Research on the Capacity of Underground Reservoirs in Coal Mines to Protect the Groundwater Resources: A Case of Zhangshuanglou Coal Mine in Xuzhou, China
Abstract
:1. Introduction
2. Geologic Setting
2.1. Geological Overview of the Study Area
2.2. Principles of Underground Water Reservoirs in Coal Mines
3. Materials and Methods
3.1. Principle of FLAC3D Numerical Simulation
3.2. Numerical Model Settings
3.3. Method of Calculating the Capacity of Underground Water Reservoirs in Coal Mines
3.4. Water Quality Testing
4. Results and Discussion
4.1. Analysis of Water Storage Location
4.2. The Storage Capacity of Underground Water Reservoirs in Coal Mines
4.3. Water Quality Changes in Underground Water Reservoirs of Coal Mines
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, D. Theory framework and technological system of coal mine underground reservoir. J. China Coal Soc. 2015, 40, 239–246. [Google Scholar] [CrossRef]
- Gu, D.; Zhang, Y.; Cao, Z. Technical progress of water resource protection and utilization by coal mining in China. Coal Sci. Technol. 2016, 44, 1–7. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Xu, Z.; Chen, G.; Zhao, X.; Li, X.; Gao, Y.; Zhang, S.; Zhu, L. Multi-field action mechanism and research progress of coal mine water quality formation and evolution. J. China Coal Soc. 2022, 47, 423–437. [Google Scholar] [CrossRef]
- Yuan, S.; Sui, W.; Han, G.; Duan, W. An Optimized Combination of Mine Water Control, Treatment, Utilization, and Reinjection for Environmentally Sustainable Mining: A Case Study. Mine Water Environ. 2022, 41, 828–839. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, G.; Zhou, G.; Zhang, Y.; Meng, X.; Zhao, Y.; Chen, M. Stability analysis of artificial dam in coal mine underground water reservoir based on the hydro-mechanical damage model. Geomat. Nat. Hazards Risk 2023, 14, 2190855. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Xu, Z.; Zheng, J.; Zhang, C. Feasibility prediction analysis of groundwater reservoir construction based on GMS and Monte Carlo analyses: A case study from the Dadougou Coal Mine, Shanxi Province, China. Arab. J. Geosci. 2019, 13, 18. [Google Scholar] [CrossRef]
- Kong, X.; Xu, Z.; Shan, R.; Liu, S.; Xiao, S. Investigation on groove depth of artificial dam of underground reservoir in coal mines. Environ. Earth Sci. 2021, 80, 214. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, L.; Zhu, S. Comprehensive study on identification of water inrush sources from deep mining roadway. Environ. Sci. Pollut. Res. 2022, 29, 19608–19623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, H.; He, X.; Guo, S.; Xia, Y.; Zhou, Y.; Liu, K.; Yang, S. Research progress, problems and prospects of mine water treatment technology and resource utilization in China. Crit. Rev. Environ. Sci. Technol. 2020, 50, 331–383. [Google Scholar] [CrossRef]
- Zhang, C.; Jia, S.; Wu, S.; Liu, J.; Jiao, Y.; Zhang, C. Research status and prospect of underground space utilization mode and key technology in goaf based on underground reservoir. Sci. Technol. Rev. 2021, 39, 36–46. [Google Scholar]
- Zhang, C.; Wang, F.; Bai, Q. Underground space utilization of coalmines in China: A review of underground water reservoir construction. Tunn. Undergr. Space Technol. 2021, 107, 103657. [Google Scholar] [CrossRef]
- Gu, D.; Li, J.; Cao, Z.; Wu, B.; Jiang, B.; Yang, Y.; Yang, J.; Chen, Y. Technology and engineering development strategy of water protection and utilization of coal mine in China. J. China Coal Soc. 2021, 46, 3079–3089. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, J.; Jiang, B.; Han, J.; Chen, M. Experimental study on the mechanism of water-rock interaction in the coal mine underground reservoir. J. China Coal Soc. 2019, 44, 3760–3772. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, G. Research on caving structure and water filling characteristic of goaf. Coal Geol. Explor. 2018, 46, 99–102. [Google Scholar]
- Zhang, K.; Deng, X.; Gao, J.; Liu, S.; Wang, F.; Han, J. Insight into the Process and Mechanism of Water–Rock Interaction in Underground Coal Mine Reservoirs Based on Indoor Static Simulation Experiments. ACS Omega 2022, 7, 36387–36402. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Hou, Z.; Gao, F.; Zhou, L.; Gao, Y. A new technology of pumped-storage power in underground coal mine: Principles, present situation and future. J. China Coal Soc. 2015, 40, 965–972. [Google Scholar] [CrossRef]
- Pujades, E.; Willems, T.; Bodeux, S.; Orban, P.; Dassargues, A. Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow. Hydrogeol. J. 2016, 24, 1531–1546. [Google Scholar] [CrossRef] [Green Version]
- Kitsikoudis, V.; Archambeau, P.; Dewals, B.; Pujades, E.; Orban, P.; Dassargues, A.; Pirotton, M.; Erpicum, S. Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics. Energies 2020, 13, 3512. [Google Scholar] [CrossRef]
- Pujades, E.; Orban, P.; Archambeau, P.; Kitsikoudis, V.; Erpicum, S.; Dassargues, A. Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Interactions with Groundwater Flow. Energies 2020, 13, 2353. [Google Scholar] [CrossRef]
- Pujades, E.; Poulain, A.; Orban, P.; Goderniaux, P.; Dassargues, A. The Impact of Hydrogeological Features on the Performance of Underground Pumped-Storage Hydropower (UPSH). Appl. Sci. 2021, 11, 1760. [Google Scholar] [CrossRef]
- Pujades, E.; Orban, P.; Archambeau, P.; Erpicum, S.; Dassargues, A. Numerical study of the Martelange mine to be used as underground reservoir for constructing an Underground Pumped Storage Hydropower plant. Adv. Geosci. 2018, 45, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, J.; Schmidt, F.; Konietzky, H.; Fernández-Oro, J.M.; Galdo, M.; Loredo, J.; Díaz-Aguado, M.B. Stability analysis of the underground infrastructure for pumped storage hydropower plants in closed coal mines. Tunn. Undergr. Space Technol. 2019, 94, 103117. [Google Scholar] [CrossRef]
- Menéndez, J.; Fernández-Oro, J.M.; Galdo, M.; Loredo, J. Pumped-storage hydropower plants with underground reservoir: Influence of air pressure on the efficiency of the Francis turbine and energy production. Renew. Energy 2019, 143, 1427–1438. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, G.; Xu, Z.; Yuan, H.; Zhang, Y.; Zhou, L.; Wang, X.; Zhang, C.; Zheng, J. Research progress of water environment, treatment and utilization in coal mining areas of China. J. China Coal Soc. 2020, 45, 304–316. [Google Scholar] [CrossRef]
- Pu, H.; Bian, Z.; Zhang, J.; Xu, J. Research on a reuse mode of geothermal resources in abandoned coal mines. J. China Coal Soc. 2021, 46, 677–687. [Google Scholar] [CrossRef]
- Edwards, P. Mine Water and the Environment in Wales. Mine Water Environ. 2021, 40, 813–814. [Google Scholar] [CrossRef]
- Jiang, B.; Gao, J.; Du, K.; Deng, X.; Zhang, K. Insight into the water–rock interaction process and purification mechanism of mine water in underground reservoir of Daliuta coal mine in China. Environ. Sci. Pollut. Res. 2022, 29, 28538–28551. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Li, W.; Guo, Y.; Ouyang, S.; Cao, G. Study on dynamic adsorption characteristics of broken coal gangue to heavy metal ions under leaching condition and its cleaner mechanism to mine water. J. Clean. Prod. 2021, 329, 129756. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, J.; Men, D.; Zhao, X.; Wu, S. Insight into the heavy metal binding properties of dissolved organic matter in mine water affected by water-rock interaction of coal seam goaf. Chemosphere 2021, 265, 129134. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, Y.; Du, C.; Jiang, B.; Wei, L.; Li, Y. Characterization of dissolved organic matter derived from coal gangue packed in underground reservoirs of coal mines using fluorescence and absorbance spectroscopy. Environ. Sci. Pollut. Res. 2021, 28, 17928–17941. [Google Scholar] [CrossRef]
- Jiang, B.-b.; Ji, K.-m.; Xu, D.-j.; Cao, Z.-g.; Wen, S.-k.; Song, K.; Ma, L. Effects of Coal Gangue on the Hydrochemical Components under Different Types of Site Karst Water in Closed Mines. Water 2022, 14, 3110. [Google Scholar] [CrossRef]
- Liang, Z.; Gao, Q.; Wu, Z.; Gao, H. Removal and kinetics of cadmium and copper ion adsorption in aqueous solution by zeolite NaX synthesized from coal gangue. Environ. Sci. Pollut. Res. 2022, 29, 84651–84660. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liu, Z.; Han, L.; Zhang, Y.; Li, L.; Zhu, S.; Li, Z.P.J.; Wang, D. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions. J. Hazard. Mater. 2022, 423, 127027. [Google Scholar] [CrossRef]
- Li, Q.; Ju, J.; Cao, Z.; Gao, F.; Li, J. Suitability evaluation of underground reservoir technology based on the discriminant of the height of water conduction fracture zone. J. China Coal Soc. 2017, 42, 2116–2124. [Google Scholar] [CrossRef]
- Pummer, E.; Schüttrumpf, H. Reflection Phenomena in Underground Pumped Storage Reservoirs. Water 2018, 10, 504. [Google Scholar] [CrossRef] [Green Version]
- Song, H.Q.; Xu, J.J.; Fang, J.; Cao, Z.G.; Yang, L.Z.; Li, T.X. Potential for mine water disposal in coal seam goaf: Investigation of storage coefficients in the Shendong mining area. J. Clean. Prod. 2020, 244, 118646. [Google Scholar] [CrossRef]
- Wang, F.; Wei, X.; Shao, D.; Zhang, C. The progressive failure mechanism for coal pillars under the coupling of mining stress and water immersion in underground reservoirs. Bull. Eng. Geol. Environ. 2023, 82, 103. [Google Scholar] [CrossRef]
- Ju, J.; Xu, J.; Zhu, W. Storage capacity of underground reservoir in the Chinese western water-short coalfield. J. China Coal Soc. 2017, 42, 381–387. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Q.; Cao, G.; Zhou, B. Analysis and calculation method of underground reservoir water storage space composition. J. China Coal Soc. 2019, 44, 557–566. [Google Scholar] [CrossRef]
- Rudakov, D.; Westermann, S. Analytical modeling of mine water rebound: Three case studies in closed hard-coal mines in Germany. Min. Miner. Depos. 2021, 15, 22–30. [Google Scholar] [CrossRef]
- Chi, M.; Cao, Z.; Li, Q.; Zhang, Y.; Wu, B.; Zhang, B.; Yang, Y.; Liu, X. Water Supply and Regulation of Underground Reservoir in Coal Mine considering Coal-Water Occurrence Relationship. Geofluids 2022, 2022, 2892964. [Google Scholar] [CrossRef]
- Wang, B.F.; Xing, J.C.; Liang, B.; Zhang, J. Experimental study on deformation characteristics of rock and coal under stress-fluid interactions in coal mine underground water reservoir. Energy Sources Part A Recovery Util. Environ. Eff. 2020. [Google Scholar] [CrossRef]
- González-Quirós, A.; Fernández-Álvarez, J.P. Conceptualization and finite element groundwater flow modeling of a flooded underground mine reservoir in the Asturian Coal Basin, Spain. J. Hydrol. 2019, 578, 124036. [Google Scholar] [CrossRef]
- Menéndez, J.; Loredo, J.; Galdo, M.; Fernández-Oro, J.M. Energy storage in underground coal mines in NW Spain: Assessment of an underground lower water reservoir and preliminary energy balance. Renew. Energy 2019, 134, 1381–1391. [Google Scholar] [CrossRef]
- Bader, M.; Mehl, M.; Rude, U.; Wellein, G. Simulation software for supercomputers. J. Comput. Sci. 2011, 2, 93–94. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Furgani, L.; Salamon, J.; Rezakhani, R.; Xu, J. Numerical simulation of large-scale structural systems. Adv. Mech. Eng. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Q.; Zhao, J.X.; Liu, Q.H.; Su, A.J.; Zhang, Q.H.; Zhang, S.; Wang, Z.L.; Wang, Z.H. Integration and application of 3D visualization technology and numerical simulation technology in geological research. Environ. Earth Sci. 2021, 80, 776. [Google Scholar] [CrossRef]
- Chi, M.; Li, Q.; Cao, Z.; Fang, J.; Wu, B.; Zhang, Y.; Wei, S.; Liu, X.; Yang, Y. Evaluation of water resources carrying capacity in ecologically fragile mining areas under the influence of underground reservoirs in coal mines. J. Clean. Prod. 2022, 379, 134449. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, Y.; Gao, S.; Zhang, C.; Bi, Y.; Chen, Z.; Wu, J. Law of mining induced water conduction fissure in arid mining area and its significance in water-preserved coal mining. J. China Coal Soc. 2019, 44, 767–776. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. Research progress of mining overlying stratas failure law and control technology. Coal Sci. Technol. 2020, 48, 85–97. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.J.; Xu, Z.M.; Jiang, S.; Zhang, P.; Yang, B.B. Assessment of Abandoned Coal Mines as Urban Reservoirs. Mine Water Environ. 2019, 38, 215–225. [Google Scholar] [CrossRef]
- Nagtegaal, J.C.; Parks, D.M.; Rice, J. On Numerically Accurate Finite Element Solutions in the Fully Plastic Range. Comp. Meth. Appl. Mech. Eng. 1974, 4, 153–177. [Google Scholar] [CrossRef]
- Bathe, K.J.; Wilson, E.L. Numerical Methods in Finite Element Analysis; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1976. [Google Scholar]
- Wang, B.F.; Liang, B.; Wang, J.G.; Sun, K.M.; Sun, W.J.; Chi, H.B. Experiment study on rock bulking of coal mine underground reservoir. Rock Soil Mech. 2018, 39, 4086. [Google Scholar] [CrossRef]
- Safety State Administration of Work. Coal Mine Safety Regulation; China Coal Industry Publishing House: Beijing, China, 2011. [Google Scholar]
- Shi, X. Research progress and prospect of underground mines in coal mines. Coal Sci. Technol. 2022, 1–10. Available online: https://kns.cnki.net/kcms/detail/11.2402.TD.20210429.1746.002.html (accessed on 30 April 2021).
- Lu, T.; Liu, S.D.; Wang, B.; Wu, R.X.; Hu, X.W. A Review of Geophysical Exploration Technology for Mine Water Disaster in China: Applications and Trends. Mine Water Environ. 2017, 36, 331–340. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, P.; Liu, S. Exploration of two-gateway network parallel electrical technology for exploring thin-coal area within coal face. Chin. J. Rock Mech. Eng. 2009, 28, 1834–1838. [Google Scholar]
- Wu, R.; Zhang, W.; Zhang, P. Exploration of parallel electrical technology for the dynamic variation of caving zone strata in coal face. J. China Coal Soc. 2012, 37, 571–577. [Google Scholar] [CrossRef]
- Liu, B.; Guo, C.; Yang, H. Research on the integrated electric exploration system for coal mines and its application. Coal Geol. Explor. 2021, 49, 247–252. [Google Scholar]
- Su, B.Y.; Liu, S.D.; Deng, L.; Gardoni, P.; Krolczyk, G.M.; Li, Z.X. Monitoring Direct Current Resistivity During Coal Mining Process for Underground Water Detection: An Experimental Case Study. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5915308. [Google Scholar] [CrossRef]
- Miao, X.; Mao, X.; Hu, G. Research on broken expend and express and press solid characteristics of rocks and coals. J. Exp. Mech. 1997, 3, 64–70. [Google Scholar]
- Qian, M.; Shi, P.; Xu, J. Ground Pressure and Strata Control; China University of Mining and Technology Press: Xuzhou, China, 2010. [Google Scholar]
- Zhang, L.; Xu, Z.; Sun, Y.; Gao, Y.; Zhu, L. Coal Mining Activities Driving the Changes in Microbial Community and Hydrochemical Characteristics of Underground Mine Water. Int. J. Environ. Res. Public Health 2022, 19, 13359. [Google Scholar] [CrossRef] [PubMed]
- Donovan, J.J.; Leavitt, B.R.; Werner, E. Long-term changes in water chemistry as a result of mine flooding in closed mines of the Pittsburgh Coal Basin, USA. In Proceedings of the 6th International Conference on Acid Rock Drainage, Cairns, Australia, 14–17 July 2003; pp. 869–875. [Google Scholar]
Layer Number | h | ρ | K | G | C | φ | Rm |
---|---|---|---|---|---|---|---|
1 | 250 | 1960 | 0.28 | 0.1 | 0.85 | 25 | 0.35 |
2 | 5 | 2690 | 3.35 | 2.3 | 3.6 | 41 | 2.96 |
3 | 4 | 2550 | 2.61 | 1.35 | 3.6 | 36 | 2.0 |
4 | 3 | 2670 | 2.61 | 1.35 | 3.6 | 36 | 2.0 |
5 (No.7 Coal seam) | 4 | 1400 | 2.08 | 0.54 | 1.2 | 20 | 0.64 |
6 | 3 | 2690 | 3.35 | 2.3 | 3.6 | 41 | 2.96 |
7 | 5 | 2650 | 3.05 | 1.92 | 3.1 | 40 | 2.8 |
8 | 4 | 2670 | 2.61 | 1.35 | 3.6 | 36 | 2.0 |
9 | 3 | 2550 | 2.61 | 1.35 | 3.6 | 36 | 3.0 |
10 | 4 | 1400 | 2.08 | 0.54 | 1.2 | 20 | 0.64 |
11 | 15 | 2690 | 3.35 | 2.3 | 3.6 | 41 | 2.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Luo, B.; Xu, Z.; Sun, Y.; Feng, L. Research on the Capacity of Underground Reservoirs in Coal Mines to Protect the Groundwater Resources: A Case of Zhangshuanglou Coal Mine in Xuzhou, China. Water 2023, 15, 1468. https://doi.org/10.3390/w15081468
Zhang C, Luo B, Xu Z, Sun Y, Feng L. Research on the Capacity of Underground Reservoirs in Coal Mines to Protect the Groundwater Resources: A Case of Zhangshuanglou Coal Mine in Xuzhou, China. Water. 2023; 15(8):1468. https://doi.org/10.3390/w15081468
Chicago/Turabian StyleZhang, Chenghang, Bin Luo, Zhimin Xu, Yajun Sun, and Lin Feng. 2023. "Research on the Capacity of Underground Reservoirs in Coal Mines to Protect the Groundwater Resources: A Case of Zhangshuanglou Coal Mine in Xuzhou, China" Water 15, no. 8: 1468. https://doi.org/10.3390/w15081468