Sr Isotope, Major, and Trace Element Signatures in Karst Groundwaters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling and Sample Preparation
2.2. Analysis
2.3. Strontium Isotopy
3. Results and Discussion
3.1. Strontium
3.2. Groundwater Chemistry
3.3. Sr Isotopic Ratio
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevanović, Z. Karst waters in potable water supply: A global scale overview. Environ. Earth Sci. 2019, 78, 662. [Google Scholar] [CrossRef]
- Tsakiris, G.; Alexakis, D. Karstic spring water quality: The effect of groundwater abstraction from the recharge area. Desalination Water Treat. 2014, 52, 2494–2501. [Google Scholar] [CrossRef]
- Brad, T.; Bizic, M.; Ionescu, D.; Chiriac, C.M.; Kenesz, M.; Roba, C.; Ionescu, A.; Fekete, A.; Mirea, I.C.; Moldovan, O.T. Potential for natural attenuation of domestic and agricultural pollution in karst groundwater environments. Water 2022, 14, 1597. [Google Scholar] [CrossRef]
- Condon, L.E.; Maxwell, R.M. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model. Water Resour. Res. 2015, 51, 6602–6621. [Google Scholar] [CrossRef] [Green Version]
- Tóth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 1963, 68, 4795–4812. [Google Scholar] [CrossRef]
- Devito, K.; Creed, I.; Gan, T.; Mendoza, C.; Petrone, R.; Silins, U.; Smerdon, B. A framework for broad-scale classification of hydrologic response units on the Boreal Plain: Is topography the last thing to consider? Hydrol. Process. 2005, 19, 1705–1714. [Google Scholar] [CrossRef]
- Haitjema, H.M.; Mitchell-Bruker, S. Are water tables a subdued replica of the topography? Ground Water 2005, 43, 781–786. [Google Scholar] [CrossRef]
- Wood, W.W.; Smedley, P.L.; Lindsey, B.D.; Wood, W.T.; Kirchheim, R.E.; Cherry, J.A. Global Groundwater Solute Composition and Concentrations. Ground Water 2022, 60, 714–720. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Soulsby, C. Catchment-scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone. Hydrol. Process. 2017, 31, 3421–3436. [Google Scholar] [CrossRef]
- Gong, X.; Weng, B.; Yan, D.; Yang, Y.; Yan, D.; Niu, Y.; Wang, H. Potential recharge sources and origin of solutes in groundwater in the central Qinghai–Tibet Plateau using hydrochemistry and isotopic data. J. Hydrol. Reg. Stud. 2022, 40, 101001. [Google Scholar] [CrossRef]
- Musgrove, M.; Banner, J.L. Controls on the spatial and temporal variability of vadose dripwater geochemistry: Edwards aquifer, central Texas. Geochim. Cosmochim. Acta 2004, 68, 1007–1020. [Google Scholar] [CrossRef]
- Liu, H.-C.; You, C.-F.; Zhou, H.; Huang, K.-F.; Chung, C.-H.; Huang, W.-J.; Tang, J. Effect of calcite precipitation on stable strontium isotopic compositions: Insights from riverine and pool waters in a karst cave. Chem. Geol. 2017, 456, 85–97. [Google Scholar] [CrossRef]
- Capo, R.C.; Stewart, B.W.; Chadwick, O.A. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 1998, 82, 197–225. [Google Scholar] [CrossRef]
- Nebel, O.; Stammeier, J.A. Strontium Isotopes. In Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth; White, W.M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1379–1384. [Google Scholar] [CrossRef]
- Brennan, S.R.; Fernandez, D.P.; Mackey, G.; Cerling, T.E.; Bataille, C.P.; Bowen, G.J.; Wooller, M.J. Strontium isotope variation and carbonate versus silicate weathering in rivers from across Alaska: Implications for provenance studies. Chem. Geol. 2014, 389, 167–181. [Google Scholar] [CrossRef]
- Jacobson, A.D.; Wasserburg, G.J. Anhydrite and the Sr isotope evolution of groundwater in a carbonate aquifer. Chem. Geol. 2005, 214, 331–350. [Google Scholar] [CrossRef]
- Salifu, M.; Aiglsperger, T.; Hällström, L.; Martinsson, O.; Billström, K.; Ingri, J.; Dold, B.; Alakangas, L. Strontium (87Sr/86Sr) isotopes: A tracer for geochemical processes in mineralogically-complex mine wastes. Appl. Geochem. 2018, 99, 42–54. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Q.; Su, C.; Ma, T. Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J. Hydrol. 2006, 328, 592–603. [Google Scholar] [CrossRef]
- Nakano, T. Potential uses of stable isotope ratios of Sr, Nd, and Pb in geological materials for environmental studies. Proc. Jpn. Acad. Ser. B 2016, 92, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Faure, G.; Mensing, T.M. Isotopes: Principles and Applications; Wiley: Delhi, India, 2009. [Google Scholar]
- Khaska, M.; Le Gal La Salle, C.; Lancelot, J.; Team, A.; Mohamad, A.; Verdoux, P.; Noret, A.; Simler, R. Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Appl. Geochem. 2013, 37, 212–227. [Google Scholar] [CrossRef]
- Blum, J.D.; Erel, Y. 5.12-Radiogenic Isotopes in Weathering and Hydrology. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; pp. 365–392. [Google Scholar] [CrossRef]
- Nwankwo, C.B.; Hoque, M.A.; Islam, M.A.; Dewan, A. Groundwater constituents and trace elements in the basement aquifers of Africa and sedimentary aquifers of Asia: Medical hydrogeology of drinking water minerals and toxicants. Earth Syst. Environ. 2020, 4, 369–384. [Google Scholar] [CrossRef]
- Pu, J.; Yuan, D.; Zhang, C.; Zhao, H. Tracing the sources of strontium in karst groundwater in Chongqing, China: A combined hydrogeochemical approach and strontium isotope. Environ. Earth Sci. 2012, 67, 2371–2381. [Google Scholar] [CrossRef]
- Jiang, Y. Strontium isotope geochemistry of groundwater affected by human activities in Nandong underground river system, China. Appl. Geochem. 2011, 26, 371–379. [Google Scholar] [CrossRef]
- Calligaris, C.; Mezga, K.; Slejko, F.F.; Urbanc, J.; Zini, L. Groundwater characterization by means of conservative (δ18O and δ2H) and non-conservative (87Sr/86Sr) isotopic values: The classical karst region aquifer case (Italy–Slovenia). Geosciences 2018, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- McKay, J.; Lenczewski, M.; Leal-Bautista, R.M. Characterization of flowpath using geochemistry and 87Sr/86Sr isotope ratios in the Yalahau region, Yucatan Peninsula, Mexico. Water 2020, 12, 2587. [Google Scholar] [CrossRef]
- Charlier, J.-B.; Bertrand, C.; Mudry, J. Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. J. Hydrol. 2012, 460–461, 52–64. [Google Scholar] [CrossRef]
- Frost, C.D.; Toner, R.N. Strontium isotopic identification of water-rock interaction and ground water mixing. Ground Water 2004, 42, 418–432. [Google Scholar] [CrossRef]
- Bicalho, C.C.; Batiot-Guilhe, C.; Taupin, J.D.; Patris, N.; Van Exter, S.; Jourde, H. A conceptual model for groundwater circulation using isotopes and geochemical tracers coupled with hydrodynamics: A case study of the Lez karst system, France. Chem. Geol. 2019, 528, 118442. [Google Scholar] [CrossRef]
- Onac, B.P.; Goran, C. Karst and Caves of Romania: A Brief Overview. In Cave and Karst Systems of Romania; Ponta, G.M.L., Onac, B.P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 21–35. [Google Scholar] [CrossRef]
- Orăşeanu, I. Hidrogeologia Carstului din Munţii ApusenI, 2nd ed.; Belvedere Printig House: Oradea, Romania, 2020. [Google Scholar]
- Goran, C.; Constantin, S.; Horoi, V. Karst Areas in the Southern Carpathians between Cerna and Olt Rivers; AGIR Publishing House: Bucharest, Romania, 2006; pp. 41–77. [Google Scholar] [CrossRef]
- Hoaghia, M.-A.; Moldovan, A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Brad, T.; Cadar, O.; Micle, V.; Levei, E.A.; Moldovan, O.T. Water quality and hydrogeochemical characteristics of some karst water sources in Apuseni Mountains, Romania. Water 2021, 13, 857. [Google Scholar] [CrossRef]
- Moldovan, A.; Hoaghia, M.-A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Arghir, R.A.; Petculescu, A.; Levei, E.A.; Moldovan, O.T. Quality and health risk assessment associated with water consumption—A case study on karstic springs. Water 2020, 12, 3510. [Google Scholar] [CrossRef]
- Torok, A.I.; Levei, E.A.; Constantin, S.; Moldovan, O.T.; Senila, M.; Cadar, O.; Casoni, D.; Angyus, S.B.; Tanaselia, C.; Covaci, E.; et al. Application of inductively coupled plasma spectrometric techniques and multivariate statistical analysis in the hydrogeochemical profiling of caves—Case study Cloșani, Romania. Molecules 2021, 26, 6788. [Google Scholar] [CrossRef]
- ISO. ISO/IEC Guide 98-3:2008 Uncertainty of Measurement-Part 3: Guide to the Expression of Uncertainty in Measurement; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- Kutscher, D.; Nelms, S.; Lofthouse, S.; Ducos, S. Effective Removal of Isobaric Interferences on Strontium and Lead Using Triple Quadrupole ICP-MS. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/an-44365-icp-ms-sr-pb-geological-materials-rocks-an44365-en.pdf (accessed on 19 July 2022).
- He, X.; Li, P.; Shi, H.; Xiao, Y.; Guo, Y.; Zhao, H. Identifying strontium sources of flowback fluid and groundwater pollution using 87Sr/86Sr and geochemical model in Sulige gasfield, China. Chemosphere 2022, 306, 135594. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.C.; Capo, R.C.; Stewart, B.W.; Kirby, C.S.; Hammack, R.W.; Schroeder, K.T.; Edenborn, H.M. Geochemical and strontium isotope characterization of produced waters from marcellus shale natural gas extraction. Environ. Sci. Technol. 2012, 46, 3545–3553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Environmental Protection Agency. Announcement of Preliminary Regulatory Determinations for Contaminants on the Third Drinking Water Contaminant Candidate List. 2014. Available online: https://www.federalregister.gov/documents/2014/10/20/2014-24582/announcement-of-preliminary-regulatory-determinations-for-contaminants-on-the-third-drinking-water (accessed on 15 January 2023).
- Négrel, P.; Casanova, J.; Aranyossy, J.-F. Strontium isotope systematics used to decipher the origin of groundwaters sampled from granitoids: The Vienne Case (France). Chem. Geol. 2001, 177, 287–308. [Google Scholar] [CrossRef]
- Lee, S.-G.; Kim, T.-K.; Lee, T.J. Strontium isotope geochemistry and its geochemical implication from hot spring waters in South Korea. J. Volcanol. Geotherm. Res. 2011, 208, 12–22. [Google Scholar] [CrossRef]
- Gao, J.; Zou, C.; Li, W.; Ni, Y.; Liao, F.; Yao, L.; Sui, J.; Vengosh, A. Hydrochemistry of flowback water from Changning shale gas field and associated shallow groundwater in southern Sichuan Basin, China: Implications for the possible impact of shale gas development on groundwater quality. Sci. Total Environ. 2020, 713, 136591. [Google Scholar] [CrossRef] [PubMed]
- Musgrove, M. The occurrence and distribution of strontium in U.S. groundwater. Appl. Geochem. 2021, 126, 104867. [Google Scholar] [CrossRef]
- Jebreen, H.; Banning, A.; Wohnlich, S.; Niedermayr, A.; Ghanem, M.; Wisotzky, F. The Influence of karst aquifer mineralogy and geochemistry on groundwater characteristics: West Bank, Palestine. Water 2018, 10, 1829. [Google Scholar] [CrossRef] [Green Version]
- Keesari, T.; Sabarathinam, C.; Sinha, U.K.; Pethaperumal, R.T.; Kamaraj, P. Fate and transport of strontium in groundwater from a layered sedimentary aquifer system. Chemosphere 2022, 307, 136015. [Google Scholar] [CrossRef]
- FOREGS-EuroGeoSurveys Geochemical Baseline Database, Strontium Stream Water. Available online: http://weppi.gtk.fi/publ/foregsatlas/maps/Water/w_icpoes_sr_edit.pdf (accessed on 30 July 2022).
- Frei, R.; Frei, K.M.; Kristiansen, S.M.; Jessen, S.; Schullehner, J.; Hansen, B. The link between surface water and groundwater-based drinking water—Strontium isotope spatial distribution patterns and their relationships to Danish sediments. Appl. Geochem. 2020, 121, 104698. [Google Scholar] [CrossRef]
- Ma, R.; Wang, Y.; Sun, Z.; Zheng, C.; Ma, T.; Prommer, H. Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl. Geochem. 2011, 26, 884–897. [Google Scholar] [CrossRef]
- Gonneea, M.E.; Charette, M.A.; Liu, Q.; Herrera-Silveira, J.A.; Morales-Ojeda, S.M. Trace element geochemistry of groundwater in a karst subterranean estuary (Yucatan Peninsula, Mexico). Geochim. Cosmochim. Acta 2014, 132, 31–49. [Google Scholar] [CrossRef]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020L2184&from=EN (accessed on 14 February 2023).
- Joodavi, A.; Aghlmand, R.; Podgorski, J.; Dehbandi, R.; Abbasi, A. Characterization, geostatistical modeling and health risk assessment of potentially toxic elements in groundwater resources of northeastern Iran. J. Hydrol. Reg. Stud. 2021, 37, 100885. [Google Scholar] [CrossRef]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanovic, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, A. The hydrology of groundwater systems—From recharge to discharge. Encycl. Inland Waters Second. Ed. 2022, 3, 324–330. [Google Scholar] [CrossRef]
- Bhat, N.A.; Jeelani, G.; Bhat, M.Y. Hydrogeochemical assessment of groundwater in karst environments, Bringi watershed, Kashmir Himalayas, India. Curr. Sci. 2014, 106, 1000–1007. [Google Scholar]
- Taherian, P.; Joodavi, A. Hydrogeochemical characteristics and source identification of salinity in groundwater resources in an arid plain, northeast of Iran: Implication for drinking and irrigation purposes. Acque Sotter. Ital. J. Groundw. 2021, 10, 21–31. [Google Scholar] [CrossRef]
- Petelet-Giraud, E.; Luck, J.-M.; Ben Othman, D.; Joseph, C.; Négrel, P. Chemical and isotopic fingerprinting of small ungauged watershed: How far the hydrological functioning can be understood? Comptes Rendus Geosci. 2016, 348, 379–386. [Google Scholar] [CrossRef]
- Wu, C.; Wu, X.; Mu, W.; Zhu, G. Using isotopes (H, O, and Sr) and major ions to identify hydrogeochemical characteristics of groundwater in the Hongjiannao Lake basin, northwest China. Water 2020, 12, 1467. [Google Scholar] [CrossRef]
- Sun, J.; Takahashi, Y.; Strosnider, W.H.J.; Kogure, T.; Wang, B.; Wu, P.; Zhu, L.; Dong, Z. Identification and quantification of contributions to karst groundwater using a triple stable isotope labeling and mass balance model. Chemosphere 2021, 263, 127946. [Google Scholar] [CrossRef]
- Santoni, S.; Huneau, F.; Garel, E.; Aquilina, L.; Vergnaud-Ayraud, V.; Labasque, T.; Celle-Jeanton, H. Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Sci. Total Environ. 2016, 573, 233–246. [Google Scholar] [CrossRef]
- Bakari, S.S.; Aagaard, P.; Vogt, R.D.; Ruden, F.; Johansen, I.; Vuai, S.A. Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania. J. Geochem. Explor. 2013, 130, 1–14. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
Southern Carpathians (SCP) | Apuseni Mountains (APS) | |
---|---|---|
Sampling sites | GWR1-GWR3, GWR5-GWR11 | GWR12-GWR25 |
Geology | Limestones, sandstones | Limestones, dolomites, conglomerates, crystalline schists, crystalline limestones, dolostones |
Type of aquifers | Local or discontinuous aquifers | Local or discontinuous aquifers |
Type of climate | Moderate continental/Sub-Mediterranean climate | Cold continental climate |
Main land use | Non-irrigated arable land, broad-leaved forests, and pastures | Non-irrigated arable land, broad-leaved and mixed forests |
Element | Cl− | NO3− | SO42− | Ca | Na | Mg | K | Sr | Ba | Mn | Li |
---|---|---|---|---|---|---|---|---|---|---|---|
Unit | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | µg/L | µg/L | µg/L | µg/L |
LOD | 0.20 | 0.20 | 0.20 | 0.004 | 0.008 | 0.009 | 0.003 | 0.13 | 0.16 | 0.13 | 0.12 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Argon flow | 0.92 mL/min | Q3 bias | −1.0003 V |
Oxygen flow (CRC) | 0.35 mL/min | Focus lens | 20.10 V |
Extraction lens | −132.1 V | RAPID lens | −380 V |
Spray chamber temperature | 2.7 °C | Plasma power | 1550 W |
Q1 focus lens | −1 V | Cool flow | 14 L/min |
QCell bias | −2.01 V | Auxiliary flow | 0.8 L/min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Török, A.I.; Moldovan, A.; Tănăselia, C.; Kovacs, E.; Mirea, I.C.; Moldovan, O.T.; Levei, E.A. Sr Isotope, Major, and Trace Element Signatures in Karst Groundwaters. Water 2023, 15, 1431. https://doi.org/10.3390/w15071431
Török AI, Moldovan A, Tănăselia C, Kovacs E, Mirea IC, Moldovan OT, Levei EA. Sr Isotope, Major, and Trace Element Signatures in Karst Groundwaters. Water. 2023; 15(7):1431. https://doi.org/10.3390/w15071431
Chicago/Turabian StyleTörök, Anamaria Iulia, Ana Moldovan, Claudiu Tănăselia, Eniko Kovacs, Ionuț Cornel Mirea, Oana Teodora Moldovan, and Erika Andrea Levei. 2023. "Sr Isotope, Major, and Trace Element Signatures in Karst Groundwaters" Water 15, no. 7: 1431. https://doi.org/10.3390/w15071431