Research Progress and Trend of Agricultural Non-Point Source Pollution from Non-Irrigated Farming Based on Bibliometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
2.3. Calculations
3. Results
3.1. Publications
3.2. Co-Citation Analysis
3.3. Keyword Co-Occurrence Analysis
4. Discussion
4.1. Prevention and Control Technology
4.2. Pollution Source Identification
4.3. Assessment of NPS Pollution Load
4.4. NPS and Landscape Pattern
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, D.; Lai, Z.; Li, S.; Li, D.; Zhou, J. Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environ. Sci. Pollut. Res. 2021, 28, 47162–47181. [Google Scholar] [CrossRef] [PubMed]
- Kumwimba, M.N.; Meng, F.; Iseyemi, O.; Moore, M.T.; Zhu, B.; Tao, W.; Liang, T.J.; Ilunga, L. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions. Sci. Total Environ. 2018, 639, 742–759. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Kim, J.H.; Cha, S.M. Analysis of the relation between pollutant loading and water depth flowrate changes in a constructed wetland for agricultural nonpoint source pollution management. Ecol. Eng. 2020, 152, 105841. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, Y.; Hu, X. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Environ. Manag. 2020, 263, 110400. [Google Scholar] [CrossRef]
- Kumar, A.; Upadhyay, P.; Prajapati, S.K. Impact of microplastics on riverine greenhouse gas emissions: A view point. Environ. Sci. Pollut. Res. 2022, 1–4. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, S.; Bakshi, S.; Upadhyay, P.; Thakur, T.K. Response of eutrophication and water quality drivers on greenhouse gas emissions in lakes of China: A critical analysis. Ecohydrology 2022, 16, e2483. [Google Scholar] [CrossRef]
- Hou, L.; Zhou, Z.; Wang, R.; Li, J.; Dong, F.; Liu, J. Research on the Non-Point Source Pollution Characteristics of Important Drinking Water Sources. Water 2022, 14, 211. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Fu, Z.; Song, X.; Yang, L.; Liu, F. Application performance and nutrient stoichiometric variation of ecological ditch systems in treating non-point source pollutants from paddy fields. Agric. Ecosyst. Environ. 2020, 299, 106989. [Google Scholar] [CrossRef]
- Rong, Q.; Zeng, J.; Su, M.; Yue, W.; Xu, C.; Cai, Y. Management optimization of nonpoint source pollution considering the risk of exceeding criteria under uncertainty. Sci. Total Environ. 2021, 758, 143659. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, L.; Wang, J.; Xue, Y.; Liu, K.; Zhang, F.; Zhang, T. Nonpoint Source Pollution (NPSP) Induces Structural and Functional Variation in the Fungal Community of Sediments in the Jialing River, China. Microb. Ecol. 2022, 1–15. [Google Scholar] [CrossRef]
- Mohana, A.A.; Farhad, S.; Haque, N.; Pramanik, B.K. Understanding the fate of nano-plastics in wastewater treatment plants and their removal using membrane processes. Chemosphere 2021, 284, 131430. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Zhuang, Y.; Zhang, L.; Li, S.; Ruan, S.; Zhang, Q. Preferred hierarchical control strategy of phosphorus from non-point source pollution at regional scale. Environ. Sci. Pollut. Res. 2021, 28, 60111–60121. [Google Scholar] [CrossRef]
- Lai, Y.; Yang, C.; Hsieh, C.; Wu, C.; Kao, C. Evaluation of non-point source pollution and river water quality using a multimedia two-model system. J. Hydrol. 2011, 409, 583–595. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, N. Environmental regulation and labor market: A bibliometric analysis. Environ. Dev. Sustain. 2022, 1–22. [Google Scholar] [CrossRef]
- Leal Filho, W.; Dedeoglu, C.; Dinis, M.A.P.; Salvia, A.L.; Barbir, J.; Voronova, V.; Abubakar, I.R.; Iital, A.; Pachel, K.; Huthoff, F. Riverine plastic pollution in Asia: Results from a bibliometric assessment. Land 2022, 11, 1117. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide research on socio-hydrology: A bibliometric analysis. Water 2021, 13, 1283. [Google Scholar] [CrossRef]
- Wu, M.; Long, R.; Bai, Y.; Chen, H. Knowledge mapping analysis of international research on environmental communication using bibliometrics. J. Environ. Manag. 2021, 298, 113475. [Google Scholar] [CrossRef]
- Jiang, W.; Aishan, T.; Halik, Ü.; Wei, Z.; Wumaier, M. A Bibliometric and Visualized Analysis of Research Progress and Trends on Decay and Cavity Trees in Forest Ecosystem over 20 Years: An Application of the CiteSpace Software. Forests 2022, 13, 1437. [Google Scholar] [CrossRef]
- Liu, H.; Luo, Y.; Geng, J.; Yao, P. Research hotspots and frontiers of product R&D management under the background of the digital intelligence era—Bibliometrics based on citespace and histcite. Appl. Sci. 2021, 11, 6759. [Google Scholar]
- Shao, H.; Kim, G.; Li, Q.; Newman, G. Web of Science-Based Green Infrastructure: A Bibliometric Analysis in CiteSpace. Land 2021, 10, 711. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Gerino, M.; Orange, D.; Sánchez-Pérez, J.M.; Buffan-Dubau, E.; Canovas, S.; Monfort, B.; Albasi, C.; Sauvage, S. What Inspiring Elements from Natural Services of Water Quality Regulation Could Be Applied to Water Management? Water 2022, 14, 3030. [Google Scholar] [CrossRef]
- Mancuso, G.; Bencresciuto, G.F.; Lavrnić, S.; Toscano, A. Diffuse water pollution from agriculture: A review of Nature-Based Solutions for nitrogen removal and recovery. Water 2021, 13, 1893. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Bolognesi, S.; Cecconet, D. Sustainable, decentralized sanitation and reuse with hybrid nature-based systems. Water 2021, 13, 1583. [Google Scholar] [CrossRef]
- Mengqi, Z.; Shi, A.; Ajmal, M.; Ye, L.; Awais, M. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Convers. Biorefin. 2021, 1–24. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Duan, N.; Tsapekos, P.; Awasthi, M.K.; Liu, Z.; Mohammadi, A.; Angelidaki, I.; Tsang, D.C.; Zhang, Z.; Pan, J. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110033. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Liu, X.; Li, J.; Ye, J.; Chen, Z.; Zhu, C.; Geng, B. Treatment of piggery waste in an ectopic microbial fermentation system and safety evaluation of generated organic fertilizer. J. Chem. Technol. Biotechnol. 2022, 97, 1336–1344. [Google Scholar] [CrossRef]
- Van Nguyen, T.T.; Phan, A.N.; Nguyen, T.-A.; Nguyen, T.K.; Nguyen, S.T.; Pugazhendhi, A.; Phuong, H.H.K. Valorization of agriculture waste biomass as biochar: As first-rate biosorbent for remediation of contaminated soil. Chemosphere 2022, 307, 135834. [Google Scholar] [CrossRef]
- Chausali, N.; Saxena, J.; Prasad, R. Nanobiochar and biochar based nanocomposites: Advances and applications. J. Agric. Food Res. 2021, 5, 100191. [Google Scholar] [CrossRef]
- Veenstra, J.L.; Cloy, J.M.; Menon, M. Physical and Hydrological Processes in Soils Under Conservation Tillage in Europe. In Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 391–406. [Google Scholar]
- Or, D.; Keller, T.; Schlesinger, W.H. Natural and managed soil structure: On the fragile scaffolding for soil functioning. Soil Tillage Res. 2021, 208, 104912. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Q.; Dong, L.; Zhang, J. Cleaner agricultural production in drinking-water source areas for the control of non-point source pollution in China. J. Environ. Manag. 2021, 285, 112096. [Google Scholar] [CrossRef] [PubMed]
- Marella, T.K.; Saxena, A.; Tiwari, A.; Datta, A.; Dixit, S. Treating agricultural non-point source pollutants using periphyton biofilms and biomass volarization. J. Environ. Manag. 2022, 301, 113869. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.S.; Lin, D.X.; Li, J.H.; Zeng, J.; Wang, D.; Yang, F. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China. Environ. Sci. Pollut. Res. 2021, 28, 40075–40087. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.H.; Hou, P.F.; Zhang, Z.Y.; Shen, M.; Liu, F.; Yang, L. Application of systematic strategy for agricultural non-point source pollution control in Yangtze River basin, China. Agric. Ecosyst. Environ. 2020, 304, 107148. [Google Scholar] [CrossRef]
- Rudra, R.P.; Mekonnen, B.A.; Shukla, R.; Shrestha, N.K.; Goel, P.K.; Daggupati, P.; Biswas, A. Currents status, challenges, and future directions in identifying critical source areas for non-point source pollution in Canadian conditions. Agriculture 2020, 10, 468. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, H.; Zou, Y.; Wang, N. Method of identifying critical source areas of non-point source phosphorus output in data deficient small watersheds. J. Ecol. Rural. Environ. 2014, 30, 403–408. [Google Scholar]
- Xia, R.; Zhang, Y.; Wang, G.; Zhang, Y.; Dou, M.; Hou, X.; Qiao, Y.; Wang, Q.; Yang, Z. Multi-factor identification and modelling analyses for managing large river algal blooms. Environ. Pollut. 2019, 254, 113056. [Google Scholar] [CrossRef]
- Qu, C.; De Vivo, B.; Albanese, S.; Fortelli, A.; Scafetta, N.; Li, J.; Hope, D.; Cerino, P.; Pizzolante, A.; Qi, S. High spatial resolution measurements of passive-sampler derived air concentrations of persistent organic pollutants in the Campania region, Italy: Implications for source identification and risk analysis. Environ. Pollut. 2021, 286, 117248. [Google Scholar] [CrossRef]
- Yuan, L.; Sinshaw, T.; Forshay, K.J. Review of watershed-scale water quality and nonpoint source pollution models. Geosciences 2020, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Adu, J.T.; Kumarasamy, M.V. Assessing Non-Point Source Pollution Models: A Review. Pol. J. Environ. Stud. 2018, 27, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Shen, Z.; Chen, L.; Hou, X. Quantifying effects of conservation practices on non-point source pollution in the Miyun Reservoir Watershed, China. Environ. Monit. Assess. 2019, 191, 582. [Google Scholar] [CrossRef]
- Nepal, D.; Parajuli, P.B. Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT. Agriculture 2022, 12, 518. [Google Scholar] [CrossRef]
- Uniyal, B.; Jha, M.K.; Verma, A.K.; Anebagilu, P.K. Identification of critical areas and evaluation of best management practices using SWAT for sustainable watershed management. Sci. Total Environ. 2020, 744, 140737. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Palmate, S.S.; Shukla, R. Water Quality Modelling, Monitoring, and Mitigation. Appl. Sci. 2022, 12, 11403. [Google Scholar] [CrossRef]
- Li, W.; Cheng, X.; Zheng, Y.; Lai, C.; Sample, D.J.; Zhu, D.; Wang, Z. Response of non-point source pollution to landscape pattern: Case study in mountain-rural region, China. Environ. Sci. Pollut. Res. 2021, 28, 16602–16615. [Google Scholar] [CrossRef]
- Zhao, Y.; Kasimu, A.; Liang, H.; Reheman, R. Construction and restoration of landscape ecological network in urumqi city based on landscape ecological risk assessment. Sustainability 2022, 14, 8154. [Google Scholar] [CrossRef]
- Lei, K.; Wu, Y.; Li, F.; Yang, J.; Xiang, M.; Li, Y.; Li, Y. Relating land use/cover and landscape pattern to the water quality under the simulation of SWAT in a reservoir basin, Southeast China. Sustainability 2021, 13, 11067. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, D.; Fan, X.; Liu, C.; Zhao, G. Landscape dynamics facilitated non-point source pollution control and regional water security of the Three Gorges Reservoir area, China. Environ. Impact Assess. Rev. 2022, 92, 106696. [Google Scholar] [CrossRef]
No. | Countries/Regions | Number of Publications |
---|---|---|
1 | USA | 1225 |
2 | China | 936 |
3 | England | 279 |
4 | Canada | 171 |
5 | Germany | 167 |
6 | France | 136 |
7 | Italy | 126 |
8 | Spain | 104 |
9 | Australia | 103 |
10 | South Korea | 96 |
No. | Journals | Publisher | Number of Publications |
---|---|---|---|
1 | Science of the Total Environment | Elsevier | 182 |
2 | Water Science and Technology | IWA | 156 |
3 | Journal of the American Water Resources Association | Wiley–Blackwell | 141 |
4 | Environmental Science and Pollution Research | Springer | 95 |
5 | Journal of Hydrology | Elsevier | 92 |
6 | Journal of Environmental Quality | ASA/CSSA/SSSA | 89 |
7 | Water | MDPI | 82 |
8 | Journal of Soil and Water Conservation | SCSA | 81 |
9 | Journal of Environmental Management | Academic Press | 75 |
10 | Environmental Monitoring and Assessment | Springer | 73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Yao, Z.; Yang, X.; Xiong, C.; Nie, Q. Research Progress and Trend of Agricultural Non-Point Source Pollution from Non-Irrigated Farming Based on Bibliometrics. Water 2023, 15, 1610. https://doi.org/10.3390/w15081610
Liu D, Yao Z, Yang X, Xiong C, Nie Q. Research Progress and Trend of Agricultural Non-Point Source Pollution from Non-Irrigated Farming Based on Bibliometrics. Water. 2023; 15(8):1610. https://doi.org/10.3390/w15081610
Chicago/Turabian StyleLiu, Dan, Zhongkai Yao, Xiaoxia Yang, Chunmei Xiong, and Qingyu Nie. 2023. "Research Progress and Trend of Agricultural Non-Point Source Pollution from Non-Irrigated Farming Based on Bibliometrics" Water 15, no. 8: 1610. https://doi.org/10.3390/w15081610
APA StyleLiu, D., Yao, Z., Yang, X., Xiong, C., & Nie, Q. (2023). Research Progress and Trend of Agricultural Non-Point Source Pollution from Non-Irrigated Farming Based on Bibliometrics. Water, 15(8), 1610. https://doi.org/10.3390/w15081610