Application of Artificial Neural Networks for Predicting Small Urban-Reservoir Volumes: The Case of Torregrotta Town (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Description of the Existing Reservoirs and Water Network
2.3. Data Acquisition
3. Development of the ANN Model
3.1. Data Arrangement
3.2. Performance Evaluation
3.3. ANN Efficiency
4. Prediction of Environmental Variables
4.1. From Yearly to Monthly Water Demand
4.2. From Monthly to Hourly Water Demand
5. Sizing of the Reservoir Volume
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNESCO. The United Nations World Water Development Report 2015: Water for a Sustainable World; Technical Report Water and Climate Change; UNESCO: Paris, France, 2015. [Google Scholar]
- Ehsani, N.; Vörösmarty, C.J.; Fekete, B.M.; Stakhiv, E.Z. Reservoir operations under climate change: Storage capacity options to mitigate risk. J. Hydrol. 2017, 555, 435–446. [Google Scholar] [CrossRef]
- Milano, V. Acquedotti; Hoepli Editore: Milano, Italy, 1996. [Google Scholar]
- van Zyl, J.E.; Piller, O.; Le Gat, Y. Sizing municipal storage tanks based on reliability criteria. J. Water Resour. Plan. Manag. 2008, 134, 548–555. [Google Scholar] [CrossRef]
- Assessorato Regione Sicilia. Piano di Tutela delle Acque, Sicilia; Assessorato Regione Sicilia: Sicily, Italy, 1999. [Google Scholar]
- Margaritora, G.; Moriconi, P. Consumi idropotabili del comune di Roma. In Proceedings of the La Conoscenza Dei Consumi Per Una Migliore Gestione Delle Infrastrutture Acquedottistiche, Sorrento, Italy, 9–10 September 1990; pp. 9–11. [Google Scholar]
- Stańczyk, J.; Kajewska-Szkudlarek, J.; Lipiński, P.; Rychlikowski, P. Improving short-term water demand forecasting using evolutionary algorithms. Sci. Rep. 2022, 12, 13522. [Google Scholar] [CrossRef]
- Chen, J.; Boccelli, D. Demand Forecasting for Water Distribution Systems. Procedia Eng. 2014, 70, 339–342. [Google Scholar] [CrossRef]
- Hemati, A.; Rippy, M.A.; Grant, S.B.; Davis, K.; Feldman, D. Deconstructing Demand: The Anthropogenic and Climatic Drivers of Urban Water Consumption. Environ. Sci. Technol. 2016, 50, 12557–12566. [Google Scholar] [CrossRef] [PubMed]
- Ghisi, E. Parameters influencing the sizing of rainwater tanks for use in houses. Water Resour. Manag. 2010, 24, 2381–2403. [Google Scholar] [CrossRef]
- Okeola, O.; Balogun, S. Estimating a municipal water supply reliability. Cogent Eng. 2015, 2, 1012988. [Google Scholar] [CrossRef]
- Georgakakos, A.P.; Marks, D.H. A new method for the real-time operation of reservoir systems. Water Resour. Res. 1987, 23, 1376–1390. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. A Monte Carlo approach to water management. In Proceedings of the Geophysical Research Abstracts, European Geosciences Union General Assembly, Vienna, Austria, 22–27 April 2012; Volume 14. [Google Scholar]
- Marton, D.; Stary, M.; Menšik, P. The influence of uncertainties in the calculation of mean monthly discharges on reservoir storage. J. Hydrol. Hydromech. 2011, 59, 228–237. [Google Scholar] [CrossRef]
- Psarrou, E.; Tsoukalas, I.; Makropoulos, C. A Monte-Carlo-Based Method for the Optimal Placement and Operation Scheduling of Sewer Mining Units in Urban Wastewater Networks. Water 2018, 10, 200. [Google Scholar] [CrossRef]
- Sieber, J.; Yates, D.; Huber Lee, A.; Purkey, D. WEAP: A demand priority and preference driven water planning model: Part 1, model characteristics. Water Int. 2005, 30, 487–500. [Google Scholar]
- Sigvaldson, O.T. A simulation model for operating a multipurpose multireservoir system. Water Resour. Res. 1976, 12, 263–278. [Google Scholar] [CrossRef]
- Klipsch, J.D.; Evans, T.A. Reservoir operations modeling with HEC-ResSim. In Proceedings of the Third Federal Interagency Hydrologic Modeling Conference, Reno, NV, USA, 2–5 April 2006; Volume 3. [Google Scholar]
- Kim, J.; Read, L.; Johnson, L.E.; Gochis, D.; Cifelli, R.; Han, H. An experiment on reservoir representation schemes to improve hydrologic prediction: Coupling the national water model with the HEC-ResSim. Hydrol. Sci. J. 2020, 65, 1652–1666. [Google Scholar] [CrossRef]
- Lévite, H.; Sally, H.; Cour, J. Testing water demand management scenarios in a water-stressed basin in South Africa: Application of the WEAP model. Phys. Chem. Earth Parts A/B/C 2003, 28, 779–786. [Google Scholar] [CrossRef]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21—A Demand-, Priority-, and Preference-Driven Water Planning Model. Water Int. 2009, 30, 487–500. [Google Scholar] [CrossRef]
- Draper, A.J.; Munévar, A.; Arora, S.K.; Reyes, E.; Parker, N.L.; Chung, F.I.; Peterson, L.E. CalSim: Generalized model for reservoir system analysis. J. Water Resour. Plan. Manag. 2004, 130, 480–489. [Google Scholar] [CrossRef]
- Draper, A.J.; Lund, J.R. Optimal hedging and carryover storage value. J. Water Resour. Plan. Manag. 2004, 130, 83–87. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, J.; Peng, Q.; Wang, D.; Yang, T.; Sorooshian, S.; Liu, X.; Zhuang, J. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. J. Hydrol. 2018, 565, 720–736. [Google Scholar] [CrossRef]
- Hejazi, M.I.; Cai, X. Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm. Adv. Water Resour. 2009, 32, 582–593. [Google Scholar] [CrossRef]
- Cho, K.; Kim, Y. Improving streamflow prediction in the WRF-Hydro model with LSTM networks. J. Hydrol. 2022, 605, 127297. [Google Scholar] [CrossRef]
- Ghiassi, M.; Zimbra, D.K.; Saidane, H. Urban water demand forecasting with a dynamic artificial neural network model. J. Water Resour. Plan. Manag. 2008, 134, 138–146. [Google Scholar] [CrossRef]
- Salloom, T.; Kaynak, O.; He, W. A novel deep neural network architecture for real-time water demand forecasting. J. Hydrol. 2021, 599, 126353. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Abdulkareem, I.H.; Hashim, K.S.; Al-Bugharbee, H.; Ridha, H.M.; Gharghan, S.K.; Al-Qaim, F.F.; Muradov, M.; Kot, P.; Al-Khaddar, R. Hybridised artificial neural network model with slime mould algorithm: A novel methodology for prediction of urban stochastic water demand. Water 2020, 12, 2692. [Google Scholar] [CrossRef]
- Walker, D.; Creaco, E.; Vamvakeridou-Lyroudia, L.; Farmani, R.; Kapelan, Z.; Savić, D. Forecasting domestic water consumption from smart meter readings using statistical methods and artificial neural networks. Procedia Eng. 2015, 119, 1419–1428. [Google Scholar] [CrossRef]
- Yang, S.; Yang, D.; Chen, J.; Zhao, B. Real-time reservoir operation using recurrent neural networks and inflow forecast from a distributed hydrological model. J. Hydrol. 2019, 579, 124229. [Google Scholar] [CrossRef]
- Özdoğan-Sarıkoç, G.; Sarıkoç, M.; Celik, M.; Dadaser-Celik, F. Reservoir volume forecasting using artificial intelligence-based models: Artificial Neural Networks, Support Vector Regression, and Long Short-Term Memory. J. Hydrol. 2023, 616, 128766. [Google Scholar] [CrossRef]
- Oyebode, O.; Ighravwe, D.E. Urban Water Demand Forecasting: A Comparative Evaluation of Conventional and Soft Computing Techniques. Resources 2019, 8, 156. [Google Scholar] [CrossRef]
- Merlino, G. Progetto dell’Acquedotto ACAVN, in Italian. 1972. Available online: http://www.acavn.it (accessed on 30 September 2022).
- Risposta a Domanda Consiliare, III Area Territorio ed Ambiente, “Appunti del Fontaniere” 2019, in Italian. Available online: http://www.comune.torregrotta.me.it (accessed on 30 September 2022).
- ACAVN. Available online: http://www.acavn.it (accessed on 30 September 2022).
- Annali Idrologici Sicilia. Available online: https://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia/annali-idrologici (accessed on 30 September 2022).
- DemoIstat. Available online: https://demo.istat.it/ (accessed on 30 September 2022).
- Comune di Torregrotta. Available online: https://www.comune.torregrotta.me.it/i-area-amministrativa-e-servizi-alla-persona-ed-alle-imprese/servizio-demografico/ (accessed on 30 September 2022).
- Copernicus. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 30 September 2022).
- Li, H.; Liu, Z.; Liu, K.; Zhang, Z. Predictive power of machine learning for optimizing solar water heater performance: The potential application of high-throughput screening. Int. J. Photoenergy 2017, 2017, 4194251. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Chollet, F.K. Available online: https://keras.io (accessed on 14 August 2019).
- Tetko, I.V.; Livingstone, D.J.; Luik, A.I. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf. Comput. Sci. 1995, 35, 826–833. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Liu, Z. Application of artificial neural networks for catalysis: A review. Catalysts 2017, 7, 306. [Google Scholar] [CrossRef]
- IPCC Report towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies; Technical Report; Moss and Others: Geneva, Switzerland, 2008.
- Istat. Available online: https://www.istat.it/it/archivio/263995 (accessed on 30 September 2022).
- Frega, G.C. Lezioni di Acquedotti e Fognature; Liguori Pub.: Naples, Italy, 1984. [Google Scholar]
- Erto, P. Probabilità e Statistica: Per le Scienze e L’ingegneria; McGraw-Hill: Milano, Italy, 1999. [Google Scholar]
Numbers of Neurons | Data Training | Data Testing | ||||
---|---|---|---|---|---|---|
r | m3 | r | m3 | |||
5 | 0.824 | 1423.20 | 0.732 | 0.798 | 1501.80 | 0.694 |
8 | 0.931 | 1364.22 | 0.821 | 0.907 | 1411.82 | 0.817 |
13 | 0.961 | 1234.50 | 0.920 | 0.947 | 1253.78 | 0.947 |
15 | 0.908 | 1345.10 | 0.897 | 0.929 | 1378.90 | 0.881 |
Max Iteration | Data Training | Data Testing | ||||
---|---|---|---|---|---|---|
r | m3 | r | m3 | |||
2000 | 0.961 | 1234.50 | 0.920 | 0.947 | 1253.78 | 0.947 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saya, B.; Faraci, C. Application of Artificial Neural Networks for Predicting Small Urban-Reservoir Volumes: The Case of Torregrotta Town (Italy). Water 2023, 15, 1747. https://doi.org/10.3390/w15091747
Saya B, Faraci C. Application of Artificial Neural Networks for Predicting Small Urban-Reservoir Volumes: The Case of Torregrotta Town (Italy). Water. 2023; 15(9):1747. https://doi.org/10.3390/w15091747
Chicago/Turabian StyleSaya, Biagio, and Carla Faraci. 2023. "Application of Artificial Neural Networks for Predicting Small Urban-Reservoir Volumes: The Case of Torregrotta Town (Italy)" Water 15, no. 9: 1747. https://doi.org/10.3390/w15091747