Hydrogeochemical Study of Hot Springs along the Tingri—Nyima Rift: Relationship between Fluids and Earthquakes
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Methods
4. Results and Discussion
4.1. Origin of Hot Spring Water
4.2. Origin of Water-Soluble Ions
4.2.1. Origin of Major Elements
4.2.2. Origin of Trace Elements
4.3. Water–Rock Interaction of Hot Springs
4.3.1. The Water–Rock Reaction Equilibrium
4.3.2. Reservoir Temperature and Circulation Depth
4.4. Spatial Distribution of Springs and Earthquakes
4.5. Temporal Variation of Springs and Earthquakes
4.6. Fluid Circulation Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuza, A.V.; Cao, W. Seismogenic thickness of California: Implications for thermal structure and seismic hazard. Tectonophysics 2020, 782–783, 228426. [Google Scholar] [CrossRef]
- Eyinla, D.S.; Oladunjoye, M.A. Controls of fault geometry and thermal stress on fault slip modes: Implications for permeability enhancement and injection-induced seismicity. Pet. Res. 2021, 6, 392–407. [Google Scholar] [CrossRef]
- Du, J.; Liu, C.; Fu, B.; Ninomiya, Y.; Zhang, Y.; Wang, C.; Wang, H.; Sun, Z. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China. J. Volcanol. Geotherm. Res. 2005, 142, 243–261. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, Y.; Fang, W.; Wang, W.; Shi, H.; Li, P. Short-Term Seismic Precursor Anomalies of Hydrogen Concentration in Luojishan Hot Spring Bubbling Gas, Eastern Tibetan Plateau. Front. Earth Sci. 2021, 8, 586279. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, X.; Li, Y.; He, M.; Li, J.; Dong, J.; Tian, J.; Li, K.; Yan, Y.; Ouyang, S.; et al. Hydrogeochemical and Isotopic Characteristics of the Hot Springs in the Litang Fault Zone, Southeast Qinghai–Tibet Plateau. Water 2022, 14, 1496. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, X.; Su, H.; Li, Y.; Liu, F.; Ouyang, S.; Yan, Y.; Bai, R. Hydrochemical Characteristics of Earthquake-Related Thermal Springs along the Weixi–Qiaohou Fault, Southeast Tibet Plateau. Water 2022, 14, 132. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, X.; Liu, H.; Kumar, P.; Pei, S.; Kind, R.; Zhang, Z.; Teng, J.; Ding, L.; Gao, X.; et al. The boundary between the Indian and Asian tectonic plates below Tibet. Proc. Natl. Acad. Sci. USA 2010, 107, 11229–11233. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, H.; Li, D.; Lyu, M.; Lu, L.; Zuo, Y.; Song, R. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in Cuona County, southern Tibet. Environ. Earth Sci. 2021, 80, 415. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.L.; Gan, H.N.; Liu, Z.; Nan, D.W. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet. Geofluids 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Hoke, L.; Lamb, S.; Hilton, D.R.; Poreda, R.J. Southern limit of mantle-derived geothermal helium emissions in Tibet: Implications for lithospheric structure. Earth Planet. Sci. Lett. 2000, 180, 297–308. [Google Scholar] [CrossRef]
- Klemperer, S.L.; Zhao, P.; Whyte, C.J.; Darrah, T.H.; Crossey, L.J.; Karlstrom, K.E.; Liu, T.; Winn, C.; Hilton, D.R.; Ding, L. Limited underthrusting of India below Tibet: 3He/4He analysis of thermal springs locates the mantle suture in continental collision. Proc. Natl. Acad. Sci. USA 2022, 119, e2113877119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Guo, Z.; Xu, S.; Barry, P.H.; Sano, Y.; Zhang, L.; Halldorsson, S.A.; Chen, A.T.; Cheng, Z.; Liu, C.Q.; et al. Linking deeply-sourced volatile emissions to plateau growth dynamics in southeastern Tibetan Plateau. Nat. Commun. 2021, 12, 4157. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, M.L.; Tapponnier, P.; Woerd, J.; Leloup, P.H.; Wang, S.; Pan, J.; Bai, M.; Kali, E.; Liu, X.; Li, H. Late Quaternary Extension Rates Across the Northern Half of the Yadong-Gulu Rift: Implication for East-West Extension in Southern Tibet. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019106. [Google Scholar] [CrossRef]
- Wu, Z.; Ha, G.; Hua, W.; Hailong, G.; Mengmeng, H.; Zhao, G. Abnormal disappearance of Duoqing Co lake between November 2015 and April 2016, due to far-field aseismic creeping of the southern Yadong-Gulu rift of Tibet, triggered by the 2015 Ms 8.1 Nepal earthquake. Int. Geol. Rev. 2019, 61, 2313–2327. [Google Scholar] [CrossRef]
- Wu, Z.; Barosh, P.J.; Ha, G.; Yao, X.; Xu, Y.; Liu, J. Damage induced by the 25 April 2015 Nepal earthquake in the Tibetan border region of China and increased post-seismic hazards. Nat. Hazards Earth Syst. Sci. 2019, 19, 873–888. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, H.; Wright, T.J.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal Deformation in the India-Eurasia Collision Zone From 25 Years of GPS Measurements. J. Geophys. Res. Solid Earth 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Tapponnier, P.; Mercier, J.L.; Armijo, R.; Tonglin, H.; Ji, Z. Field evidence for active normal faulting in Tibet. Nature 1981, 294, 410–414. [Google Scholar] [CrossRef]
- Taylor, M.; Yin, A. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 2009, 5, 199–214. [Google Scholar] [CrossRef]
- Dasgupta, S.; Mukhopadhyay, B.; Mukhopadhyay, M.; Pande, P. Geo- and seismo- tectonics of Eastern Himalaya: Exploring earthquake source zones from foredeep to Tibetan hinterland. Phys. Chem. Earth Parts A/B/C 2021, 123, 103013. [Google Scholar] [CrossRef]
- Wolff, R.; Hetzel, R.; Dunkl, I.; Xu, Q.; Bröcker, M.; Anczkiewicz, A.A. High-Angle Normal Faulting at the Tangra Yumco Graben (Southern Tibet) since ~15 Ma. J. Geol. 2019, 127, 15–36. [Google Scholar] [CrossRef]
- Pang, Z.; Luo, J.; Cheng, Y.; Duan, Z. Evaluation of geological conditions for the development of deep geothermal energy in China. Earth Sci. Front. 2020, 27, 134–151. (In Chinese) [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, X.; Liao, L.; Tian, J.; Li, Y.; Shi, Z.; Liu, F.; Ouyang, S. Hydrogeochemical Characteristic of Geothermal Water and Precursory Anomalies along the Xianshuihe Fault Zone, Southwestern China. Water 2022, 14, 550. [Google Scholar] [CrossRef]
- Małoszewski, P.; Zuber, A. Determining the turnover time of groundwater systems with the aid of environmental tracers. J. Hydrol. 1982, 57, 207–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Yang, C.; Fan, Z.; Guo, D. Determining Trace Elements in Rock Samples Containing Refractory Minerals by Pressurize-microwave Inductively Coupled Plasma Mass Spectrometry. Uranium Geol. 2018, 34, 105–111. [Google Scholar]
- Luo, S.; Xu, L.; Tang, H.; Xiao, J.; Hu, L. Hydrochemical and isotopic characteristics of Chazi geothermal field in Shigatse in Tibet. Geol. Surv. China 2020, 7, 10–15. (In Chinese) [Google Scholar] [CrossRef]
- Tian, Y.; Yu, C.; Luo, K.; Zha, X.; Wu, J.; Zhang, X.; Ni, R. Hydrochemical characteristics and element contents of natural waters in Tibet, China. J. Geogr. Sci. 2015, 25, 669–686. [Google Scholar] [CrossRef]
- Liu, M.; Guo, Q.; Wu, G.; Guo, W.; She, W.; Yan, W. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in Southern Tibet (China): Daggyai and Quzhuomu. Geothermics 2019, 82, 190–202. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Tan, H.; Zhang, Y.; Zhang, W.; Kong, N.; Zhang, Q.; Huang, J. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes. Appl. Geochem. 2014, 51, 23–32. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Liu, W. O, H, and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing, Tibet, China. Environ. Earth Sci. 2009, 59, 1589–1597. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 1992, 113, 495–510. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Zhang, X.; Xing, E.; Zhang, J.; Ren, J.; Ling, Y. O, H, and Sr isotope evidence for origin and mixing processes of the Gudui geothermal system, Himalayas, China. Geosci. Front. 2020, 11, 1175–1187. [Google Scholar] [CrossRef]
- Pang, Z.; Kong, Y.; Li, J.; Tian, J. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth Planet. Sci. 2017, 17, 534–537. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z. The elevation gradient of stable isotopes in precipitation in the eastern margin of Tibetan Plateau. Sci. China Earth Sci. 2022, 65, 1972–1984. [Google Scholar] [CrossRef]
- Su, S.; Li, Y.; Chen, Z.; Chen, Q.; Liu, Z.; Lu, C.; Hu, L. Geochemistry of geothermal fluids in the Zhangjiakou-Penglai Fault Zone, North China: Implications for structural segmentation. J. Asian Earth Sci. 2022, 230, 105218. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tan, H.B.; Zhang, W.J.; Huang, J.Z.; Zhang, Q. A new geochemical perspective on hydrochemical evolution of the Tibetan geothermal system. Geochem. Int. 2015, 53, 1090–1106. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Lu, C.; Gan, H.; Liu, Z. Evolution of deep parent fluids of geothermal fields in the Nimu–Nagchu geothermal belt, Tibet, China. Geothermics 2018, 71, 118–131. [Google Scholar] [CrossRef]
- Li, X.; Qi, J.; Yi, L.; Xu, M.; Zhang, X.; Zhang, Q.; Tang, Y. Hydrochemical characteristics and evolution of geothermal waters in the eastern Himalayan syntaxis geothermal field, southern Tibet. Geothermics 2021, 97, 102233. [Google Scholar] [CrossRef]
- Öztekin Okan, Ö.; Kalender, L.; Çetindağ, B. Trace-element hydrogeochemistry of thermal waters of Karakoçan (Elazığ) and Mazgirt (Tunceli), Eastern Anatolia, Turkey. J. Geochem. Explor. 2018, 194, 29–43. [Google Scholar] [CrossRef]
- Soto-Jiménez, M.F.; Páez-Osuna, F. Distribution and Normalization of Heavy Metal Concentrations in Mangrove and Lagoonal Sediments from Mazatlán Harbor (SE Gulf of California). Estuar. Coast. Shelf Sci. 2001, 53, 259–274. [Google Scholar] [CrossRef]
- Feng, J.-L.; Zhao, Z.-H.; Chen, F.; Hu, H.-P. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China. J. Volcanol. Geotherm. Res. 2014, 287, 1–11. [Google Scholar] [CrossRef]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2, 2000GC000109. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Cai, C.; Franks, S.G.; Aagaard, P. Origin and migration of brines from Paleozoic strata in Central Tarim, China: Constraints from 87Sr/86Sr, δD, δ18O and water chemistry. Appl. Geochem. 2001, 16, 1269–1284. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Gao, Y.F.; Qu, X.M.; Rui, Z.Y.; Mo, X.X. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet. Sci. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; He, M.; Li, J.; Dong, J.; Tian, J.; Yan, Y.; Li, Y.; Liu, K.; Li, Y. Hydrogeochemical origin and circulation of spring waters along the Karakorum fault, Western Tibetan Plateau: Implications for interaction between hydrosphere and lithosphere. Front. Earth Sci. 2022, 10, 1021550. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Zhang, X.; Wu, Q.; Liu, X.; Ren, J.; Chen, S. Geothermal-type Lithium Resources in Southern Xizang, China. Acta Geol. Sin.-Engl. Ed. 2021, 95, 860–872. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Qi, J.; Xu, M.; An, C.; Wu, M.; Zhang, Y.; Li, X.; Zhang, Q.; Lu, G. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China. Phys. Earth Planet. Inter. 2017, 263, 12–22. [Google Scholar] [CrossRef]
- Fournier, R.O.; Truesdell, A.H. Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A. Geothermics 1970, 2, 529–535. [Google Scholar] [CrossRef]
- Fournier, R.O.; Truesdell, A.H. Geochemical indicators of subsurface temperature; Part II, Estimate of temperature and fractions of hot water mixed with cold water. J. Res. U.S. Geol. Surv. 1974, 2, 263–270. [Google Scholar] [CrossRef]
- White, J.F.; Corwin, J.F. Synthesis and origin of chalcedony. Am. Mineral. 1961, 46, 112–119. [Google Scholar]
- Arnorsson, S. Application of the silica geothermometer in low temperature hydrothermal areas in Iceland. Am. J. Sci. 1975, 275, 763–784. [Google Scholar] [CrossRef]
- Guo, Q.; Pang, Z.; Wang, Y.; Tian, J. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl. Geochem. 2017, 81, 63–75. [Google Scholar] [CrossRef]
- Bai, L.; Li, G.; Khan, N.G.; Zhao, J.; Ding, L. Focal depths and mechanisms of shallow earthquakes in the Himalayan–Tibetan region. Gondwana Res. 2017, 41, 390–399. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, C.Q.; Liu, H.; Strelchenko, I. Deep Structure of Rifts Developed in South Tibet Revealed by Receiver Functions. In Proceedings of the Annual Meeting Of Chinese Geoscience Union, Beijing, China, 19–23 October 2019. [Google Scholar]
- Chen, W.-m.D.; Tanaka, H.; Huang, H.-j.; Lu, C.-b.; Lee, C.-y.; Wang, C.-y. Fluid infiltration associated with seismic faulting: Examining chemical and mineralogical compositions of fault rocks from the active Chelungpu fault. Tectonophysics 2007, 443, 243–254. [Google Scholar] [CrossRef]
- Fulton, P.M.; Saffer, D.M. Potential role of mantle-derived fluids in weakening the San Andreas Fault. J. Geophys. Res. 2009, 114, B07408. [Google Scholar] [CrossRef]
- Long, K.; Zhang, Z.; Li, S.; Li, K.; Luo, Y. The roles of crack development and water in stress rotation and fault weakening. Tectonophysics 2022, 823, 229190. [Google Scholar] [CrossRef]
- Dorsey, M.T.; Rockwell, T.K.; Girty, G.H.; Ostermeijer, G.A.; Browning, J.; Mitchell, T.M.; Fletcher, J.M. Evidence of hydrothermal fluid circulation driving elemental mass redistribution in an active fault zone. J. Struct. Geol. 2021, 144, 104269. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, X.; Zhou, Y.; Yan, Y.; Li, Y.; Ouyang, S.; Liu, F.; Zhong, J. Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait. Water 2021, 13, 3523. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X.; Yan, Y.; Ouyang, S.; Liu, F. Hydrogeochemical Characteristics of Hot Springs and Their Short-Term Seismic Precursor Anomalies along the Xiaojiang Fault Zone, Southeast Tibet Plateau. Water 2021, 13, 2638. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X.; Li, J.; Liu, L.; Su, H.; Li, Y.; He, M.; Dong, J.; Tian, J.; Zhou, H.; et al. Hydrogeochemical characteristics of thermal springs in the Qilian–Haiyuan fault zone at the northeast Tibetan Plateau: Role of fluids and seismic activity. Front. Earth Sci. 2022, 10, 927314. [Google Scholar] [CrossRef]
- Shi, D.; Wu, Z.; Klemperer, S.L.; Zhao, W.; Xue, G.; Su, H. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India–Tibet continental collision zone. Earth Planet. Sci. Lett. 2015, 414, 6–15. [Google Scholar] [CrossRef]
- Zheng, Y.-c.; Hou, Z.-q.; Fu, Q.; Zhu, D.-C.; Liang, W.; Xu, P. Mantle inputs to Himalayan anatexis: Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves. Lithos 2016, 264, 125–140. [Google Scholar] [CrossRef]
- Tian, J.; Stefánsson, A.; Li, Y.; Li, L.; Xing, L.; Li, Z.; Li, Y.; Zhou, X. Geochemistry of thermal fluids and the genesis of granite-hosted Huangshadong geothermal system, Southeast China. Geothermics 2023, 109, 102647. [Google Scholar] [CrossRef]
- Terakawa, T.; Hashimoto, C.; Matsu’ura, M. Changes in seismic activity following the 2011 Tohoku-oki earthquake: Effects of pore fluid pressure. Earth Planet. Sci. Lett. 2013, 365, 17–24. [Google Scholar] [CrossRef]
No. | Date | Site | Longitude | Latitude | Altitude | Style | References |
---|---|---|---|---|---|---|---|
(dd/mm/yyyy) | (°) | (°) | (m) | ||||
T01 | 31 July 2019 | Canmuda | 86.49 | 28.6 | 4365 | Spring water | this study |
T02 | 1 August 2019 | Yadang | 86.1 | 28.38 | 4331 | ||
T03 | 3 October 2020 | Chazi | 86.48 | 30 | 4841 | ||
T04 | 4 October 2020 | Bianla | 86.16 | 31.07 | 4772 | ||
T05 | 4 October 2020 | Maerzuo | 86.7 | 31.47 | 4573 | ||
T06 | 22 September 2021 | Yundong | 86.71 | 28.79 | 4649 | ||
T07 | 25 September 2021 | Saba | 86.56 | 28.5 | 4518 | ||
T03-1 | - | Chazi | 86.48 | 30 | 4841 | geothermal water | LUO et al. [25] |
T03-2 | - | Chazi | 86.48 | 30 | 4837 | ||
T03-3 | - | Chazi | 86.48 | 30 | 4848 | river water | |
NW01 | 13 August 2013 | Nima | 87.23 | 31.79 | 4553 | natural water | Tian et al. [26] |
NW02 | 15 August 2013 | Asuo Town | 86.06 | 31.88 | 4797 | ||
NW03 | 15 August 2013 | Juncang Town | 86.01 | 31.25 | 4726 | ||
NW04 | 22 August 2013 | Sangsang Town | 86.72 | 29.42 | 4632 | ||
DG00 | - | Daggyai | 85.75 | 29.5 | 4974 | geothermal water | Liu et al. [27] |
DG01 | - | Daggyai | 85.75 | 29.5 | 4974 | ||
DG05 | - | Daggyai | 85.75 | 29.52 | 5012 | ||
DG06 | - | Daggyai | 85.75 | 29.52 | 5012 | ||
DG07 | - | Daggyai | 85.75 | 29.52 | 4974 | ||
DG-R2 | - | Daggyai | 85.75 | 29.5 | 4974 | river water | |
SM04 | - | Semi | 86.77 | 29.02 | 5051 | geothermal water |
No. | Temperature | PH | EC | TDS | Li | Na+ | K+ | Mg2+ | Ca2+ | F− | Cl− | Br | SO42− | NO3− | CO32− | HCO3− | Si | Water Types | δD | δ18O | Recharge Elevation |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | μs/cm | mg/L | ‰ | km | |||||||||||||||||
T01 | 44 | 6.79 | 2168 | 1313.6 | 1.73 | 325.04 | 59.86 | 25.95 | 128.14 | 4 | 18.04 | 0 | 2.73 | 5.42 | 0 | 2060 | 16.9 | HCO3-Na•Ca | −156 | −19.2 | 7.6 |
T02 | 19.2 | 6.84 | 1748 | 1000.5 | 0.1 | 17.33 | 6.31 | 277.84 | 31.51 | 1.29 | 1.21 | 0.13 | 66.3 | 5.1 | 0 | 1646 | 5.76 | HCO3-Mg | −154.6 | −17.9 | 7.5 |
T03 | 73.5 | 8.16 | 2121 | 1309.2 | 2.26 | 458.8 | 42.96 | 1.34 | 17.71 | 19.43 | 179.33 | 25.92 | 126.66 | 0 | 59 | 1135 | 53.2 | HCO3-Na | −169.5 | −20.3 | 8.4 |
T04 | 57 | 7.4 | 3610 | 2437.3 | 1.08 | 797.76 | 47.87 | 7.88 | 55.2 | 8.35 | 143.51 | 2.51 | 577.93 | 0 | 0 | 2180 | 28.5 | HCO3•SO4-Na | −166.6 | −20.9 | 8.2 |
T05 | 20 | 7.11 | 7090 | 4865.9 | 8.59 | 1460.79 | 185.58 | 16.49 | 152.92 | 5.71 | 1019.63 | 6.6 | 895.45 | 3.03 | 0 | 3046 | 29.7 | HCO3•Cl-Na | −148.2 | −19.2 | 7.6 |
T06 | 63.8 | 7.26 | 1836 | 1135.12 | 2.88 | 360.59 | 30.78 | 6.88 | 65.02 | 8.3 | 71.48 | 0.19 | 0 | 15.11 | 0 | 1147.78 | 20.7 | HCO3-Na | −162.7 | −20.8 | 8.0 |
T07 | 28.4 | 7.07 | 3268 | 2104.87 | 4.37 | 627.14 | 97.18 | 12.08 | 164.68 | 6 | 80.72 | 0.26 | 3.26 | 0.57 | 0 | 2217.23 | 14.3 | HCO3-Na | −164.8 | −20.9 | 7.9 |
T03-1 | 87 | 7.83 | - | 1806.97 | - | 481.9 | 39.12 | <0.10 | 12.77 | - | 165.05 | - | 121.94 | - | - | 654.94 | 64 | HCO3•Cl-Na | −163 | −20.5 | 8.2 |
T03-2 | 74 | 7.93 | - | 1844.14 | - | 476.91 | 41.7 | <0.10 | 9.51 | - | 167.77 | - | 117.52 | - | - | 707.28 | 71.05 | HCO3•Cl-Na | −163 | −20.6 | 8.2 |
T03-3 | 7.5 | 7.48 | - | 278.98 | - | 13.05 | 1.39 | 6.6 | 40.88 | - | 1.41 | - | 47.26 | - | - | 115.96 | HCO3•SO4-Ca | −163 | −17.6 | ||
NW01 | - | 7.89 | 669 | 334 | - | 98.1 | 5.6 | 25 | 26.1 | - | 50.7 | - | 64.6 | - | - | 195.3 | 6.39 | HCO3-Na•Mg | - | - | - |
NW02 | - | 7.84 | 540 | 270 | - | 45.2 | 6.5 | 19.8 | 56.8 | - | 21.6 | - | 49.5 | - | - | 286.8 | 5.41 | HCO3-Ca•Na•Mg | - | - | - |
NW03 | - | 7.89 | 340 | 170 | - | 16.4 | 1.8 | 5.3 | 59.5 | - | 39.9 | - | 9.5 | - | - | 146.4 | 7.09 | HCO3•Cl-Ca | - | - | - |
NW04 | - | 7.55 | 457 | 229 | - | 12 | 1.2 | 14.1 | 69.8 | - | 61.9 | - | 36.2 | - | - | 112.9 | 7.28 | HCO3•Cl-Ca | - | - | - |
DG00 | 79.3 | 8.47 | 1873 | 918 | - | 453.9 | 52.9 | 1.3 | 43.1 | 24.5 | 155.5 | - | 85.5 | - | - | 393.5 | 137.9 | HCO3•Cl-Na | −153.3 | −20.4 | 8.1 |
DG01 | 79.5 | 8.16 | 1910 | 935 | - | 440.1 | 52.1 | 1.3 | 39.4 | 24.1 | 153.5 | - | 83.4 | - | - | 506.2 | 136.8 | HCO3•Cl-Na | −153.2 | −20.1 | 8.1 |
DG05 | 78.9 | 8.44 | 2004 | 982 | - | 482.4 | 56.9 | 0.7 | 33.9 | 26.3 | 162.3 | - | 90.1 | - | - | 536 | 167.7 | HCO3•Cl-Na | −147 | −18.7 | 8.0 |
DG06 | 74.1 | 8.56 | 1916 | 939 | - | 432.3 | 53.7 | 0.9 | 26 | 24.7 | 152 | - | 87 | - | - | 670.6 | 149.8 | HCO3•Cl-Na | −147.6 | −20.8 | 8.0 |
DG07 | 82.1 | 8.28 | 1872 | 909 | - | 451.2 | 53 | 0.8 | 23.5 | 24.1 | 148.7 | - | 88 | - | - | 697.5 | 151.6 | HCO3-Na | −147.9 | −19.6 | 8.0 |
DG-R2 | 12.2 | 7.62 | 211 | 105 | - | 62.3 | 10.1 | 2.9 | 52.9 | 1.8 | 10.2 | - | 19.5 | - | - | 106.6 | 14.9 | HCO3-Na•Mg | −134.9 | −18.1 | 7.7 |
SM04 | 84.9 | 8.46 | 4184 | 2050 | - | 945.5 | 161.8 | 1.4 | 15.8 | 19 | 751.8 | - | 29.2 | - | - | 188.8 | 232.5 | Cl-Na | −143.2 | −11.8 | 8.0 |
No. | Ag | Al | Ba | Be | Cd | Co | Cr | Cu | Fe | Mn | Mo | Ni | Pb | Sb | Sn | Sr | Th | Ti | Tl | U | V | Zn | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T01 | 0.004 | 19 | 1526 | 3.61 | 0.014 | 0.271 | 1.2 | 1.09 | 1463 | 68.6 | 0.096 | 3.16 | 0.047 | 0.22 | 0.086 | 1301 | 0.035 | 7.22 | 0.095 | 0.024 | 0.655 | 2.43 | 7099 |
T02 | 0.011 | 6.49 | 73 | 0.339 | 0.027 | 0.505 | 1.51 | 1.72 | 16.1 | 6.45 | 0.152 | 8.02 | 0.341 | 0.455 | 0.083 | 742 | 0.014 | 10.6 | 0.069 | 2.28 | 0.176 | 24.4 | 466 |
T03 | 0.007 | 48.5 | 99 | 9.99 | 0.004 | 0.081 | 1.96 | 37.1 | 157 | 129 | 0.248 | 2.13 | 1.04 | 17.3 | 1.08 | 591 | 0.032 | 6.88 | 1.28 | 0.111 | 2.76 | 41.2 | 36841 |
T04 | 0.004 | 13.6 | 50.9 | 4.46 | <0.002 | 0.116 | 2.47 | 35.6 | 545 | 38.7 | 83.9 | 2.28 | 0.973 | 1742 | 1.02 | 1599 | 0.053 | 2.73 | 1.24 | 0.103 | 3.08 | 12.9 | 3292 |
T05 | 0.011 | 29.2 | 53.1 | 12.7 | 0.004 | 0.837 | 4.89 | 36.3 | 1078 | 42.3 | 0.758 | 7.89 | 0.451 | 22.9 | 1.04 | 991 | 0.014 | 5.51 | 4.53 | 0.413 | 36.8 | 19.2 | 31593 |
T06 | 0.026 | 56 | 199 | 8.89 | 0.006 | 0.327 | 15.1 | 3.16 | 82.2 | 35.1 | 0.041 | 4.2 | 0.18 | 0.089 | 0.148 | 1197 | 0.007 | 12.2 | 0.012 | 0.141 | 12.3 | 12.2 | 24929 |
T07 | 0.011 | 29.8 | 2466 | 15.5 | 0.003 | 0.634 | 15.2 | 2.27 | 794 | 50.1 | 0.105 | 9.45 | 0.16 | 0.022 | 0.057 | 1899 | 0.004 | 6.48 | 1.1 | 0.029 | 14.7 | 6.44 | 16616 |
No. | Na-K (°C) | K-Mg (°C) | Na-K-Ca (°C) | Cdy (°C) | Cdy,msl (°C) | Qz (°C) | Qz,msl (°C) | SEM (°C) | SEM, msl (°C) | CD (km) |
---|---|---|---|---|---|---|---|---|---|---|
T01 | 275.59 | 100.27 | 137.85 | 56.44 | 63.82 | 87.34 | 90.00 | 162.00–167.00 | 113.00 | 2.01 |
T02 | 360.19 | 24.96 | 56.10 | 13.63 | 26.48 | 46.23 | 53.56 | - | - | 1.20 |
T03 | 211.41 | 134.73 | 193.62 | 118.78 | 115.40 | 144.65 | 138.97 | 240.00–243.00 | 145.00 | 3.10 |
T04 | 176.78 | 110.78 | 168.33 | 82.20 | 85.52 | 111.38 | 110.79 | 175.00–200.00 | 123.00 | 2.47 |
T05 | 238.40 | 141.71 | 218.55 | 84.41 | 87.35 | 113.41 | 112.53 | - | - | 2.51 |
T06 | 203.76 | 100.22 | 206.38 | 65.98 | 71.92 | 96.31 | 97.79 | 135.00 | 2.18 | |
T07 | 257.65 | 125.69 | 272.57 | 48.98 | 57.42 | 80.28 | 83.82 | 240.00–243.00 | 145.00 | 1.87 |
T03-1 | 199.74 | 178.45 | 201.84 | 131.18 | 125.29 | 155.70 | 148.18 | 240.00–243.00 | 145.00 | 3.30 |
T03-2 | 205.74 | 181.03 | 217.64 | 138.43 | 131.02 | 162.11 | 153.49 | 240.00–243.00 | 145.00 | 3.42 |
DG00 | 230.47 | 142.22 | 172.32 | 191.83 | 172.01 | 208.20 | 190.95 | 175.00–200.00 | - | 4.25 |
DG01 | 231.89 | 141.70 | 174.12 | 191.10 | 171.46 | 207.58 | 190.46 | 226.00–238.00 | - | 4.24 |
DG05 | 231.56 | 155.64 | 185.98 | 210.34 | 185.74 | 223.72 | 203.30 | 226.00–238.00 | - | 4.53 |
DG06 | 236.31 | 149.09 | 190.61 | 199.49 | 177.72 | 214.65 | 196.10 | 226.00–238.00 | - | 4.37 |
DG07 | 231.18 | 150.70 | 194.53 | 200.61 | 178.55 | 215.59 | 196.85 | 226.00–238.00 | - | 4.38 |
SM04 | 267.82 | 182.51 | 311.95 | 244.77 | 210.66 | 252.01 | 225.44 | 226.00–238.00 | - | 5.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Zhou, X.; Zhang, Y.; He, M.; Tian, J.; Shen, J.; Li, Y.; Qiu, G.; Du, F.; Zhang, X.; et al. Hydrogeochemical Study of Hot Springs along the Tingri—Nyima Rift: Relationship between Fluids and Earthquakes. Water 2023, 15, 1634. https://doi.org/10.3390/w15081634
Zhao D, Zhou X, Zhang Y, He M, Tian J, Shen J, Li Y, Qiu G, Du F, Zhang X, et al. Hydrogeochemical Study of Hot Springs along the Tingri—Nyima Rift: Relationship between Fluids and Earthquakes. Water. 2023; 15(8):1634. https://doi.org/10.3390/w15081634
Chicago/Turabian StyleZhao, Deyang, Xiaocheng Zhou, Yongxian Zhang, Miao He, Jiao Tian, Junfeng Shen, Ying Li, Guilan Qiu, Fang Du, Xiaoming Zhang, and et al. 2023. "Hydrogeochemical Study of Hot Springs along the Tingri—Nyima Rift: Relationship between Fluids and Earthquakes" Water 15, no. 8: 1634. https://doi.org/10.3390/w15081634
APA StyleZhao, D., Zhou, X., Zhang, Y., He, M., Tian, J., Shen, J., Li, Y., Qiu, G., Du, F., Zhang, X., Yang, Y., Zeng, J., Rui, X., Liao, F., & Guan, Z. (2023). Hydrogeochemical Study of Hot Springs along the Tingri—Nyima Rift: Relationship between Fluids and Earthquakes. Water, 15(8), 1634. https://doi.org/10.3390/w15081634