Reference Evapotranspiration Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman–Monteith Equation in a Highly Advective Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lysimetric and Weather Data Collection
2.2. Data Processing
2.3. Calculation of Parameters for Reference Evapotranspiration Estimation
2.4. Machine Learning Algorithms and Optimization
2.4.1. Genetic Algorithm
2.4.2. k-Folds Cross Validation
2.4.3. Arrangement of Datasets for Machine Learning Models
2.5. Evaluation Metrics
3. Results and Discussion
3.1. Comparison of the Estimation Accuracy of the ASCE-PM and Machine Learning Models at a Daily Timescale
3.2. Comparison of the Estimation Accuracy of the ASCE-PM and Machine Learning Models at Hourly and Quarter-Hourly Timescale
3.3. Transferability of the Developed Machine Learning Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, L.; Zhou, H.; Ma, X.; Fan, J.; Zhang, F. Daily reference evapotranspiration prediction based on hybridized extreme learning machine model with bio-inspired optimization algorithms: Application in contrasting climates of China. J. Hydrol. 2019, 577, 123960. [Google Scholar] [CrossRef]
- Jia, Y.; Su, Y.; Zhang, R.; Zhang, Z.; Lu, Y.; Shi, D.; Xu, C.; Huang, D. Optimization of an extreme learning machine model with the sparrow search algorithm to estimate spring maize evapotranspiration with film mulching in the semiarid regions of China. Comput. Electron. Agric. 2022, 201, 107298. [Google Scholar] [CrossRef]
- Shiri, J.; Sadraddini, A.A.; Nazemi, A.H.; Kisi, O.; Marti, P.; Fard, A.F.; Landeras, G. Evaluation of different data management scenarios for estimating daily reference evapotranspiration. Hydrol. Res. 2013, 44, 1058–1070. [Google Scholar] [CrossRef]
- Abdullah, S.S.; Malek, M.A.; Abdullah, N.S.; Kisi, O.; Yap, K.S. Extreme Learning Machines: A new approach for prediction of reference evapotranspiration. J. Hydrol. 2015, 527, 184–195. [Google Scholar] [CrossRef]
- Wu, L.; Huang, G.; Fan, J.; Ma, X.; Zhou, H.; Zeng, W. Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput. Electron. Agric. 2020, 168, 105115. [Google Scholar] [CrossRef]
- Moazenzadeh, R.; Mohammadi, B.; Shamshirband, S.; Chau, K. Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 584–597. [Google Scholar] [CrossRef]
- Li, X.R.; Jia, R.L.; Zhang, Z.S.; Zhang, P.; Hui, R. Hydrological response of biological soil crusts to global warming: A ten-year simulative study. Glob. Change Biol. 2018, 24, 4960–4971. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For. Meteorol. 2018, 263, 225–241. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Perera, K.C.; Western, A.W.; Nawarathna, B.; George, B. Comparison of hourly and daily reference crop evapotranspiration equations across seasons and climate zones in Australia. Agric. Water Manag. 2015, 148, 84–96. [Google Scholar] [CrossRef]
- Allen, R.G.; Walter, I.A.; Elliott, R.L.; Howell, T.A.; Itenfisu, D.; Jensen, M.E.; Snyder, R.L. The ASCE Standardized Reference Evapotranspiration Equation; Water Resources Institute: Reston, VA, USA, 2005. [Google Scholar]
- Valiantzas, J.D. Simplified forms for the standardized FAO-56 Penman–Monteith reference evapotranspiration using limited weather data. J. Hydrol. 2013, 505, 13–23. [Google Scholar] [CrossRef]
- Izadifar, Z.; Elshorbagy, A. Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models. Hydrol. Process. 2010, 24, 3413–3425. [Google Scholar] [CrossRef]
- Kumar, D.; Adamowski, J.; Suresh, R.; Ozga-Zielinski, B. Estimating Evapotranspiration Using an Extreme Learning Machine Model: Case Study in North Bihar, India. J. Irrig. Drain. Eng. 2016, 142, 04016032. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Zheng, J. CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China. J. Hydrol. 2020, 588, 125087. [Google Scholar] [CrossRef]
- Sattari, M.T.; Apaydin, H.; Band, S.S.; Mosavi, A.; Prasad, R. Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrol. Earth Syst. Sci. 2021, 25, 603–618. [Google Scholar] [CrossRef]
- Estévez, J.; Gavilán, P.; Giráldez, J.V. Guidelines on validation procedures for meteorological data from automatic weather stations. J. Hydrol. 2011, 402, 144–154. [Google Scholar] [CrossRef]
- Chandel, A.K.; Molaei, B.; Khot, L.R.; Peters, R.T.; Stöckle, C.O. High Resolution Geospatial Evapotranspiration Mapping of Irrigated Field Crops Using Multispectral and Thermal Infrared Imagery with METRIC Energy Balance Model. Drones 2020, 4, 52. [Google Scholar] [CrossRef]
- Molaei, B.; Peters, R.T.; Khot, L.R.; Stöckle, C.O. Assessing Suitability of Auto-Selection of Hot and Cold Anchor Pixels of the UAS-METRIC Model for Developing Crop Water Use Maps. Remote Sens. 2022, 14, 4454. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, X. Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009): Reference evapotranspiration on the tibetan plateau. Hydrol. Process. 2013, 27, 3685–3693. [Google Scholar] [CrossRef]
- Irmak, S.; Kabenge, I.; Skaggs, K.E.; Mutiibwa, D. Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska–USA. J. Hydrol. 2012, 420–421, 228–244. [Google Scholar] [CrossRef]
- Alexandris, S.; Proutsos, N. How significant is the effect of the surface characteristics on the Reference Evapotranspiration estimates? Agric. Water Manag. 2020, 237, 106181. [Google Scholar] [CrossRef]
- Saxton, K.E. Sensitivity analyses of the combination evapotranspiration equation. Agric. Meteorol. 1975, 15, 343–353. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Siddique, M.N.H.; Tokhi, M.O. Training neural networks: Backpropagation vs. genetic algorithms. In Proceedings of the IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222), Washington, DC, USA, 15–19 July 2001; Volume 4, pp. 2673–2678. [Google Scholar]
- Gill, E.J.; Singh, E.B.; Singh, E.S. Training back propagation neural networks with genetic algorithm for weather forecasting. In Proceedings of the IEEE 8th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 10–11 September 2010; pp. 465–469. [Google Scholar]
- Rozos, E.; Dimitriadis, P.; Mazi, K.; Koussis, A.D. A multilayer perceptron model for stochastic synthesis. Hydrology 2021, 8, 67. [Google Scholar] [CrossRef]
- Huang, G.B.; Ding, X.; Zhou, H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74, 155–163. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, F.J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367, 125–137. [Google Scholar] [CrossRef]
- Oyebode, O.; Stretch, D. Neural network modeling of hydrological systems: A review of implementation techniques. Nat. Resour. Model. 2019, 32, 12189. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, Z.; Cui, N.; Zhang, W.; Wang, Y.; Hu, X.; Gong, D.; Zheng, S. Genetic Algorithm-Optimized Extreme Learning Machine Model for Estimating Daily Reference Evapotranspiration in Southwest China. Atmosphere 2022, 13, 971. [Google Scholar] [CrossRef]
- Evett, S.R.; Schwartz, R.C.; Howell, T.A.; Louis Baumhardt, R.; Copeland, K.S. Can weighing lysimeter ET represent surrounding field ET well enough to test flux station measurements of daily and sub-daily ET? Adv. Water Resour. 2012, 50, 79–90. [Google Scholar] [CrossRef]
- Evett, S.R.; Howell, T.A.; Schneider, A.D.; Copeland, K.S.; Dusek, D.A.; Brauer, D.K.; Tolk, J.A.; Marek, G.W.; Marek, T.M.; Gowda, P.H. The bushland weighing lysimeters: A quarter century of crop et investigations to advance sustainable irrigation. Trans. ASABE 2016, 59, 163–179. [Google Scholar]
- Evett, S.R.; Marek, G.W.; Copeland, K.S.; Colaizzi, P.D. Quality Management for Research Weather Data: USDA-ARS, Bushland, TX. Agrosystems Geosci. Environ. 2018, 1, 1–18. [Google Scholar] [CrossRef]
- Evett, S.R.; Howell, T.A.; Todd, R.W.; Schneider, A.D.; Tolk, J.A. Alfalfa reference ET measurement and prediction. In Proceedings of the National Irrigation Symposium: Proceedings of the 4th Decennial Symposium, Phoenix, Arizona, 14–16 November 2000; pp. 266–272. [Google Scholar]
- Evett, S.R.; Copeland, K.S.; Ruthardt, B.B.; Marek, G.W.; Colaizzi, P.D.; Howell, T.A.; Brauer, D.K.; The Bushland, Texas, Alfalfa Datasets. USDA ARS NAL Ag Data Commons. Available online: https://data.nal.usda.gov/dataset/bushland-texas-alfalfa-datasets (accessed on 6 December 2023).
- Evett, S.R.; Copeland, K.S.; Ruthardt, B.B.; Marek, G.W.; Colaizzi, P.D.; Howell, T.A.; Brauer, D.K. Standard Quality Controlled Research Weather Data-USDA-ARS, Bushland, Texas. USDA ARS NAL Ag Data Commons. Available online: https://data.nal.usda.gov/dataset/standard-quality-controlled-research-weather-data-%E2%80%93-usda-ars-bushland-texas (accessed on 6 December 2023).
- Allen, R.G. REF-ET: Reference Evapotranspiration Calculation Software for FAO and ASCE Standardized Equations; University of Idaho: Moscow, ID, USA, 2009. [Google Scholar]
- DeJonge, K.C.; Thorp, K.R. Implementing Standardized Reference Evapotranspiration and Dual Crop Coefficient Approach in the DSSAT Cropping System Model. Trans. ASABE 2017, 60, 1965–1981. [Google Scholar] [CrossRef]
- Park, J.; Choi, M. Estimation of evapotranspiration from ground-based meteorological data and global land data assimilation system (GLDAS). Stoch. Environ. Res. Risk Assess. 2015, 29, 1963–1992. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Gong, D.; Zhang, Q.; Zhao, L. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric. Water Manag. 2017, 193, 163–173. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Chen, J.; Liu, S.; Jia, K.; Zhang, X.; Xiao, Z.; Fisher, J.B.; Mu, Q.; et al. Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agric. For. Meteorol. 2017, 242, 55–74. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Hao, W.; Gao, L.; Gong, D. Estimation of soil temperature from meteorological data using different machine learning models. Geoderma 2019, 338, 67–77. [Google Scholar] [CrossRef]
- Raghavendra, N.S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata J. Promot. Commun. Stat. Stata 2020, 20, 3–29. [Google Scholar] [CrossRef]
- Eslamian, S.S.; Gohari, S.A.; Zareian, M.J.; Firoozfar, A. Estimating Penman–Monteith reference evapotranspiration using artificial neural networks and genetic algorithm: A case study. Arab. J. Sci. Eng. 2012, 37, 935–944. [Google Scholar] [CrossRef]
- Abdullah, S.S.; Malek, M.A.; Mustapha, A.; Aryanfar, A. Hybrid of artificial neural network-genetic algorithm for prediction of reference evapotranspiration in arid and semiarid regions. J. Agric. Sci. 2014, 6, 191. [Google Scholar] [CrossRef]
- Ikram, R.M.A.; Mostafa, R.R.; Chen, Z.; Islam, A.R.M.T.; Kisi, O.; Kuriqi, A.; Zounemat-Kermani, M. Advanced hybrid metaheuristic machine learning models application for reference crop evapotranspiration prediction. Agronomy 2022, 13, 98. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Lobit, P.; López Pérez, L.; Lhomme, J.P. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: Development and validation of new methods for Mexico. Part II: Radiation. Theor. Appl. Climatol. 2018, 133, 799–810. [Google Scholar] [CrossRef]
- Dombrowski, O.; Hendricks Franssen, H.J.; Brogi, C.; Bogena, H.R. Performance of the ATMOS41 All-in-One Weather Station for Weather Monitoring. Sensors 2021, 21, 741. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Li, X.; Jia, R.; Feng, L. A novel integrated method based on a machine learning model for estimating evapotranspiration in dryland. J. Hydrol. 2021, 603, 126881. [Google Scholar] [CrossRef]
- Tolk, J.A.; Evett, S.R.; Howell, T.A. Advection influences on evapotranspiration of alfalfa in a semiarid climate. Agron. J 2006, 98, 1646–1654. [Google Scholar] [CrossRef]
- Berengena, J.; Gavilán, P. Reference Evapotranspiration Estimation in a Highly Advective Semiarid Environment. J. Irrig. Drain. Eng. 2005, 131, 147–163. [Google Scholar] [CrossRef]
- Feng, Y.; Peng, Y.; Cui, N.; Gong, D.; Zhang, K. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Comput. Electron. Agric. 2017, 136, 71–78. [Google Scholar] [CrossRef]
- Doreswamy, I.G.; Manjunatha, B.R. Performance evaluation of predictive models for missing data imputation in weather data. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 22–24 August 2017; pp. 1327–1334. [Google Scholar]
- López-Urrea, R.; de Olalla, F.M.S.; Fabeiro, C.; Moratalla, A. An evaluation of two hourly reference evapotranspiration equations for semiarid conditions. Agric. Water Manag. 2006, 86, 277–282. [Google Scholar] [CrossRef]
Version | Time Step | Cn | Cd | rs (m s−1) |
---|---|---|---|---|
ASCE-PM | Tall reference (0.5 m high) | |||
Daily | 1600 | 0.38 | 45 | |
Hourly (daytime) | 66 | 0.25 | 30 | |
Hourly (nighttime) | 66 | 1.7 | 200 |
Daily | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Factor | DT1 | DT2 | DT3 | DT4 | DT5 | DT6 | DT7 | DT8 | DT9 | DT10 | DT11 |
VPD | × | × | × | × | × | ||||||
∆ | × | × | × | ||||||||
Rn | × | × | × | × | |||||||
u2 | × | × | × | × | × | × | × | × | × | ||
Rs/Rso | × | × | × | × | × | × | × | ||||
Tmean | × | × | × | × | |||||||
RHmean | × | × | × | × | × | ||||||
RHmax | × | ||||||||||
Rs | × | × | × | × | × | ||||||
RHmin | × | ||||||||||
Tmax | × | × | × | × | |||||||
Tmin | × | × | × | × | |||||||
Quarter-hourly and Hourly | |||||||||||
VPD | × | × | × | × | |||||||
∆ | × | × | × | ||||||||
Rn | × | × | × | × | |||||||
u2 | × | × | × | × | × | × | × | ||||
Rs/Rso | × | × | × | × | |||||||
Rs | × | × | |||||||||
Tmean | × | × | × | × | |||||||
RHmean | × | × | × | × | × |
Daily | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DT1 | DT2 | DT3 | DT4 | DT5 | DT6 | |||||||||||||
R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | |
ANN | 0.83 | 1.12 | 0.79 | 0.76 | 1.41 | 0.84 | 0.83 | 1.17 | 0.86 | 0.91 | 0.84 | 0.58 | 0.82 | 1.19 | 0.90 | 0.87 | 1.01 | 0.74 |
0.93x + 0.53 | 0.94x + 0.52 | 0.97x + 0.31 | 0.90x + 0.70 | 0.83x + 1.10 | 0.95x + 0.26 | |||||||||||||
ELM | 0.85 | 1.02 | 1.03 | 0.68 | 0.99 | 0.68 | 0.89 | 0.91 | 0.61 | 0.90 | 0.85 | 0.56 | 0.80 | 1.20 | 0.90 | 0.88 | 0.93 | 0.61 |
0.87x + 1.07 | 0.90x + 0.79 | 0.97x − 0.03 | 0.93x + 0.41 | 0.93x + 0.31 | 0.95x + 0.26 | |||||||||||||
SVR | 0.79 | 1.24 | 0.81 | 0.77 | 1.28 | 0.79 | 0.87 | 0.95 | 0.69 | 0.88 | 1.92 | 0.63 | 0.74 | 1.39 | 1.11 | 0.84 | 1.07 | 0.80 |
0.92x + 0.50 | 0.89x + 0.84 | 0.93x + 0.35 | 0.89x + 0.82 | 0.78x + 1.57 | 0.88x + 0.76 | |||||||||||||
RF | 0.83 | 1.06 | 0.92 | 0.86 | 0.99 | 0.98 | 0.85 | 1.12 | 1.04 | 0.89 | 0.83 | 0.73 | 0.81 | 1.21 | 1.14 | 0.85 | 0.90 | 0.83 |
0.82x + 1.22 | 0.97x + 0.24 | 1.01x + 0.34 | 0.98x + 0.37 | 0.74x + 2.15 | 0.97x + 0.45 | |||||||||||||
DT7 | DT8 | DT9 | DT10 | DT11 | ASCE-PM | |||||||||||||
ANN | 0.83 | 1.21 | 0.86 | 0.89 | 0.93 | 0.70 | 0.62 | 1.67 | 1.30 | 0.77 | 1.31 | 0.85 | 0.83 | 1.27 | 0.99 | 0.94 | 0.75 | 0.57 |
0.99x + 0.17 | 0.94x + 0.34 | 0.63x + 2.76 | 0.86x + 0.98 | 0.83x + 1.43 | 0.91x + 0.30 | |||||||||||||
ELM | 0.83 | 1.09 | 0.79 | 0.88 | 0.92 | 0.69 | 0.63 | 1.63 | 1.31 | 0.81 | 1.17 | 0.73 | 0.81 | 1.17 | 0.91 | |||
0.96x + 0.31 | 0.85x + 1.09 | 0.68x + 2.46 | 0.92x + 0.56 | 0.83x + 1.50 | ||||||||||||||
SVR | 0.81 | 1.18 | 0.82 | 0.87 | 0.98 | 0.68 | 0.43 | 2.03 | 1.51 | 0.73 | 1.39 | 0.90 | 0.66 | 1.57 | 1.08 | |||
0.92x + 0.71 | 0.88x + 0.81 | 0.435x + 4.42 | 0.85x + 1.15 | 0.65x + 3.02 | ||||||||||||||
RF | 0.91 | 0.95 | 0.86 | 0.89 | 0.93 | 0.89 | 0.73 | 1.37 | 1.40 | 0.84 | 1.07 | 1.12 | 0.83 | 1.17 | 1.06 | |||
0.94x + 0.38 | 0.97x + 0.46 | 0.92x + 0.79 | 0.83x + 0.84 | 0.82x + 1.22 |
Hourly | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DT1 | DT2 | DT3 | DT4 | DT5 | DT6 | DT7 | |||||||||||||||
R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | |
ANN | 0.94 | 0.09 | 0.06 | 0.94 | 0.09 | 0.06 | 0.96 | 0.08 | 0.05 | 0.96 | 0.08 | 0.05 | 0.89 | 0.12 | 0.08 | 0.94 | 0.09 | 0.06 | 0.96 | 0.07 | 0.04 |
0.90x − 0.010 | 1.03x + 0.020 | 0.91x + 0.030 | 0.99x − 0.010 | 0.82x + 0.030 | 0.99x + 0.050 | 1.02x + 0.010 | |||||||||||||||
ELM | 0.97 | 0.06 | 0.04 | 0.97 | 0.06 | 0.04 | 0.97 | 0.06 | 0.04 | 0.97 | 0.06 | 0.04 | 0.93 | 0.10 | 0.06 | 0.97 | 0.06 | 0.04 | 0.97 | 0.06 | 0.04 |
0.98x + 0.011 | 0.98x + 0.010 | 0.98x + 0.009 | 0.98x + 0.011 | 0.98x + 0.010 | 0.95x + 0.255 | 0.98x + 0.011 | |||||||||||||||
SVR | 0.97 | 0.07 | 0.04 | 0.97 | 0.06 | 0.04 | 0.97 | 0.06 | 0.04 | 0.97 | 0.06 | 0.04 | 0.93 | 0.10 | 0.06 | 0.97 | 0.06 | 0.04 | 0.97 | 0.07 | 0.04 |
0.98x + 0.012 | 0.98x + 0.009 | 0.98x + 0.009 | 0.984x + 0.012 | 0.94x + 0.023 | 0.98x + 0.011 | 0.98x + 0.011 | |||||||||||||||
RF | 0.97 | 0.07 | 0.04 | 0.97 | 0.06 | 0.04 | 0.97 | 0.06 | 0.04 | 0.97 | 0.07 | 0.04 | 0.93 | 0.10 | 0.06 | 0.97 | 0.07 | 0.04 | 0.97 | 0.07 | 0.04 |
0.97x + 0.012 | 0.97x + 0.011 | 0.97x + 0.012 | 0.97x + 0.012 | 0.91x + 0.030 | 0.97x + 0.013 | 0.97x + 0.013 | |||||||||||||||
Quarter-Hourly | |||||||||||||||||||||
ANN | 0.91 | 0.03 | 0.02 | 0.94 | 0.02 | 0.02 | 0.94 | 0.02 | 0.01 | 0.94 | 0.02 | 0.02 | 0.87 | 0.03 | 0.02 | 0.94 | 0.02 | 0.02 | 0.92 | 0.03 | 0.02 |
1.030x + 0.0066 | 1.004x + 0.0004 | 1.015x − 0.0004 | 0.944x + 0.0084 | 0.892x + 0.0115 | 0.881x + 0.0114 | 0.806x + 0.0089 | |||||||||||||||
ELM | 0.95 | 0.02 | 0.01 | 0.96 | 0.02 | 0.01 | 0.96 | 0.02 | 0.01 | 0.95 | 0.02 | 0.01 | 0.91 | 0.03 | 0.02 | 0.96 | 0.02 | 0.01 | 0.95 | 0.02 | 0.01 |
0.956x + 0.0038 | 0.959x + 0.0034 | 0.959x + 0.0035 | 0.956x + 0.0038 | 0.906x + 0.008 | 0.960x + 0.0035 | 0.955x + 0.004 | |||||||||||||||
SVR | 0.95 | 0.02 | 0.01 | 0.96 | 0.02 | 0.01 | 0.96 | 0.02 | 0.01 | 0.95 | 0.02 | 0.01 | 0.91 | 0.03 | 0.02 | 0.96 | 0.02 | 0.01 | 0.95 | 0.02 | 0.01 |
0.960x + 0.0034 | 0.969x + 0.0031 | 0.969x + 0.0032 | 0.959x + 0.0035 | 0.913x + 0.0067 | 0.969x + 0.0032 | 0.957x + 0.004 | |||||||||||||||
RF | 0.96 | 0.02 | 0.01 | 0.96 | 0.02 | 0.01 | 0.96 | 0.02 | 0.01 | 0.96 | 0.02 | 0.01 | 0.92 | 0.03 | 0.02 | 0.96 | 0.02 | 0.01 | 0.95 | 0.02 | 0.01 |
0.957x + 0.0036 | 0.956x + 0.0037 | 0.953x + 0.0039 | 0.958x + 0.0036 | 0.915x + 0.0072 | 0.957x + 0.0037 | 0.955x + 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiraga, S.; Peters, R.T.; Molaei, B.; Evett, S.R.; Marek, G. Reference Evapotranspiration Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman–Monteith Equation in a Highly Advective Environment. Water 2024, 16, 12. https://doi.org/10.3390/w16010012
Kiraga S, Peters RT, Molaei B, Evett SR, Marek G. Reference Evapotranspiration Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman–Monteith Equation in a Highly Advective Environment. Water. 2024; 16(1):12. https://doi.org/10.3390/w16010012
Chicago/Turabian StyleKiraga, Shafik, R. Troy Peters, Behnaz Molaei, Steven R. Evett, and Gary Marek. 2024. "Reference Evapotranspiration Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman–Monteith Equation in a Highly Advective Environment" Water 16, no. 1: 12. https://doi.org/10.3390/w16010012
APA StyleKiraga, S., Peters, R. T., Molaei, B., Evett, S. R., & Marek, G. (2024). Reference Evapotranspiration Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman–Monteith Equation in a Highly Advective Environment. Water, 16(1), 12. https://doi.org/10.3390/w16010012