The Drought of 2018–2019 in the Lusatian Neisse River Catchment in Relation to the Multiannual Conditions
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
4. Results
4.1. Changes in Air Temperature and Precipitation Totals in 1981–2020
4.2. Meteorological Droughts in 1981–2020
4.3. Hydrological Droughts in 1981–2020
4.4. Drought of 2018–2019
4.4.1. Meteorological Drought
4.4.2. Hydrological Drought
4.5. The Influence of Drought on the Selected Economic Sectors
5. Discussion and Conclusions
5.1. Weather Conditions in 2018 and 2019
5.2. Multiannual Climate Changes
5.3. Meteorological Drought
5.4. Hydrological Drought
5.5. The Impact of Drought on Economy and Natural Environment
5.6. Summary
5.7. Conclusions
- The episode of the 2018–2019 drought confirms the previous results that the last years were extraordinary from the climatological perspective. If such conditions continue, dry periods can occur more often in the future. Thermal precipitation conditions in 2018–2019 were significantly different from the mean multiannual values. Mean air temperature was the highest in the entire 1981–2020, while June 2019 was characterized by the highest values for the last 70 years;
- Both SPI12 and SPEI12 identified the drought of 2018–2019 as the most intensive episode in 1981–2020;
- The changes in thermal conditions indicate positive trends for air temperature. Further growth in this variable can additionally impact drought intensity and consequently contribute to the increase in the social-economic and environmental losses related to this phenomenon;
- The discussed drought episode showed that the effects of long-lasting dry periods can significantly affect multiple sectors. This influence is noticed especially in such sensitive regions as the Lusatian Neisse river basin, where agriculture, forestry, hydropower generation, and environment protection play an important role;
- The results of this study can be a source of information for local or regional planning processes, focused on the activities related to the meteorological and hydrological hazards.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilhite, D.A.; Glatz, M.H. Understanding the drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; van Lannen, H.A.J. (Eds.) Hydrological Drought—Processes and Estimation Methods for Streamflow and Groundwater. In Development in Water Science, 48; Elsevier Science B.V.: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. Meteorological Droughts in Europe: Events and Impacts—Past. Trends and Future Projections; Publications Office of the European Union: Luxembourg, 2016; p. 130. [Google Scholar]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I. Hydrological response to different time scales of climatological drought: An evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrol. Earth Syst. Sci. 2005, 9, 523–533. [Google Scholar] [CrossRef]
- Tokarczyk, T.; Szalińska, W.; Otop, I.; Bedryj, M. Zarządzanie Ryzykiem Suszy (Drought Risk Management); Monografie Komitetu Gospodarki Wodnej Polskiej Akademii Nauk: Warszawa, Poland, 2017; Volume 40. [Google Scholar]
- van Loon, A.F. Hydrological drought explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Oikonomou, P.D.; Karavitis, C.A.; Kolokytha, E. Multi-Index Drought Assessment in Europe. Proceedings 2019, 7, 20. [Google Scholar] [CrossRef]
- Gutry-Korycka, M.; Sadurski, A.; Kundzewicz, Z.; Pociask-Karteczka, J.; Skrzypczyk, L. Zasoby wodne a ich wykorzystanie. Nauka 2014, 1, 77–98. [Google Scholar]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate change and drought: A perspective on drought indices. Curr. Clim. Chang. Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Marvel, K.; Cook, B.I.; Bonfils, C.J.W.; Durack, P.J.; Smerdon, J.E.; Williams, A.P. Twentieth-century hydroclimate changes consistent with human influence. Nature 2019, 569, 59–65. [Google Scholar] [CrossRef]
- WMO. The Global Climate 2015–2019; World Meteorological Organization: Geneva, Switzerland, 2019; Available online: https://library.wmo.int/ (accessed on 27 December 2022).
- Krzyżewska, A.; Wereski, S.; Demczuk, P. Biometeorological conditions during an extreme heatwave event in Poland in August 2015. Weather 2019, 75, 183–189. [Google Scholar] [CrossRef]
- Sulikowska, A.; Wypych, A.; Woszczek, I. Fale upałów latem 2015 roku i ich uwarunkowania cyrkulacyjne (Heat waves in the sumer of 2015 and their circulation conditions). Bad. Fizjogr. VII Ser. A. Geogr. Fiz. 2016, A67, 205–223. [Google Scholar] [CrossRef]
- Hoy, A.; Hänsel, S.; Skalak, P.; Ustrnul, Z.; Bochnicek, O. The extreme European summer of 2015 in a long-term perspective. Int. J. Climatol. 2017, 37, 943–962. [Google Scholar] [CrossRef]
- Urban, A.; Hanzlikova, H.; Kysely, J.; Plavcova, E. Impacts of the 2015 heat waves on mortality in the Czech Republic—A comparison with previous heat waves. Int. J. Environ. Res. Public Health 2017, 14, 1562. [Google Scholar] [CrossRef]
- Wibig, J. Heat waves in Poland in the period 1951-2015: Trends, patterns and driving factors. Meteorol. Hydrol. Water Manag. 2018, 6, 37–45. [Google Scholar] [CrossRef]
- Kornhuber, K.; Ospray, S.; Coumou, D.; Petri, S.; Petoukhov, V.; Rahmstorf, S.; Gray, L. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 2019, 14, 054002. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Bednorz, E. The extreme year—Analysis of thermal conditions in Poland in 2018. Theor. Appl. Climatol. 2020, 139, 251–260. [Google Scholar] [CrossRef]
- Sulikowska, A.; Wypych, A. How unusual were June 2019 temperatures in the context of European climatology? Atmosphere 2020, 11, 697. [Google Scholar] [CrossRef]
- Scherrer, S.C.; Appenzeller, C.; Liniger, M.A. Temperature trends in Switzerland and Europe: Implications for climate normal. Inter. J. Climatol. 2006, 25, 565–580. [Google Scholar] [CrossRef]
- Krauskopf, T.; Huth, R. Temperature trends in Europe: Comparison of different data sources. Theor. Appl. Climatol. 2020, 139, 1305–1316. [Google Scholar] [CrossRef]
- Krauskopf, T.; Huth, R. Trends in intraseasonal temperature variability in Europe, 1961–2018. Int. J. Climatol. 2022, 42, 7298–7320. [Google Scholar] [CrossRef]
- Twardosz, R.; Walanus, A.; Guzik, I. Warming in Europe: Recent Trends in Annual and Seasonal temperatures. Pure Appl. Geophys. 2021, 178, 4021–4032. [Google Scholar] [CrossRef]
- IMGW-PIB. Klimat Polski 2020 (Climate of Poland 2020); IMGW-PIB: Warsaw, Poland, 2021; p. 45. [Google Scholar]
- Ustrnul, Z.; Wypych, A.; Czekierda, D. Air Temperature Change. In Climate Change in Poland; Falarz, M., Ed.; Springer Climate: Cham, Switzerland, 2021; pp. 275–330. [Google Scholar]
- Zebisch, M.; Grothmann, T.; Schröter, D.; Hasse, C.; Fritsch, U.; Cramer, W. Climate Change in Germany. In Vulnerability and Adaptation of Climate Sensitive Sectors; Umweltbundesamt: Dessau, Germany, 2005; p. 205. [Google Scholar]
- Marosz, M.; Wójcik, R.; Biernacik, D.; Jakusik, E.; Pilarski, M.; Owczarek, M.; Miętus, M. Zmienność klimatu Polski od połowy XX wieku. Rezultaty projektu Klimat (Poland’s climate variability 1951–2008. KLIMAT project’s results). Pr. I Stud. Geogr. 2011, 47, 51–66. [Google Scholar]
- Ziernicka-Wojtaszek, A.; Kopcińska, J. Variation in Atmospheric Precipitation in Poland in the Years 2001–2018. Atmosphere 2020, 11, 794. [Google Scholar] [CrossRef]
- Łupikasza, E.; Małarzewski, Ł. Precipitation Change. In Climate Change in Poland; Falarz, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 349–373. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Pišoft, P.; Štěpánek, P.; Bělínová, M.; Dobrovolný, P. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements. Theor. Appl. Climatol. 2012, 110, 17–34. [Google Scholar] [CrossRef]
- Łupikasza, E.; Niedźwiedź, T.; Pinskwar, I.; Ruiz-Villanueva, V.; Kundzewicz, Z.W. Observed Changes in Air Temperature and Precipitation and Relationship between them, in the Upper Vistula Basin; Springer International Publishing: Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Pinskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in precipitation totals in Poland. Geografie 2019, 124, 237–264. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Climatol. 2018, 135, 1517–1530. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Observed changes in precipitation during recent warming: The Czech Republic, 1961–2019. Int. J. Climatol. 2021, 41, 3881–3902. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradnícek, P.; Dobrovolný, P.; Rehor, J.; Trnka, M.; Lhotka, O.; Štepánek, P. Circulation and Climate Variability in the Czech Republic between 1961 and 2020: A Comparison of Changes for Two “Normal” Periods. Atmosphere 2022, 13, 137. [Google Scholar] [CrossRef]
- Miszuk, B. Changes in Precipitation Conditions in the Warm Half-Year in the Polish–Saxon Border Region in Relation to the Atmospheric Circulation. Atmosphere 2022, 13, 720. [Google Scholar] [CrossRef]
- IPCC. AR5 Synthesis Report: Climate Change 2014. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. Available online: https://archive.ipcc.ch/report/ar5/syr/ (accessed on 4 January 2023).
- Kundzewicz, Z.W.; Jania, J.A. Extreme Hydro-meteorological Events and their Impacts. From the Global down to the Regional Scale. Geogr. Pol. 2007, 75, 9–24. [Google Scholar]
- European Commission. Regions 2020: The Climate Change Challenge for European Regions. European Commission, Directorate-General Regional Policy; Policy Development, Conception, forward Studies, Impact Assessment: Brussels, Belgium, 2009; Available online: https://climate-adapt.eea.europa.eu/metadata/publications/regions-2020-the-climate-challenge-for-europeanregions (accessed on 4 January 2023).
- Franke, J.; Goldberg, V.; Freydank, E.; Eichelmann, U. Statistical analysis of regional climate trends in Saxony, Germany. Clim. Res. 2004, 27, 145–150. [Google Scholar] [CrossRef]
- Anders, I.; Stagl, J.; Auer, I.; Pavlik, D. Climate Change in Central and Eastern Europe. In Managing Protected Areas in Central and Eastern Europe Under Climate Change; Advances in Global Change Research; Rannov, S., Neubert, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 58, pp. 17–30. [Google Scholar]
- Nilsen, I.B.; Fleig, A.K.; Tallaksen, M.; Hisdal, H. Recent trends in monthly temperature and precipitation patterns in Europe. In Hydrology in a Changing World: Environmental and Human Dimensions, Proceedings of FRIEND-Water, Montpellier, France, 7–10 October 2014; Ben Ammar, S., Taupin, J.D., Zouari, K., Eds.; IAHS Publication: Wallingford, UK, 2014; pp. 132–137. [Google Scholar]
- Jaagus, J.; Aasa, A.; Aniskevich, S.; Boincean, B.; Bojariu, R.; Briede, A.; Danilovich, I.; Castro, F.D.; Dumitrescu, A.; Labuda, M. Long-term changes in drought indices in eastern and central Europe. Int. J. Climatol. 2022, 42, 225–249. [Google Scholar] [CrossRef]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Kożuchowski, K.; Degirmendžić, J. Contemporary changes of climate in Poland: Trends and variation in thermal and solar conditions related to plant vegetation. Pol. J. Ecol. 2005, 53, 283–297. [Google Scholar]
- Okoniewska, M.; Szumińska, D. Changes in Potential Evaporation in the Years 1952–2018 in North-Western Poland in Terms of the Impact of Climatic Changes on Hydrological and Hydrochemical Conditions. Water 2020, 12, 877. [Google Scholar] [CrossRef]
- Poznikova, G. The Drought Indication Based on the Ratio between Potential Evapotranspiration and Precipitation at Different Sites in the Czech Republic over the Last 50 Years. In Environmental Changes and Adaptation Strategies; Šiška, B., Ed.; Slovenská Bioklimatologická Spoločnosť, Česká Bioklima-Tologická Společnost: Slovakia, Skalica, 2013. [Google Scholar]
- Brázdil, R.; Chromá, K.; Dobrovolný, P.; Tolasz, R. Climate fluctuations in the Czech Republic during the period 1961–2005. Int. J. Climatol. 2008, 29, 223–242. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V. Changes in drought features at the European level over the last 120 years. Nat. Hazards Earth Syst. Sci. 2021, 21, 1685–1701. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef]
- EEA. Meteorological and Hydrological Droughts in Europe. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/river-flow-drought-3/assessment (accessed on 5 January 2022).
- Graczyk, D.; Kundzewicz, Z. Changes in thermal extremes in Poland. Acta Geophys. 2014, 62, 1435–1445. [Google Scholar] [CrossRef]
- Rebetez, M.; Mayer, H.; Dupont, O.; Schindler, D.; Gartner, K.; Kropp, J.P.; Menzel, A. Heat and drought 2003 in Europe: A climate synthesis. Ann. For. Sci. 2006, 63, 569–577. [Google Scholar] [CrossRef]
- Sedlmeier, K.; Feldmann, H.; Schädler, G. Compound summer temperature and precipitation extremes over central Europe. Theor. Appl. Climatol. 2018, 131, 1493–1501. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V. Forecasting low flow conditions months in advance through teleconnection patterns, with a special focus on summer 2018. Sci. Rep. 2020, 10, 13258. [Google Scholar] [CrossRef]
- Urban, G.; Kuchar, L.; Kępińska-Kasprzak, M.; Łaszyca, E. A Climatic water balance variability during the growing season in Poland in the context of modern climate change. Meteorol. Z. 2022, 31, 349–365. [Google Scholar] [CrossRef]
- Kalbarczyk, R.; Kalbarczyk, E. Research into Meteorological Drought in Poland during the Growing Season from 1951 to 2020 Using the Standardized Precipitation Index. Agronomy 2022, 12, 2035. [Google Scholar] [CrossRef]
- Somorowska, U. Wzrost zagrożenia suszą hydrologiczną w różnych regionach geograficznych Polski w XX wieku (Increase in the hydrological drought risk in different geographical regions of Poland in the 20th century). Geogr. Works Stud. 2009, 43, 97–114. Available online: https://wgsr.uw.edu.pl/wgsr/wp-content/uploads/2018/11/Somorowska.pdf (accessed on 5 January 2023).
- Řehoř, J.; Brázdil, R.; Trnka, M.; Lhotka, O.; Balek, J.; Možný, M.; Štěpánek, P.; Zahradníček, P.; Mikulová, K.; Turna, M. Soil drought and circulation types in a longitudinal transect over central Europe. Int. J. Climatol. 2021, 41, E2834–E2850. [Google Scholar] [CrossRef]
- Szwed, M. The elements of water balance in the changing climate in Poland. Adv. Meteorol. 2015, 5, 149674. [Google Scholar] [CrossRef]
- Somorowska, U. Changes in drought conditions in Poland over the past 60 years evaluated by the Standardized Precipitation-Evapotranspiration Index. Acta Geophys. 2016, 64, 2530–2549. [Google Scholar] [CrossRef]
- Pluntke, T.; Schwarzak, S.; Kuhn, K.; Lunich, K.; Adynkiewicz-Piragas, M.; Otop, I.; Miszuk, B. Climate analysis as a basis for a sustainable water management at the Lusatian Neisse. Meteorol. Hydrol. Water Manag. 2016, 4, 3–11. [Google Scholar] [CrossRef]
- Bakke, S.J.; Ionita, M.; Tallaksen, L.M. The 2018 northern European hydrological drought and its drivers in a historical perspective. Hydrol. Earth Syst. Sci. 2020, 24, 5621–5653. [Google Scholar] [CrossRef]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. 2020, 10, 12207. [Google Scholar] [CrossRef] [PubMed]
- Ionita, M.; Nagavciuc, V.; Kumar, R.; Rakovec, O. On the curious case of the recent decade, mid-spring precipitation deficit in central Europe. NPJ Clim. Atmos. Sci. 2020, 3, 49. [Google Scholar] [CrossRef]
- Ionita, M.; Dima, M.; Nagavciuc, V.; Scholz, P.; Lohmann, G. Past megadroughts in central Europe were longer, more severe and less warm than modern droughts. Commun. Earth Environ. 2021, 2, 61. [Google Scholar] [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- WMO-No. 1090; Standardized Precipitation Index. User Guide. WMO: Geneva, Switzerland, 2012.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A calculation algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln declaration on drought indices: Universal meteorological drought index recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- No.1090; Standardized Precipitation Index User Guide. World Meteorological Organization: Geneva, Switzerland, 2012; p. 24.
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Hargreaves, G.H. Defining and Using Reference Evapotranspiration. J. Irrig. Drain. Eng. 1994, 120, 1132–1139. [Google Scholar] [CrossRef]
- Bogawski, P.; Bednorz, E. Comparison and validation of selected evapotranspiration models for conditions in Poland (Central Europe). Water Resour. Manag. 2014, 28, 5021–5038. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration—Guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper, No. 56; FAO: Rome, Italy, 1998; p. 290. ISBN 92-5-104219-5. [Google Scholar]
- Stagge, J.H.; Tallaksen, L.M.; Xu, C.-Y.; Van Lanen, H.A.J. Standardized Precipitation-Evapotranspiration Index (SPEI): Sensitivity to potential evapotranspiration model and parameters. Hydrology in a Changing World: Environmnetal and Human Dimensions. In Proceedings of FRIEND-Water 2014, Montpellier, France, 7–10 October 2014; Daniell, T.M., Ed.; IAHS Publ. No. 363; IAHS Press, Centre for Ecology and Hydrology: Wallingford, UK, 2014; pp. 367–373. [Google Scholar]
- Available online: https://cran.r-project.org/web/packages/SPEI/index.html (accessed on 20 April 2023).
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Murphy, C.; Hannaford, J.; Reig, F.; Peña-Angulo, D.; Tramblay, Y.; Trigo, R.M.; Mac Donald, N.; Luna, M.Y.; et al. Long-term variability and trends in meteorological droughts in Western Europe (1851–2018). Int. J. Climatol. 2021, 41, E690–E717. [Google Scholar] [CrossRef]
- Wibig, J. Warunki wilgotnościowe w Polsce w świetle wskaźnika standaryzowanego klimatycznego bilansu wodnego (Moisture conditions in Poland in view of the SPEI index). Woda Środ. Obsz. Wiej. 2012, 12, 329–340. [Google Scholar]
- Zielińska, M. Statystyczne metody opracowania niżówek (Statistical methods for low-flows evaluation). Prz. Geofiz. 1964, 2, 109–120. [Google Scholar]
- Tokarczyk, T. Niżówka Jako Wskaźnik Suszy Hydrologicznej (Low-Flows as an Index of Hydrological Drought); Instytut Meteorologii i Gospodarki Wodnej—Państwowy Instytut Badawczy: Warszawa, Poland, 2010; p. 164. [Google Scholar]
- Raczyński, K. Metody separacji niżówek na zdarzenia niezależne na przykładzie rzek Polski Wschodniej (Methods of separating low flows into independent episodes applied to rivers of Eastern Poland). Woda Środ. Obsz. Wiej. 2015, 15, 39–56. [Google Scholar]
- Tokarczyk, T. Wskaźniki oceny suszu stosowane w Polsce i na świecie (Widely applied indices for drought assessment and Polish application). Infrastrukt. I Ekol. Teren. Wiej. 2008, 8, 167–182. [Google Scholar]
- Biuletyn Monitoringu Klimatu Polski (Bulletin of Monitoring of Climate Conditions in Poland). 2018. Available online: http://klimat.pogodynka.pl/pl/biuletyn-monitoring/#2018/rok (accessed on 25 October 2022).
- Biuletyn Monitoringu Klimatu Polski (Bulletin of Monitoring of Climate Conditions in Poland). 2019. Available online: http://klimat.pogodynka.pl/pl/biuletyn-monitoring/#2019/rok (accessed on 25 October 2022).
- Dz.U. z 2021 r. poz. 1475, ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY1) z dnia 25 Czerwca 2021 r. w Sprawie Klasyfikacji Stanu Ekologicznego, Potencjału ekologicznego i Stanu Chemicznego oraz Sposobu Klasyfikacji Stanu Jednolitych Części Wód Powierzchniowych, a Także Środowiskowych Norm Jakości dla Substancji Priorytetowych (Journal of Laws of 2021, Item 1475, REGULATION OF THE MINISTER OF INFRASTRUCTURE1) of 25 June 2021 on the Classification of Ecological Status, Ecological Potential, Chemical Status and the Method of Classification of the State of Surface Water Bodies, as Well as Environmental Quality Standards for Priority Substances). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210001475/O/D20211475.pdf (accessed on 25 October 2022).
- Kundzewicz, Z.W.; Matczak, P. Climate change regional review: Poland. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 297–311. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Hov, O.; Okruszko, T. Zmiany klimatu i ich Wpływ na Wybrane Sektory w Polsce (Climate Changes and Their Impact on Selected Sectors in Poland); ISRL PAN: Poznań, Poland, 2017; p. 273. [Google Scholar]
- Karczun, Z.M.; Kozyra, J. Wpływ Zmiany Klimatu w Zmiany Klimatu na Bezpieczeństwo Żywnościowe Polski (The Influence of Climate on Food Security in Poland); Szkoła Główna Gospodarstwa Wiejskiego: Warszawa, Poland, 2020; p. 119. [Google Scholar]
- Moździoch, M.; Ploch, A. Zmiany klimatyczne a ubezpieczenia upraw rolnych (Climatic changes and crop insurance). Wiadomości Ubezpieczeniowe 2010, 3, 133–150. [Google Scholar]
- Łabędzki, L.; Bąk, B. Impact of meteorological drought on crop water deficit and crop yield reduction in Polish agriculture. J. Water Land Dev. 2017, 34, 181–190. [Google Scholar] [CrossRef]
- Brás, T.A.; Seixas, J.; Carvalhais, N.; Jagermeyr, J. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett. 2021, 16, 065012. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Zaleski, J.; Nachlik, E.; Januchta-Szostak, A. Gospodarowanie wodą—Wyzwania dla Polski (Managing water—Challenges for Poland). Nauka 2021, 1, 79–102. [Google Scholar] [CrossRef]
- Statistics Poland. Local Data Bank. Available online: https://bdl.stat.gov.pl/bdl/start (accessed on 20 April 2023).
- Peters, W.; Bastos, A.; Ciasis, P.; Vermeulens, A. A historical, geographical and ecological perspective on the 2018 European summer drought. Phil. Trans. R. Soc. 2020, 375, 20190505. [Google Scholar] [CrossRef] [PubMed]
- Cammalleri, C.; Naumann, G.; Mentaschi, L.; Formetta, G.; Forzieri, G.; Gosling, S.; Bisselink, B.; De Roo, A.; Feyen, L. Global Warming and Drought Impacts in the EU.; Publications Office of the European Union: Luxembourg, 2020; p. JRC118585. [Google Scholar] [CrossRef]
- Paltan, H.A.; Pant, R.; Braeckman, J.P.; Dadson, S. Increased water risks to global hydropower in 1.5 °C and 2.0 °C Warmer Worlds. J. Hydrol. 2021, 599, 126503. [Google Scholar] [CrossRef]
- Naumann, G.; Spinoni, J.; Vogt, J.; Barbosa, P. Assessment of drought damages and their uncertainties in Europe. Environ. Res. Lett. 2015, 10, 124013. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, J.; Popat, E.; Herbert, C.; Döll, P. Analyzing the impact of streamflow drought on hydroelectricity production: A global scale study. Water Resour. Res. 2021, 57, e2020WR028087. [Google Scholar] [CrossRef]
- Dubicki, A. Ilościowy i Jakościowy Bilans Wodnogospodarczy Nysy Łużyckiej (Quantitative and Qualitative Water and Economic Balance of the Lusatian Neisse River); Instytut Meteorologii i Gospodarki Wodnej: Wrocław, Poland, 2001; Unpublished work. [Google Scholar]
- Copernicus. European State of the Climate 2018. ECMWF. 2019. Available online: https://climate.copernicus.eu/sites/default/files/2019-04/Brochure_Final_Interactive.pdf (accessed on 23 February 2023).
- Zscheischler, J.; Fischer, E.M. The record-breaking compound hot and dry 2018 growing season in Germany. Weather. Clim. Extremes 2020, 29, 100270. [Google Scholar] [CrossRef]
- van Oldenborgh, G.; Sjoukje, P.; Sarah, K.; Vautard, R.; Boucher, O.; Otto, F.; Haustein, K.; Soubeyroux, J.-M.; Ribes, A.; Robin, Y.; et al. Human contribution to the record-breaking June 2019 heat wave in France. Environ. Sci. 2019, 15, 100270. Available online: https://www.worldweatherattribution.org/wp-content/uploads/WWA-Science_France_heat_June_2019.pdf (accessed on 27 February 2023).
- Tomczyk, A.M. Bioclimatic Conditions of June 2019 in Poland on a Multi-Year Background (1966–2019). Atmosphere 2021, 12, 1117. [Google Scholar] [CrossRef]
- Miszuk, B. Warunki termiczne i biotermiczne na Dolnym Śląsku w 2019 roku (Thermal and bio-thermal conditions in Lower Silesia in 2019). Przegl. Geofiz. 2021, LXVI, 1–2, 43–64. [Google Scholar] [CrossRef]
- Kępińska-Kasprzak, M.; Struzik, P. Monitoring of Plant Cultivation Conditions Using Ground Measurements and Satellite Products. Water 2023, 15, 449. [Google Scholar] [CrossRef]
- Ziernicka-Wojtaszek, A. Summer Drought in 2019 on Polish Territory—A Case Study. Atmosphere 2021, 12, 1475. [Google Scholar] [CrossRef]
- Boergens, E.; Güntner, A.; Dobslaw, H.; Dahle, C. Quantifying the Central European Droughts in 2018 and2019 With GRACE Follow-On. Geophys. Res. Lett. 2020, 47, e2020GL087285. [Google Scholar] [CrossRef]
- Samorowska, U. Amplified signals of soil moisture and evaporative stresses across Poland in the twenty-first century. Sci. Total Environ. 2022, 812, 151465. [Google Scholar] [CrossRef]
- Mehler, S.; Völlings, A.; Flügel, I.; Szymanowski, M.; Błaś, M.; Sobik, M.; Migała, K.; Werner, M.; Kryza, M.; Miszuk, B.; et al. Zmiany Klimatu w Regionie Granicznym Polski i Saksonii (Climate Changes in the Polish-Saxon Border Region); Sächsisches Landesamtfür Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2014; p. 80. [Google Scholar]
- Stagl, J.; Mayr, E.; Koch, H.; Hattermann, F.F.; Huang, S. Effects of Climate Change on the Hydrological Cycle in Central and Eastern Europe. In Managing Protected Areas in Central and Eastern Europe Under Climate Change, Rannov, S., Neubert, M. Eds. Adv. Glob. Chang. Res. 2014, 58, 31–43. [Google Scholar] [CrossRef]
- Bokwa, A.; Klimek, M.; Krzaklewski, P.; Kukułka, W. Drought Trends in the Polish Carpathian Mts. in the Years 1991–2020. Atmosphere 2021, 12, 1259. [Google Scholar] [CrossRef]
- Kożuchowski, K.; Żmudźka, E. 100-year series of areally averaged temperatures and precipitation totals in Poland. Acta Univ. Wratisl. 2003, 2542, 116–122. [Google Scholar]
- Czarnecka, M.; Nidzgorska-Lencewicz, J. Wieloletnia zmienność sezonowych opadów w Polsce (Multiannual variability of seasonal precipitation in Poland). Woda Środ. Obsz. Wiej. 2012, 12, 45–60. [Google Scholar]
- Blauhut, V.; Stoelzle, M.; Ahopelto, L.; Brunner, M.I. Lessons from the 2018–2019 European droughts: A collective need for unifying drought risk management. NHESS 2021, 22, 2201–2217. [Google Scholar] [CrossRef]
- Araźny, A.; Bartczak, A.; Maszewski, R.; Krzemiński, M. The influence of atmospheric circulation on the occurrence of dry and wet periods in Central Poland in 1954–2018. Theor. Appl. Climatol. 2021, 146, 1079–1095. [Google Scholar] [CrossRef]
- Conradt, T.; Engelhardt, H.; Menz, C.; Vicente-Serrano, S.M.; Farizo, B.A.; Peña-Angulo, D.; Domínguez-Castro, F.; Eklundh, L.; Jin, H.; Boincean, B.; et al. Cross-sectoral impacts of the 2018–2019 Central European drought and climate resilience in the German part of the Elbe River basin. Reg. Environ. Chang. 2023, 23, 32. [Google Scholar] [CrossRef]
- Hejduk, L.; Kaznowska, E.; Wasilewicz, M.; Hejduk, A. Hydrological Droughts in the Białowieża Primeval Forest, Poland, in the Years 1951–2020. Forests 2021, 12, 1744. [Google Scholar] [CrossRef]
- De Brito, M.M.; Kuhlicke, C. Cascading Effects of the 2018–2019 German Drought: Empirical Evidence from Media Reports. EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9499. Available online: https://www.researchgate.net/publication/341234233_Cascading_effects_of_the_2018-2019_German_drought_empirical_evidence_from_media_reports (accessed on 24 February 2023). [CrossRef]
- Klages, S.; Heidecke, C.; Osterburg, B. The Impact of Agricultural Production and Policy on Water Quality during the Dry Year 2018, a Case Study from Germany. Water J. 2020, 12, 1519. [Google Scholar] [CrossRef]
- Moravec, V.; Markonis, Y.; Rakovec, O.; Svoboda, M.; Trnka, M.; Kumar, R.; Hanel, M. Europe under multi-year droughts: How severe was the 2014–2018 drought period? Environ. Res. Lett. 2021, 16, 034062. [Google Scholar] [CrossRef]
- Oleksiak, T.; Spyroglou, I.; Pacoń, D.; Matysik, P.; Pernisová, M.; Rybka, K. Effect of drought on wheat production in Poland between 1961 and 2019. Crop. Sci. 2022, 62, 728–734. [Google Scholar] [CrossRef]
- Ocena Susz Oraz Ich Konsekwencji w Zlewni Nysy Łużyckiej i Jej Otoczeniu (Powiat Zgorzelecki, Żarski Oraz Powiat GÖRLITZ) Assessment of Droughts and Their Consequences in the Catchment of the Lusatian Neisse and Its Surroundings (Zgorzelec District, Żary District and Görlitz District). 2020. Available online: http://neymo.imgw.pl/pub/NEYMO-NW_Zadanie_1.2_raport_PL.pdf (accessed on 25 October 2022).
- Adynkiewicz-Piragas, M.; Miszuk, B. Risk Analysis Related to Impact of Climate Change on Water Resources and Hydropower Production in the Lusatian Neisse River Basin. Sustainability 2020, 12, 5060. [Google Scholar] [CrossRef]
- Koch, H.; Vögele, S.; Kaltofen, M.; Grossmann, M.; Grünewald, U. Security of Water Supply and Electricity Production: Aspects of Integrated Management. Water Resour. Manag. 2014, 28, 1767–1780. [Google Scholar] [CrossRef]
- Peszek, Ł.; Zgrundo, A.; Noga, T.; Kochman-Kędziora, N.; Poradowska, A.; Rybak, M.; Puchalski, C.; Lee, J. The influence of drought on diatom assemblages in a temperate climate zone: A case study from the Carpathian Mountains, Poland. Ecol. Indic. 2021, 21, 107579. [Google Scholar] [CrossRef]
- Peña-Guerrero, M.D.; Nauditt, A.; Muñoz-Robles, C.; Ribbe, L.; Meza, F. Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile. Hydrol. Sci. J. 2020, 65, 1005–1021. [Google Scholar] [CrossRef]
- Mosley, L.M. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Van Vilet, M.T.H.; Zwolsman, J.J.G. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 2008, 353, 1–17. [Google Scholar] [CrossRef]
- Sabater, S.; Barcelo, D. Water scarcity in the Mediterranean: Perspectives under global change. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2010; p. 311. [Google Scholar]
- Barthes, A.; Leflaive, J.; Coulon, S.; Peres, F.; Rols, J.L.; Ten-Hage, L. Impact of drought on diatom communities and the consequences for the use of diatom index values in the River Maureillas (Pyrenees-Orientales, France). River Res. Appl. 2015, 31, 993–1002. [Google Scholar] [CrossRef]
- Boix, D.; Garcia-Berthou, E.; Gascon, S.; Benejam, L.; Tornes, E.; Sala, J.; Benito, J.; Munne, A.; Sola, C.; Sabater, S. Response of community structure to sustained drought in Mediterranean rivers. J. Hydrol. 2010, 383, 135–146. [Google Scholar] [CrossRef]
- Calapez, A.R.; Elias, C.L.; Almeida, S.F.P.; Feio, M.J. Extreme drought effects and recovery patterns in the benthic communities of temperate streams. Limnetica 2014, 33, 281–296. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought as a natural hazard: Concepts and definitions. In Drought: A Global Assessment; Wilhite, D.A., Ed.; Routledge Publishers: Londyn, UK, 2000; pp. 3–18. [Google Scholar]
- Wilhite, D.A.; Svoboda, M.D. Drought early warning systems in the context of drought preparedness and mitigation. In Early Warning Systems for Drought Preparedness and Drought Management; Wilhite, D.A., Sivakumar, M.V.K., Wood, D.A., Eds.; World Meteorological Organization: Geneva, Switzerland, 2000; pp. 1–21. [Google Scholar]
- Tokarczyk, T.; Szalińska, W.; Adynkiewicz-Piragas, M.; Ciupak, M.; Miszuk, B.; Malicka, J.; Djaków, P. Uwarunkowania Klimatyczne i Hydrologiczne Planowanego Przedsięwzięcia Kontynuacji Eksploatacji Złoża Węgla Brunatnego, Turów” (Climatic and Hydrological Conditions of the Planned Continued Exploitation of the Lignite in the Turów Mine); IMGW-PIB: Wrocław, Poland, 2020; p. 50. Available online: https://kwbturow.pgegiek.pl/Ochrona-srodowiska/uwarunkowania-klimatyczne-i-hydrologiczne (accessed on 12 April 2023).
Dryness and Wetness Conditions | SPI and SPEI |
---|---|
Extreme drought | ≤−2.0 |
Severe drought | −2.0 < SPI ≤ −1.5 |
Moderate drought | −1.5 < SPI ≤ −0.5 |
Normal (normal conditions, no drought) | −0.5 < SPI ≤ 0.5 |
Moderately wet | 0.5 < SPI ≤ 1.5 |
Very wet | 1.5 < SPI ≤ 2.0 |
Extremely wet | >2.0 |
Water Gauge | Year | Start–End Date | Number of Days with Discharge Below | Resource Million m3 | Deficit Million m3 | ||
---|---|---|---|---|---|---|---|
Number of Days | Q70% | Q90% | Q95% | ||||
Porajów | 2018 | 30 May–21 December | 222 | 175 | 156 | 144.4 | 28.2 |
236 | |||||||
2019–2020 | 14 June 2019–1 February 2020 | 225 | 165 | 129 | 136.9 | 24.9 | |
235 | |||||||
Sieniawka | 2018 | 10 April–20 December | 244 | 205 | 183 | 213.2 | 49.5 |
255 | |||||||
2019–2020 | 8 June 2019–27 January 2020 | 217 | 133 | 71 | 213.2 | 28.2 | |
234 | |||||||
Zgorzelec | 2018 | 1 May–21 December | 226 | 184 | 161 | 365.8 | 68.6 |
235 | |||||||
2019–2020 | 15 June 2019–31 January 2020 | 212 | 155 | 124 | 356.4 | 56.8 | |
231 | |||||||
Przewóz | 2018 | 6 May–22 December | 222 | 182 | 153 | 444.7 | 86.0 |
231 | |||||||
2019–2020 | 16 June 2019–1 February 2020 | 219 | 148 | 110 | 400.5 | 69.6 | |
231 |
Water Quality Indicator | Unit | Value (Water Quality Class)/Year | |||||
---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | ||
pH | - | 7.542 (I) | 7.633 (II) | 7.675 (I) | 7.750 (I) | 7.664 (I) | 7.550 (I) |
BOD5 | mg/L O2 | 2.825 (II) | 3.675 (II) | 2.850 (II) | 2.475 (I) | 3.227 (II) | 3.417 (II) |
Phosphates | mg/L PO43− | 0.101 (I) | 0.146 (below II) | 0.061 (I) | 0.027 (I) | 0.037 (I) | 0.047 (I) |
Nitrate nitrogen | mg/L N-NO3− | 2.003 (II) | 2.303 (II) | 2.365 (II) | 1.996 | 2.661 (below II) | 2.087 (II) |
Nitrite nitrogen | mg/L N-NO2− | 0.018 (II) | 0.020 (II) | 0.013 (II) | 0.021 | 0.032 (below II) | 0.021 (II) |
Kjeldahl nitrogen | mg/L N | 1.302 (II) | 1.877 (below II) | 0.729 (I) | 0.888 | 1.230 (II) | 0.505 (I) |
Total nitrogen | mg/L N | 3.317 (II) | 3.973 (below II) | 3.107 (II) | 2.830 | 3.912 (below II) | 2.921 (II) |
Total solid | mg/L | 15.342 (II) | 13.075 (II) | 14.333 (II) | 7.267 (I) | 25.255 (below II) | 11.442 (II) |
Sulphate | mg/L SO42− | 87.692 (below II) | 74.058 (II) | 68.417 (II) | 78.600 (below II) | 85.836 (below II) | 74.509 (II) |
Chloride | mg/L Cl− | 33.950 (II) | 25.150 (II) | 26.333 (II) | 32.500 | 36.800 (below II) | 29.060 (II) |
Sample Point | Diatom Index Value (Water Quality Class)/Year | ||
---|---|---|---|
2018 | 2019 | 2020 | |
Bielawa | 0.42 (II) | 0.48 (II) | 0.57 (I) |
Sanice | 0.5 (II) | 0.38 (III) | 0.58 (I) |
Potok | 0.6 (I) | 0.65 (I) | 0.56 (I) |
Siedlec | 0.58 (I) | 0.58 (I) | 0.55 (I) |
Olszyna | 0.6 (I) | 0.53 (II) | 0.63 (I) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otop, I.; Adynkiewicz-Piragas, M.; Zdralewicz, I.; Lejcuś, I.; Miszuk, B. The Drought of 2018–2019 in the Lusatian Neisse River Catchment in Relation to the Multiannual Conditions. Water 2023, 15, 1647. https://doi.org/10.3390/w15091647
Otop I, Adynkiewicz-Piragas M, Zdralewicz I, Lejcuś I, Miszuk B. The Drought of 2018–2019 in the Lusatian Neisse River Catchment in Relation to the Multiannual Conditions. Water. 2023; 15(9):1647. https://doi.org/10.3390/w15091647
Chicago/Turabian StyleOtop, Irena, Mariusz Adynkiewicz-Piragas, Iwona Zdralewicz, Iwona Lejcuś, and Bartłomiej Miszuk. 2023. "The Drought of 2018–2019 in the Lusatian Neisse River Catchment in Relation to the Multiannual Conditions" Water 15, no. 9: 1647. https://doi.org/10.3390/w15091647
APA StyleOtop, I., Adynkiewicz-Piragas, M., Zdralewicz, I., Lejcuś, I., & Miszuk, B. (2023). The Drought of 2018–2019 in the Lusatian Neisse River Catchment in Relation to the Multiannual Conditions. Water, 15(9), 1647. https://doi.org/10.3390/w15091647