Effect of Moisture Sources on the Isotopic Composition of Precipitation in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. HYSPLIT Model
2.3. Isotope Data Analysis
3. Results
3.1. Moisture Trajectories
3.2. Isotopic Compositions of Precipitation
3.3. The Westerlies
3.4. The Arctic Moisture
3.5. The Monsoon
3.6. Local Recycled Moisture
4. Discussion
4.1. The Northwest Regional Meteoric Water Line (NWMWL)
4.2. Implications for the Effect of Climate Change on Water Cycle
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xia, J.; Ning, L.; Wang, Q.; Chen, J.; Wan, L.; Hong, S. Vulnerability of and risk to water resources in arid and semi-arid regions of West China under a scenario of climate change. Clim. Chang. 2017, 144, 549–563. [Google Scholar] [CrossRef]
- Fraser, E.D.; Dougill, A.J.; Hubacek, K.; Quinn, C.H.; Sendzimir, J.; Termansen, M. Assessing vulnerability to climate change in dryland livelihood systems: Conceptual challenges and interdisciplinary solutions. Ecol. Soc. 2011, 16, 3. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Rundel, P.; Villagra, P.E.; Dillon, M.; Roig-Juñent, S.; Debandi, G.; Veblen, T.; Young, K.; Orme, A. Arid and semi-arid ecosystems. In The Physical Geography of South America; Oxford University Press: Oxford, UK, 2007; pp. 158–183. [Google Scholar]
- Yu, Y.; Pi, Y.; Yu, X.; Ta, Z.; Sun, L.; Disse, M.; Zeng, F.; Li, Y.; Chen, X.; Yu, R. Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. J. Arid Land 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, C.; Jia, R.; Huang, J. An overview of the influence of atmospheric circulation on the climate in arid and semi-arid region of Central and East Asia. Sci. China Earth Sci. 2018, 61, 1183–1194. [Google Scholar] [CrossRef]
- Leiwen, J.; Yufen, T.; Zhijie, Z.; Tianhong, L.; Jianhua, L. Water resources, land exploration and population dynamics in arid areas-the case of the Tarim River basin in Xinjiang of China. Popul. Environ. 2005, 26, 471–503. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z. What is the primary factor controlling trend of Glacier No. 1 runoff in the Tianshan Mountains: Temperature or precipitation change? Hydrol. Res. 2016, 48, 231–239. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z. Statistical analysis of stream discharge in response to climate change for Urumqi River catchment, Tianshan Mountains, central Asia. Quat. Int. 2014, 336, 44–51. [Google Scholar] [CrossRef]
- Ma, Z.; Kang, S.; Zhang, L.; Tong, L.; Su, X. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. J. Hydrol. 2008, 352, 239–249. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Qin, D.-H. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview. Adv. Clim. Chang. Res. 2017, 8, 268–278. [Google Scholar] [CrossRef]
- Jiang, Z.; Cun-Jie, Z.; Hu-Zhi, B.; Lin, L.; Lan-Dong, S.; De-Xiang, L.; Jin-Song, W.; Gong-Yan, D. New Development of Climate Change in Northwest China and its Impact on Arid Environmen t. J. Arid Meteorol. 2010, 28, 1. [Google Scholar]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021, p. 2. Available online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (accessed on 17 February 2023).
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5° C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R. IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ifpri.org/publication/climate-change-and-land-ipcc-special-report-climate-change-desertification-land (accessed on 17 February 2023).
- Kong, Y.; Pang, Z. Evaluating the sensitivity of glacier rivers to climate change based on hydrograph separation of discharge. J. Hydrol. 2012, 434, 121–129. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z.; Froehlich, K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus B Chem. Phys. Meteorol. 2013, 65, 19251. [Google Scholar] [CrossRef]
- Draxler, R.; Rolph, G. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory. In Silver Spring MD; 2010; 25. Available online: https://www.arl.noaa.gov/hysplit/ (accessed on 17 February 2023).
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Noone, D.; Sturm, C. Comprehensive dynamical models of global and regional water isotope distributions. In Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping; Springer: Dordrecht, The Netherlands, 2010; pp. 195–219. [Google Scholar]
- Dütsch, M.; Pfahl, S.; Meyer, M.; Wernli, H. Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe. Atmos. Chem. Phys. 2018, 18, 1653–1669. [Google Scholar] [CrossRef]
- Li, H.; Pan, X. An Overview of Research Methods on Water Vapor Transport and Sources in the Tibetan Plateau. Adv. Earth Sci. 2022, 37, 1025. [Google Scholar]
- Shi, X.; Risi, C.; Pu, T.; Lacour, J.l.; Kong, Y.; Wang, K.; He, Y.; Xia, D. Variability of isotope composition of precipitation in the Southeastern Tibetan Plateau from the synoptic to seasonal time scale. J. Geophys. Res. Atmos. 2020, 125, e2019JD031751. [Google Scholar] [CrossRef]
- Tang, Y.; Pang, H.; Zhang, W.; Li, Y.; Wu, S.; Hou, S. Effects of changes in moisture source and the upstream rainout on stable isotopes in precipitation–a case study in Nanjing, eastern China. Hydrol. Earth Syst. Sci. 2015, 19, 4293–4306. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, K.; Li, J.; Pang, Z. Stable isotopes of precipitation in China: A consideration of moisture sources. Water 2019, 11, 1239. [Google Scholar] [CrossRef]
- Cai, Z.; Tian, L. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region. J. Clim. 2016, 29, 1339–1352. [Google Scholar] [CrossRef]
- Sánchez-Murillo, R.; Birkel, C.; Welsh, K.; Esquivel-Hernández, G.; Corrales-Salazar, J.; Boll, J.; Brooks, E.; Roupsard, O.; Sáenz-Rosales, O.; Katchan, I. Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus Eastern Pacific Ocean moisture sources. Quat. Sci. Rev. 2016, 131, 250–261. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Yuan, G.; Sun, X.; Yang, L. Stable isotopic compositions of precipitation in China. Tellus B Chem. Phys. Meteorol. 2014, 66, 22567. [Google Scholar] [CrossRef]
- Bailey, H.L.; Kaufman, D.S.; Henderson, A.C.; Leng, M.J. Synoptic scale controls on the δ18O in precipitation across Beringia. Geophys. Res. Lett. 2015, 42, 4608–4616. [Google Scholar] [CrossRef]
- Jouzel, J.; Delaygue, G.; Landais, A.; Masson-Delmotte, V.; Risi, C.; Vimeux, F. Water isotopes as tools to document oceanic sources of precipitation. Water Resour. Res. 2013, 49, 7469–7486. [Google Scholar] [CrossRef]
- Cai, Z.; Tian, L. What Causes the Postmonsoon 18O Depletion Over Bay of Bengal Head and Beyond? Geophys. Res. Lett. 2020, 47, e2020GL086985. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Krklec, K.; Domínguez-Villar, D.; Lojen, S. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe. J. Hydrol. 2018, 561, 810–821. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Crawford, J.; Hughes, C.E.; Du, M.; Liu, X. The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. J. Geophys. Res. Atmos. 2017, 122, 2667–2682. [Google Scholar] [CrossRef]
- Strong, M.; Sharp, Z.D.; Gutzler, D.S. Diagnosing moisture transport using D/H ratios of water vapor. Geophys. Res. Lett. 2007, 34, 3. [Google Scholar] [CrossRef]
- Xu, Y.; Kang, S.; Zhou, S. Variations of δ18O in Summer and Autumn Precipitation and Their Relationships with Moisture Source and Air Temperature in Nam Lake Basin, Tibetan Plateau. Sci. Geogr. Sin. 2007, 27, 718. [Google Scholar]
- Tian, L.; Yao, T.; MacClune, K.; White, J.; Schilla, A.; Vaughn, B.; Vachon, R.; Ichiyanagi, K. Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res. Atmos. 2007, 112, D10. [Google Scholar] [CrossRef]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. Atmos. 1998, 103, 28721–28742. [Google Scholar] [CrossRef]
- IAEA. Isotope Hydrology Information System, The ISOHIS Database. 2006. Available online: http://www.iaea.org/water (accessed on 1 March 2013).
- Pang, Z.; Kong, Y.; Froehlich, K.; Huang, T.; Yuan, L.; Li, Z.; Wang, F. Processes affecting isotopes in precipitation of an arid region. Tellus B Chem. Phys. Meteorol. 2011, 63, 352–359. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; Elsevier: Amsterdam, The Netherlands, 2006; Volume 92. [Google Scholar]
- Kreutz, K.J.; Wake, C.P.; Aizen, V.B.; Cecil, L.D.; Synal, H.A. Seasonal deuterium excess in a Tien Shan ice core: Influence of moisture transport and recycling in Central Asia. Geophys. Res. Lett. 2003, 30, 18. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z.; Tursun, G.; Kong, Y.; Huang, T.; Bai, G.; Zhao, H.; Zhou, D.; Yang, Z. Identification of moisture sources in Junggar Basin and its implication for groundwater recharge. Sci. Technol. Rev. 2016, 34, 118–124. [Google Scholar]
- Winkler, M.G. The Late-Quaternary vegetation climate of China. Glob. Clim. Since Last Glacial Maximum 1993, 221–261. [Google Scholar]
- Bryson, R.A. Airstream climatology of Asia. In Proceedings of the International Symposium on the Qinghai-Xizang Plateau and Mountain Meteorology; American Meteorological Society: Boston, MA, USA, 1986; pp. 604–619. [Google Scholar] [CrossRef]
- Zhang, R.; Sumi, A.; Kimoto, M. Impact of El Niño on the East Asian monsoon a diagnostic study of the ′86/87 and ′91/92 events. J. Meteorol. Soc. Japan. Ser. II 1996, 74, 49–62. [Google Scholar] [CrossRef]
- Xu, G.; Chen, T.; Liu, X.; An, W.; Wang, W.; Yun, H. Potential linkages between the moisture variability in the northeastern Qaidam Basin, China, since 1800 and the East Asian summer monsoon as reflected by tree ring δ18O. J. Geophys. Res. Atmos. 2011, 116, D9. [Google Scholar] [CrossRef]
- Froehlich, K.; Kralik, M.; Papesch, W.; Rank, D.; Scheifinger, H.; Stichler, W. Deuterium excess in precipitation of Alpine regions–moisture recycling. Isot. Environ. Health Stud. 2008, 44, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Song, X.; Yuan, G. Characteristics of δ18O in Precipitation over Northwest China and Its Water Vapor Sources. Acta Geogr. Sinca 2008, 63, 12. [Google Scholar]
- Ma, Q.; Zhang, M.; Wang, S.; Wang, Q.; Liu, W.; Li, F.; Chen, F. An investigation of moisture sources and secondary evaporation in Lanzhou, Northwest China. Environ. Earth Sci. 2014, 71, 3375–3385. [Google Scholar] [CrossRef]
- Kong, Y.; Pang, Z. A positive altitude gradient of isotopes in the precipitation over the Tianshan Mountains: Effects of moisture recycling and sub-cloud evaporation. J. Hydrol. 2016, 542, 222–230. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Wang, S.; Ma, Q.; Zhu, X.; Dong, L. Relationship between sub-cloud secondary evaporation and stable isotopes in precipitation of Lanzhou and surrounding area. Quat. Int. 2015, 380–381, 68–74. [Google Scholar] [CrossRef]
- Chen, Z.; Nie, Z.; Zhang, G.; Wan, L.; Shen, J. Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeol. J. 2006, 14, 1635–1651. [Google Scholar] [CrossRef]
- Smith, R. A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. R. Meteorol. Soc. 1990, 116, 435–460. [Google Scholar] [CrossRef]
- Wilby, R.L.; Wigley, T.M. Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr. 1997, 21, 530–548. [Google Scholar] [CrossRef]
- Rasch, P.J.; Williamson, D.L. The sensitivity of a general circulation model climate to the moisture transport formulation. J. Geophys. Res. Atmos. 1991, 96, 13123–13137. [Google Scholar] [CrossRef]
- Weart, S. The development of general circulation models of climate. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2010, 41, 208–217. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Alduchov, O.A.; Froehlich, K.O.; Araguas-Araguas, L.J.; Sturchio, N.C.; Kurita, N. Stable isotopes in global precipitation: A unified interpretation based on atmospheric moisture residence time. Geophys. Res. Lett. 2012, 39, 11. [Google Scholar] [CrossRef]
- Bowen, G.J.; Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 2003, 39, 10. [Google Scholar] [CrossRef]
- West, J.B.; Bowen, G.J.; Cerling, T.E.; Ehleringer, J.R. Stable isotopes as one of nature’s ecological recorders. Trends Ecol. Evol. 2006, 21, 408–414. [Google Scholar] [CrossRef]
- Vuille, M.; Werner, M.; Bradley, R.; Keimig, F. Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. Atmos. 2005, 110, D23. [Google Scholar] [CrossRef]
Stations | Urumqi | Gaoshan | Houxia | Altay | Zhangye | Yinchuan | |
---|---|---|---|---|---|---|---|
Annual | δ18O/‰ | −10.6 | −9.2 | −9.0 | −13.4 | −6.1 | −6.8 |
δ2H/‰ | −71.8 | −63.6 | −63.6 | −97.4 | −40.8 | −43.5 | |
d-excess/‰ | 12.8 | 9.9 | 8.2 | 9.5 | 7.6 | 11.2 | |
Summer | δ18O/‰ | −6.3 | −6.6 | −6.2 | −7.5 | −4.1 | −7.0 |
δ2H/‰ | −42.0 | −45.8 | −43.5 | −52.0 | −28.6 | −49.7 | |
d-excess/‰ | 8.5 | 7.4 | 6.3 | 7.7 | 3.8 | 6.3 | |
Winter | δ18O/‰ | −20.2 | −19.8 | −18.2 | −22.2 | −18.4 | −14.8 |
δ2H/‰ | −141.0 | −138.8 | −128.6 | −168.0 | −123.6 | −103.0 | |
d-excess/‰ | 20.7 | 19.9 | 17.2 | 9.4 | 23.4 | 15.7 | |
Maximum | δ18O/‰ | 1.8 | −6.0 | −4.6 | −5.3 | 0.9 | 3.9 |
δ2H/‰ | −8.9 | −40.5 | −32.7 | −40.2 | −4.3 | 5.1 | |
d-excess/‰ | 54.8 | 33.5 | 23.7 | 15.5 | 79.0 | 24.2 | |
Minimum | δ18O/‰ | −28.0 | −20.8 | −22.2 | −24.2 | −28.5 | −20.0 |
δ2H/‰ | −204.5 | −143.1 | −159.6 | −185.3 | −191.4 | −147.7 | |
d-excess/‰ | −44.5 | −1.3 | −7.4 | 2.2 | −25.3 | −25.8 | |
Observation Period | 1986–1992, 1996–1998, 2001–2003 | 2003–2004 | 2003–2004 | 1998–2001 | 1986–1992, 1996–1998, 2001–2003 | 1988–1992, 1999–2000 | |
Source | GNIP | Pang et al. [41] | Pang et al. [41] | Tian et al. [38] | GNIP | GNIP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Wang, K.; Pan, S.; Ren, Y.; Zhang, W. Effect of Moisture Sources on the Isotopic Composition of Precipitation in Northwest China. Water 2023, 15, 1584. https://doi.org/10.3390/w15081584
Kong Y, Wang K, Pan S, Ren Y, Zhang W. Effect of Moisture Sources on the Isotopic Composition of Precipitation in Northwest China. Water. 2023; 15(8):1584. https://doi.org/10.3390/w15081584
Chicago/Turabian StyleKong, Yanlong, Ke Wang, Sheng Pan, Yaqian Ren, and Weizun Zhang. 2023. "Effect of Moisture Sources on the Isotopic Composition of Precipitation in Northwest China" Water 15, no. 8: 1584. https://doi.org/10.3390/w15081584
APA StyleKong, Y., Wang, K., Pan, S., Ren, Y., & Zhang, W. (2023). Effect of Moisture Sources on the Isotopic Composition of Precipitation in Northwest China. Water, 15(8), 1584. https://doi.org/10.3390/w15081584