Enhanced Removal of Doxycycline by Simultaneous Potassium Ferrate(VI) and Montmorillonite: Reaction Mechanism and Synergistic Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. DOX Removal by Fe(VI)
2.3. DOX Removal by Montmorillonite Adsorption
2.4. Kinetics Study
2.5. Analytical Methods
2.5.1. The DOX Concentration
2.5.2. Identification of Oxidized Products
2.6. Characterization
3. Results and Discussion
3.1. DOX Removal by Fe(VI) Oxidation
3.1.1. The Impact of Fe(VI) Dosage
3.1.2. Impact of pH
3.1.3. Kinetics
3.1.4. Mineralization
3.2. Adsorption of DOX by Montmorillonite
3.2.1. Impact of Montmorillonite Dosage
3.2.2. Impact of pH
3.2.3. Impact of Adsorption Time
3.2.4. Effect of Adsorption Temperature
3.3. Removal of DOX by Fe(VI) and Montmorillonite
3.4. Characterization of Fe(III)-Montmorillonite Composite and Montmorillonite
3.5. Plausible DOX Degradation Pathway
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.; Ding, T.; Qian, Y.; Li, M.; Li, J. Advances in Biodegradation of Pharmaceuticals and Personal Care Products. Sheng Wu Gong Cheng Xue Bao 2019, 35, 2151–2164. [Google Scholar] [PubMed]
- Akinbowale, O.L.; Peng, H.; Barton, M.D. Diversity of Tetracycline Resistance Genes in Bacteria from Aquaculture Sources in Australia. J. Appl. Microbiol. 2007, 103, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- Comeau, F.; Surette, C.; Brun, G.L.; Losier, R. The Occurrence of Acidic Drugs and Caffeine in Sewage Effluents and Receiving Waters from Three Coastal Watersheds in Atlantic Canada. Sci. Total Environ. 2008, 396, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Lishman, L.; Smyth, S.A.; Sarafin, K.; Kleywegt, S.; Toito, J.; Peart, T.; Lee, B.; Servos, M.; Beland, M.; Seto, P. Occurrence and Reductions of Pharmaceuticals and Personal Care Products and Estrogens by Municipal Wastewater Treatment Plants in Ontario, Canada. Sci. Total Environ. 2006, 367, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ying, G.G.; Zhao, J.L.; Yang, X.B.; Chen, F.; Tao, R.; Liu, S.; Zhou, L.J. Occurrence and Risk Assessment of Acidic Pharmaceuticals in the Yellow River, Hai River and Liao River of North China. Sci. Total Environ. 2010, 408, 3139–3147. [Google Scholar] [CrossRef]
- Goswami, R.K.; Agrawal, K.; Verma, P. An Exploration of Natural Synergy Using Microalgae for the Remediation of Pharmaceuticals and Xenobiotics in Wastewater. Algal Res. 2022, 64, 102703. [Google Scholar] [CrossRef]
- Hanna, N.; Sun, P.; Sun, Q.; Li, X.; Yang, X.; Ji, X.; Zou, H.; Ottoson, J.; Nilsson, L.E.; Berglund, B.; et al. Presence of Antibiotic Residues in Various Environmental Compartments of Shandong Province in Eastern China: Its Potential for Resistance Development and Ecological and Human Risk. Environ. Int. 2018, 114, 131–142. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Zhang, Z.; Liu, Q.; Li, L. Distribution Characteristics of 29 Antibiotics in Groundwater in Harbi. Rock Miner. Anal. 2021, 40, 944–953. [Google Scholar]
- Rahman, N.; Raheem, A. Graphene Oxide/Mg-Zn-Al Layered Double Hydroxide for Efficient Removal of Doxycycline from Water: Taguchi Approach for Optimization. J. Mol. Liq. 2022, 354, 118899. [Google Scholar] [CrossRef]
- Gatica, J.; Cytryn, E. Impact of Treated Wastewater Irrigation on Antibiotic Resistance in the Soil Microbiome. Environ. Sci. Pollut. Res. 2013, 20, 3529–3538. [Google Scholar] [CrossRef]
- Wang, D.; Zeng, Z.; Zhang, H.; Zhang, J.; Bai, R. How Does PH Influence Ferrate(VI) Oxidation of Fluoroquinolone Antibiotics? Chem. Eng. J. 2022, 431, 133381. [Google Scholar] [CrossRef]
- Acosta-Rangel, A.; Sánchez-Polo, M.; Rozalen, M.; Rivera-Utrilla, J.; Polo, A.M.S.; Berber-Mendoza, M.S.; López-Ramón, M.V. Oxidation of Sulfonamides by Ferrate(VI): Reaction Kinetics, Transformation Byproducts and Toxicity Assesment. J. Environ. Manag. 2020, 255, 109927. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Wang, K.; Sharma, V.K.; Xu, X.; Nesnas, N.; Wang, H. Efficient Micropollutants Degradation by Ferrate (VI)-Ti/Zn LDH Composite under Visible Light: Activation of Ferrate (VI) and Self-Formation of Fe (III) -LDH Heterojunction. Chem. Eng. J. 2023, 456, 141127. [Google Scholar] [CrossRef]
- Lee, Y.; Zimmermann, S.G.; Kieu, A.T.; Von Gunten, U. Ferrate (Fe(VI)) Application for Municipal Wastewater Treatment: A Novel Process for Simultaneous Micropollutant Oxidation and Phosphate Removal. Environ. Sci. Technol. 2009, 43, 3831–3838. [Google Scholar] [CrossRef]
- Sharma, V.K. Potassium Ferrate(VI): An Environmentally Friendly Oxidant. Adv. Environ. Res. 2002, 6, 143–156. [Google Scholar] [CrossRef]
- Hörsing, M.; Ledin, A.; Grabic, R.; Fick, J.; Tysklind, M.; la Cour Jansen, J.; Andersen, H.R. Determination of Sorption of Seventy-Five Pharmaceuticals in Sewage Sludge. Water Res. 2011, 45, 4470–4482. [Google Scholar] [CrossRef]
- Li, J.; Yin, C.; Ma, H.; Fen, X.; Cheng, G. Research Progress on Modification and Application of Montmorillonite. Technol. Dev. Chem. Ind. 2021, 50, 25–29. [Google Scholar]
- Wang, K.M.; Shu, J.; Wang, S.J.; Hong, T.Y.; Xu, X.P.; Wang, H.Y. Efficient Electrochemical Generation of Ferrate(VI) by Iron Coil Anode Imposed with Square Alternating Current and Treatment of Antibiotics. J. Hazard. Mater. 2020, 384, 121458. [Google Scholar] [CrossRef]
- Lee, Y.; Yoon, J.; Von Gunten, U. Spectrophotometric Determination of Ferrate (Fe(VI)) in Water by ABTS. Water Res. 2005, 39, 1946–1953. [Google Scholar] [CrossRef]
- Yang, B.; Ying, G.G.; Zhang, L.J.; Zhou, L.J.; Liu, S.; Fang, Y.X. Kinetics Modeling and Reaction Mechanism of Ferrate(VI) Oxidation of Benzotriazoles. Water Res. 2011, 45, 2261–2269. [Google Scholar] [CrossRef]
- Xu, N.; Dong, J.; Zhou, W.; Liu, Y.; Ai, X. Determination of Doxycycline, 4-Epidoxycycline, and 6-Epidoxycycline in Aquatic Animal Muscle Tissue by an Optimized Extraction Protocol and Ultra-Performance Performance Liquid Chromatography with Ultraviolet Detection. Anal. Lett. 2019, 52, 452–464. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Jiang, J.-Q. Reaction Kinetics and Oxidation Product Formation in the Degradation of Acetaminophen by Ferrate (VI). Chemosphere 2016, 155, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Wang, X.; Chen, J.; Qu, R.; Sui, Y.; Leslie, C.; Wang, Z.; Sharma, V.K. Degradation of Fluoroquinolone Antibiotics by Ferrate(VI): Effects of Water Constituents and Oxidized Products. Water Res. 2016, 103, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Sohn, M.; Anquandah, G.A.K.; Nesnas, N. Kinetics of the Oxidation of Sucralose and Related Carbohydrates by Ferrate(VI). Chemosphere 2012, 87, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Z.; Adams, C. Potentiometric Determination of Acid Dissociation Constants (PK a) for Human and Veterinary Antibiotics. Water Res. 2004, 38, 2874–2890. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.J.; Shen, C.H.; Niu, C.G.; Lai, D.C.; Zhu, M.S.; Sun, J.; Hu, Y.; Fei, Z.H. Attachment of Ag/AgCl Nanoparticles on CdMoO4 Microspheres for Effective Degradation of Doxycycline under Visible Light Irradiation: Degradation Pathways and Mineralization Activity. J. Mol. Liq. 2019, 288, 111063. [Google Scholar] [CrossRef]
- Wen, X.J.; Niu, C.G.; Zhang, L.; Liang, C.; Zeng, G.M. A Novel Ag2O/CeO2 Heterojunction Photocatalysts for Photocatalytic Degradation of Enrofloxacin: Possible Degradation Pathways, Mineralization Activity and an in Depth Mechanism Insight. Appl. Catal. B Environ. 2018, 221, 701–714. [Google Scholar] [CrossRef]
- Zhi, D.; Wang, J.; Zhou, Y.; Luo, Z.; Sun, Y.; Wan, Z.; Luo, L.; Tsang, D.C.W.; Dionysiou, D.D. Development of Ozonation and Reactive Electrochemical Membrane Coupled Process: Enhanced Tetracycline Mineralization and Toxicity Reduction. Chem. Eng. J. 2020, 383, 123149. [Google Scholar] [CrossRef]
- Dalmázio, I.; Almeida, M.O.; Augusti, R.; Alves, T.M.A. Monitoring the Degradation of Tetracycline by Ozone in Aqueous Medium Via Atmospheric Pressure Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 679–686. [Google Scholar] [CrossRef]
- Park, J.A.; Pineda, M.; Peyot, M.L.; Yargeau, V. Degradation of Oxytetracycline and Doxycycline by Ozonation: Degradation Pathways and Toxicity Assessment. Sci. Total Environ. 2023, 856, 159076. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, R.; Zeng, L.; Guo, W.; Zhu, M. Insight into the Effects of Hydroxyl Groups on the Rates and Pathways of Tetracycline Antibiotics Degradation in the Carbon Black Activated Peroxydisulfate Oxidation Process. J. Hazard. Mater. 2021, 412, 125256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bai, B.; Li, G.; Wang, H.; Suo, Y. Novel Sea Buckthorn Biocarbon SBC@β-FeOOH Composites: Efficient Removal of Doxycycline in Aqueous Solution in a Fixed-Bed through Synergistic Adsorption and Heterogeneous Fenton-like Reaction. Chem. Eng. J. 2016, 284, 698–707. [Google Scholar] [CrossRef]
- Parsegian, V.A.; Ninham, B.W. Temperature-Dependent Van Der Waals Forces; Elsevier: Amsterdam, The Netherlands, 1970; Volume 10. [Google Scholar]
- Ma, Y.; Gao, N.; Li, C. Degradation and Pathway of Tetracycline Hydrochloride in Aqueous Solution by Potassium Ferrate. Environ. Eng. Sci. 2012, 29, 357–362. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Y.; Zhang, S.; Gao, W.; Wei, M. Visible-Light-Responsive Photocatalysts toward Water Oxidation Based on NiTi-Layered Double Hydroxide/Reduced Graphene Oxide Composite Materials. ACS Appl. Mater. Interfaces 2013, 5, 10233–10239. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Haddao, K.M.; Emami, N.; Nalchifard, F.; Hussain, W.; Jasem, H.; Dawood, A.H.; Toghraie, D.; Hekmatifar, M. Fabrication of HKUST-1/ZnO/SA Nanocomposite for Doxycycline and Naproxen Adsorption from Contaminated Water. Sustain. Chem. Pharm. 2022, 29, 100757. [Google Scholar] [CrossRef]
- Luo, X.; You, Y.; Zhong, M.; Zhao, L.; Liu, Y.; Qiu, R.; Huang, Z. Green Synthesis of Manganese–Cobalt–Tungsten Composite Oxides for Degradation of Doxycycline via Efficient Activation of Peroxymonosulfate. J. Hazard. Mater. 2022, 426, 127803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, H.; Zhang, D.; Zhang, L.; Zhu, C. Preparation of a Ruthenium-Modified Composite Electrode and Evaluation of the Degradation Process and Degradation Mechanism of Doxycycline at This Electrode. J. Water Process Eng. 2022, 48, 102904. [Google Scholar] [CrossRef]
- Jiao, S.; Meng, S.; Yin, D.; Wang, L.; Chen, L. Aqueous Oxytetracycline Degradation and the Toxicity Change of Degradation Compounds in Photoirradiation Process. J. Environ. Sci. 2008, 20, 806–813. [Google Scholar] [CrossRef]
- Jiao, S.; Zheng, S.; Yin, D.; Wang, L.; Chen, L. Aqueous Photolysis of Tetracycline and Toxicity of Photolytic Products to Luminescent Bacteria. Chemosphere 2008, 73, 377–382. [Google Scholar] [CrossRef]
- Bei, W.; Junhua, J.; Ting, Z.; Zhonghui, L. Determination of Soluble Lons in Atmospheric Aerosol by FTTR. J. Henan Mech. Electr. Eng. Coll. 2010, 18, 15–17. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; ISBN 978-0-470-09307-8. [Google Scholar]
- Hakiri, R.; Ameur, I.; Abid, S.; Derbel, N. Synthesis, X-Ray Structural, Hirshfeld Surface Analysis, FTIR, MEP and NBO Analysis Using DFT Study of a 4-Chlorobenzylammonium Nitrate (C7ClH9N)+(NO3)–. J. Mol. Struct. 2018, 1164, 486–492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, S.; Shu, J.; Wang, H. Enhanced Removal of Doxycycline by Simultaneous Potassium Ferrate(VI) and Montmorillonite: Reaction Mechanism and Synergistic Effect. Water 2023, 15, 1758. https://doi.org/10.3390/w15091758
Zhang H, Wang S, Shu J, Wang H. Enhanced Removal of Doxycycline by Simultaneous Potassium Ferrate(VI) and Montmorillonite: Reaction Mechanism and Synergistic Effect. Water. 2023; 15(9):1758. https://doi.org/10.3390/w15091758
Chicago/Turabian StyleZhang, Hangli, Shujuan Wang, Ji Shu, and Hongyu Wang. 2023. "Enhanced Removal of Doxycycline by Simultaneous Potassium Ferrate(VI) and Montmorillonite: Reaction Mechanism and Synergistic Effect" Water 15, no. 9: 1758. https://doi.org/10.3390/w15091758
APA StyleZhang, H., Wang, S., Shu, J., & Wang, H. (2023). Enhanced Removal of Doxycycline by Simultaneous Potassium Ferrate(VI) and Montmorillonite: Reaction Mechanism and Synergistic Effect. Water, 15(9), 1758. https://doi.org/10.3390/w15091758