 d | 12.00 ± 1.70 c | 4.40 ± 1.11 b | ND | ||
K+ (me/L) | 0.13 ± 0.76 a | 3.33 ± 0.53 b | 3.07 ± 0.13 b | 0.30 ± 0.34 a | 0.12 ± 0.06 a | ||
Na+ (me/L) | 10.48 ± 2.25 b | 51.78 ± 4.88 d | 46.50 ± 3.68 d | 20.31 ± 0.41 c | 2.00 ± 0.44 a | ||
Anions | |||||||
Cl− (me/L) | 11.56 ± 0.63 b | 28.53 ± 4.88 c | 25.22 ± 4.74 c | 12.74 ± 1.70 b | 0.81 ± 0.10 a | 19.75 (700 mg) | 56.41 (2000 mg) |
HCO3− (me/L) | 4.50 ± 2.20 b | 24.90 ± 1.60 e | 21.10 ± 1.52 d | 8.80 ± 1.64 c | 0.50 ± 0.50 a | ||
SO42− (me/L) | 8.41 ± 1.99 b | 27.14 ± 3.37 c | 23.57 ± 2.85 c | 4.72 ± 1.31 ab | 1.12 ± 0.59 a | 10.41 (500 mg) | |
SAR | 2.82 ± 0.75 a | 7.68 ± 0.58 b | 9.56 ± 2.68 bc | 12.82 ± 2.56 c | ND | ||
Cd (mg/L) | ND | 0.08 ± 0.01 b | 0.08 ± 0.01 b | 0.01 ± 0.01 a | ND | 0.01 | |
Co (mg/L) | ND | 0.62 ± 0.12 b | 0.50 ± 0.12 b | 0.06 ± 0.07 a | 0.01 ± 0.01 a | 0.1 | |
Cr (mg/L) | 0.01 ± 0.00 a | 0.21 ± 0.04 b | 0.24 ± 0.05 b | 0.04 ± 0.01 a | 0.02 ± 0.01 a | 0.5 | 0.1 |
Ni (mg/L) | ND | 0.74 ± 0.02 c | 0.63 ± 0.04 b | 0.06 ± 0.05 a | 0.02 ± 0.01 a | 1 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mzahma, S.; Duplay, J.; Souguir, D.; Ben Amar, R.; Ghazi, M.; Hachicha, M. Membrane Processes Treatment and Possibility of Agriculture Reuse of Textile Effluents: Study Case in Tunisia. Water 2023, 15, 1430. https://doi.org/10.3390/w15071430
Mzahma S, Duplay J, Souguir D, Ben Amar R, Ghazi M, Hachicha M. Membrane Processes Treatment and Possibility of Agriculture Reuse of Textile Effluents: Study Case in Tunisia. Water. 2023; 15(7):1430. https://doi.org/10.3390/w15071430
Chicago/Turabian StyleMzahma, Sourour, Joelle Duplay, Dalila Souguir, Raja Ben Amar, Malika Ghazi, and Mohamed Hachicha. 2023. "Membrane Processes Treatment and Possibility of Agriculture Reuse of Textile Effluents: Study Case in Tunisia" Water 15, no. 7: 1430. https://doi.org/10.3390/w15071430
APA StyleMzahma, S., Duplay, J., Souguir, D., Ben Amar, R., Ghazi, M., & Hachicha, M. (2023). Membrane Processes Treatment and Possibility of Agriculture Reuse of Textile Effluents: Study Case in Tunisia. Water, 15(7), 1430. https://doi.org/10.3390/w15071430