Multi-Scale Periodic Variations in Soil Moisture in the Desert Steppe Environment of Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Data Analysis
3. Results
3.1. Time Series of Soil Moisture
3.2. Periodicity of Soil Moisture Characterized by Wavelet Analysis
3.3. The Relationship between Soil Moisture and Influencing Factors
4. Discussion
4.1. The Time-Series Trend Characteristics of Soil Moisture and Influencing Factors
4.2. Multi-Scale Periodic Variation Characteristics of Soil Moisture
4.3. The Difference in Soil Moisture Periodic Variations at Different Slope Positions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koster, R.D.; Suarez, M.J.; Higgins, R.W.; Van den Dool, H.M. Observational Evidence That Soil Moisture Variations Affect Precipitation. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Hohenegger, C.; Brockhaus, P.; Bretherton, C.S.; Schär, C. The Soil Moisture–Precipitation Feedback in Simulations with Explicit and Parameterized Convection. J. Clim. 2009, 22, 5003–5020. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Lofgren, B.M.; Lofgren, B.M. Sensitivity of Land-Ocean Circulations, Precipitation, and Soil Moisture to Perturbed Land Surface Albedo. J. Clim. 1995, 8, 2521–2542. [Google Scholar] [CrossRef]
- Eltahir, E.A.B. A Soil Moisture–Rainfall Feedback Mechanism: 1. Theory and Observations. Water Resour. Res. 1998, 34, 765–776. [Google Scholar] [CrossRef]
- Padilla, F.M.; Pugnaire, F.I. Rooting Depth and Soil Moisture Control Mediterranean Woody Seedling Survival during Drought. Funct. Ecol. 2007, 21, 489–495. [Google Scholar] [CrossRef]
- Lin, D.; ZhuanXi, L.; Bing, H.; ChangZhou, Y.; JiaYao, D.; Liang, C. Soil Moisture Regime under Different Types of Vegetation Typical of Napahai Catchment and Its Influencing Factors. J. Ecol. Rural Environ. 2014, 30, 196–200. [Google Scholar]
- Phillips, O.L.; Aragão, L.E.O.C.; Lewis, S.L.; Fisher, J.B.; Lloyd, J.; López-González, G.; Malhi, Y.; Monteagudo, A.; Peacock, J.; Quesada, C.A.; et al. Drought Sensitivity of the Amazon Rainforest. Science 2009, 323, 1344–1347. [Google Scholar] [CrossRef]
- Lewis, S.L.; Brando, P.M.; Phillips, O.L.; van der Heijden, G.M.F.; Nepstad, D. The 2010 Amazon Drought. Science 2011, 331, 554. [Google Scholar] [CrossRef]
- Ma, X.; Li, W.; Zhu, C.; Chen, Y. Spatio-temporal variation in soil moisture and vegetation along the lower reaches of Tarim River, China. Acta Ecol. Sin. 2010, 30, 4035–4045. [Google Scholar]
- Xiao, X.; Song, N.; Xie, T.; Fang, K. Formation mechanism and community characteristics of fenced grassland in desert steppe. Acta Prataculturae Sin. 2013, 22, 321. [Google Scholar] [CrossRef]
- Griffin-Nolan, R.J.; Carroll, C.J.W.; Denton, E.M.; Johnston, M.K.; Collins, S.L.; Smith, M.D.; Knapp, A.K. Legacy Effects of a Regional Drought on Aboveground Net Primary Production in Six Central US Grasslands. Plant Ecol. 2018, 219, 505–515. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Zhou, G.; Shao, C.; Chen, J.; Wang, Y.; Song, J. Predominance of Precipitation Event Controls Ecosystem CO2 Exchange in an Inner Mongolian Desert Grassland, China. J. Clean. Prod. 2018, 197, 781–793. [Google Scholar] [CrossRef]
- Zolina, O.; Simmer, C.; Gulev, S.K.; Kollet, S. Changing Structure of European Precipitation: Longer Wet Periods Leading to More Abundant Rainfalls. Geophys. Res. Lett. 2010, 37, 460–472. [Google Scholar] [CrossRef]
- Smith, M.D. An Ecological Perspective on Extreme Climatic Events: A Synthetic Definition and Framework to Guide Future Research. J. Ecol. 2011, 99, 656–663. [Google Scholar] [CrossRef]
- IPCC AR5 Climate Change 2013: The Physical Science Basis—IPCC; Cambridge University Press: Cambridge, UK, 2013.
- Ma, Z.; Fu, C. Basic facts of drought in northern China from 1951 to 2004. Chin. Sci. Bull. 2006, 51, 2429–2439. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, J.; Zhang, L.; Wei, W.; Cao, J. Climate dry-wet change and drought evolution characteristics of different dry-wet areas in northern China. Acta Ecol. Sin. 2018, 38, 1908–1919. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Dai, A. Drought under Global Warming: A Review. WIREs Clim. Change 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change Adaptation (Special Report of the Intergovernmental Panel on Climate Change)||List of Major IPCC Reports; Cambridge University Press: Cambridge, UK, 2012; pp. 569–572. [Google Scholar] [CrossRef]
- Heisler-White, J.L.; Knapp, A.K.; Kelly, E.F. Increasing Precipitation Event Size Increases Aboveground Net Primary Productivity in a Semi-Arid Grassland. Oecologia 2008, 158, 129–140. [Google Scholar] [CrossRef]
- Fan, J. Draft of major function oriented zoning of China. Acta Geogr. Sin. 2015, 70, 186–201. [Google Scholar]
- Yan, Y.; Tang, H.; Xin, X.; Wang, X. Advances in research on the effects of exclosure on grasslands. Acta Ecol. Sin. 2009, 29, 5039–5046. [Google Scholar]
- Chen, F.; Cheng, J.; Yu, L.; Li, Y.; Wu, Y. Effects of fencing and grazing on the biomass of typical steppe in the loess plateau. Pratacultural Sci. 2011, 28, 1079–1084. [Google Scholar]
- Deng, Y.; Wang, S.; Bai, X.; Luo, G.; Wu, L.; Cao, Y.; Li, H.; Li, C.; Yang, Y.; Hu, Z.; et al. Variation Trend of Global Soil Moisture and Its Cause Analysis. Ecol. Indic. 2020, 110, 105939. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, J. Enhanced Soil Moisture Drying in Transitional Regions under a Warming Climate. J. Geophys. Res. Atmos. 2016, 121, 2542–2555. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Liao, J.; Shang, J.; Dong, T.; Wang, C.; Liu, W.; Zhou, G.; Liu, L. Detecting Significant Decreasing Trends of Land Surface Soil Moisture in Eastern China during the Past Three Decades (1979–2010). J. Geophys. Res. Atmos. 2016, 121, 5177–5192. [Google Scholar] [CrossRef]
- Ma, Z.; Wei, H.; Fu, C. Relationship between regional soil moisture variation and climatic variability over east China. Acta Meteorol. Sin. 2000, 58, 278–287. [Google Scholar]
- Jia, Q.; Yu, Z.; Yang, C.; Zhan, Y. Variation Characteristics of soil moisture in Huaibei Plain and its relationship with depth of groundwater table. Water Resour. Power 2017, 35, 123–126+78. [Google Scholar]
- Su, Z.; Zhang, G.; Yu, Y. Variation of soil moisture with slope aspect and position in a small agricultural watershed in the typical black soil region. Sci. Soil Water Conserv. 2013, 11, 39–44. [Google Scholar] [CrossRef]
- Meng, W.; Wang, T.; Zhao, X.; Zhu, L. Effects of different slope positions on soil moisture and physiological indicators of Artemisia ordosica Root Zone in the Mu Us Sandy Land. Biotechnol. Bull. 2019, 35, 57–63. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, D.; Guo, M.; Dong, Y.; Su, Z.; Yang, D.; Shi, L. The correlation between soil moisture and gress growth in different slope positions of gully badlands in Dry-hot Valley. Pratacultural Sci. 2015, 32, 686–693. [Google Scholar]
- Wang, J.; Bras, R.L. Comment on “Estimating the Soil Temperature Profile from a Single Depth Observation: A Simple Empirical Heatflow Solution” by T. R. H. Holmes et al. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Sun, X.; Fan, G.; Zhang, Y.; Lai, X. Temporal and Spatial Variation Characteristics of Soil Moisture at Different Layers of the Tibetan Plateau in Summer. J. Arid Meteorol. 2019, 37, 252. [Google Scholar]
- Wang, Y.; Yao, Y. Dynamics of soil moisture in Gansu Loess. Chin. J. Soil Sci. 2005, 06, 36–41. [Google Scholar] [CrossRef]
- Jiang, Q.; Yao, X.; Li, L.; Jiang, W.; Yu, J. Temporal and spatial variations in soil moisture in Northern China as demonstrated by CCI data. J. Beijing Norm. Univ. (Nat. Sci.) 2020, 56, 177–187. [Google Scholar]
- Jiang, L.; Li, S.; Ji, Y.; Zhu, H.; Yan, P.; Wang, P.; Wang, C.; Han, J. Responses of soil humidity on Songnen Plain to climate change in 1980–2005. Chin. J. Appl. Ecol. 2009, 20, 91–97. [Google Scholar]
- Jiang, X.; Liu, S.; Ma, M.; Zhang, J. A Wavelet Analysis of the Temperature Time Series in Northeast China During the Last 100 Years. Clim. Change Res. 2008, 4, 122–125. [Google Scholar]
- Lafrenière, M.; Sharp, M. Wavelet Analysis of Inter-Annual Variability in the Runoff Regimes of Glacial and Nival Stream Catchments, Bow Lake, Alberta. Hydrol. Process. 2003, 17, 1093–1118. [Google Scholar] [CrossRef]
- Zhu, J.; Ji, H.; Lu, T.; Yang, J. Discussion on Joint Operation of Diverting Water from the Yangtze River and Reducing Sedimentation in Channels of Lixiahe Region. J. China Hydrol. 2009, 29, 44–47. [Google Scholar]
- Qian, K.; Wang, X.-S.; Lv, J.; Wan, L. The Wavelet Correlative Analysis of Climatic Impacts on Runoff in the Source Region of Yangtze River, in China. Int. J. Climatol. 2014, 34, 2019–2032. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, J. Analysis on runoff change and the driving force of the Liaohe River basin based on Morlet wavelet. Res. Soil Water Conserv. 2019, 26, 208–215. [Google Scholar] [CrossRef]
- Wang, J.; Sa, C.; Mao, K.; Meng, F.; Luo, M.; Wang, M. Temporal and Spatial Variation of Soil Moisture in the Mongolian Plateau and Its Response to Climate Change. Remote Sens. Nat. Resour. 2021, 33, 231–239. [Google Scholar] [CrossRef]
- Fang, K.; Song, N.; Wei, L.; An, H. Spatiotemporal Distribution of Soil Moisture Content and Aboveground Biomass under Different Terrains in Desert Steppe. Ganhanqu Yanjiu (Arid Zone Res.) 2012, 29, 641–647. [Google Scholar]
- Zhang, S.; Zhou, Q.; Wei, X.; Wang, Y.; Zeng, H.; Zhang, D. The characteristics of soil water variation and its relationship with topographic factors in Karst Peak. Pearl River 2018, 39, 7–16. [Google Scholar]
- Zou, W.; Lu, X.; Chen, X.; Yan, J.; Hao, X.; Zhang, Z.; Han, X. Relationship between Distribution of Soil Water Contents within Soil Profiles and Precipitation in Farmland of Black Soil Region of Northeast China. Chin. J. Soil Sci. 2019, 50, 267–273. [Google Scholar] [CrossRef]
- Zhao, X.; Zhai, S.; Li, J.; Sun, S. Effect of different slope conditions on soil moisture of Amygdalus Pedunculate woodland in Mu Us sandy land. Bull. Soil Water Conserv. 2020, 40, 45–52. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, T.; Wang, J.; Yue, Z. Soil moisture characteristics of root zone on Xilamuren grassland. Pratacultural Sci. 2016, 33, 878–885. [Google Scholar]
- Huang, Y.; Ding, Y. Temporal and spatial characteristics of summer soil moisture vertical distribution in northeast China. J. Meteorol. Sci. 2007, 52, 259–265. [Google Scholar]
- Sun, Q. The Spatical-Temporal Variation and Prediction Method of Soil Moisture in Northeast China; Chinese Academy of Meteorological Sciences: Beijing, China, 2013.
- Jiang, X.; Liu, S.; Ma, M.; Zhang, J.; Song, J. A wavelet analysis of the precipitation time series in Northeast China during the last 100 years. Geogr. Res. 2009, 28, 354–362. [Google Scholar]
- Zhu, Y.; Wu, B.; Lu, Q. Progress in Study on Response of Arid Zones to Precipitation Change. Chin. For. Sci. Technol. 2012, 11, 89. [Google Scholar]
- Fan, L.; Shin, S.; Liu, Q.; Liu, Z. Relative Importance of Tropical SST Anomalies in Forcing East Asian Summer Monsoon Circulation. Geophys. Res. Lett. 2013, 40, 2471–2477. [Google Scholar] [CrossRef]
Soil Bulk Density /g·cm−3 | Soil Porosity/% | Clay Sand/% (<0.05 mm) | Fine Sand/% (0.05–0.1 mm) | Coarse Sand/% (0.1–2 mm) | |
---|---|---|---|---|---|
US | 1.346 ± 0.122 | 65.711 ± 2.338 | 36.238 ± 4.95 | 20.905 ± 4.113 | 42.857 ± 6.068 |
BS | 1.34 ± 0.143 | 72.549 ± 2.388 | 41.053 ± 9.036 | 18.082 ± 5.56 | 40.865 ± 7.672 |
Mean | 1.343 ± 0.127 | 69.13 ± 4.222 | 38.646 ± 7.387 | 19.493 ± 4.891 | 41.861 ± 6.676 |
BS 0–10/% | BS 10–20/% | BS 20–30/% | US 0–10/% | US 10–20/% | US 20–30/% | |
---|---|---|---|---|---|---|
Average variation | 3.57 | 3.04 | 2.45 | 3.18 | 1.76 | 1.52 |
Standard deviation | 5.46 | 4.86 | 4.54 | 3.81 | 2.6 | 2.47 |
Correlation between MV and precipitation | 0.265 ** | 0.267 ** | 0.299 ** | 0.086 | 0.204 * | 0.207 * |
SM 0–10/% | SM 10–20/% | SM 20–30/% | AT/°C | R/mm | WS/m·s−1 | ST/°C | SR/W·m−2 | ||
---|---|---|---|---|---|---|---|---|---|
Total (n = 124) | Mean | 20.22 | 12.94 | 11.16 | 3.29 | 20.15 | 2.52 | 7.03 | 189.88 |
SD | 5.49 | 4.88 | 4.55 | 12.98 | 24.63 | 0.7 | 12.38 | 62.44 | |
CV | 0.27 | 0.38 | 0.41 | 3.94 | 1.22 | 0.28 | 1.76 | 0.33 | |
Pre-period (n = 69) | Mean | 19.99 | 12.38 | 10.94 | 2.82 | 21.66 | 2.62 | 6.51 | 186.6 |
SD | 6.05 | 5.29 | 4.94 | 13.21 | 25.52 | 0.78 | 12.2 | 61.73 | |
CV | 0.3 | 0.41 | 0.45 | 4.68 | 1.18 | 0.3 | 1.87 | 0.33 | |
Post-period (n = 55) | Mean | 20.51 | 13.08 | 11.44 | 3.88 | 18.27 | 2.39 | 7.68 | 194 |
SD | 4.71 | 4.36 | 4.05 | 12.76 | 23.56 | 0.58 | 12.69 | 63.64 | |
CV | 0.23 | 0.33 | 0.35 | 3.29 | 1.29 | 0.24 | 1.65 | 0.33 |
Soil Layer/cm | AT/°C | R/mm | WS/m·s−1 | ST/°C | SR/W·m−2 | |
---|---|---|---|---|---|---|
Total (n = 124) | 0–10 | 0.293 ** | 0.258 ** | −0.083 | 0.291 ** | 0.175 |
10–20 | 0.17 | 0.142 | −0.077 | 0.162 | 0.072 | |
20–30 | 0.291 ** | 0.231 ** | −0.099 | 0.283 ** | 0.163 | |
Pre-period (n = 69) | 0–10 | 0.321 ** | 0.301 * | −0.21 | 0.331 ** | 0.16 |
10–20 | 0.19 | 0.19 | −0.19 | 0.2 | 0.04 | |
20–30 | 0.316 ** | 0.305 * | −0.21 | 0.326 ** | 0.13 | |
Post-period (n = 55) | 0–10 | 0.25 | 0.2 | 0.22 | 0.23 | 0.2 |
10–20 | 0.13 | 0.07 | 0.16 | 0.1 | 0.11 | |
20–30 | 0.25 | 0.12 | 0.15 | 0.22 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Chang, Y.; Sun, L.; Wang, Y.; Guo, J.; Xu, L.; Liu, X.; Fan, Z. Multi-Scale Periodic Variations in Soil Moisture in the Desert Steppe Environment of Inner Mongolia, China. Water 2024, 16, 123. https://doi.org/10.3390/w16010123
Liu D, Chang Y, Sun L, Wang Y, Guo J, Xu L, Liu X, Fan Z. Multi-Scale Periodic Variations in Soil Moisture in the Desert Steppe Environment of Inner Mongolia, China. Water. 2024; 16(1):123. https://doi.org/10.3390/w16010123
Chicago/Turabian StyleLiu, Dandan, Yaowen Chang, Lei Sun, Yunpeng Wang, Jiayu Guo, Luyue Xu, Xia Liu, and Zhaofei Fan. 2024. "Multi-Scale Periodic Variations in Soil Moisture in the Desert Steppe Environment of Inner Mongolia, China" Water 16, no. 1: 123. https://doi.org/10.3390/w16010123
APA StyleLiu, D., Chang, Y., Sun, L., Wang, Y., Guo, J., Xu, L., Liu, X., & Fan, Z. (2024). Multi-Scale Periodic Variations in Soil Moisture in the Desert Steppe Environment of Inner Mongolia, China. Water, 16(1), 123. https://doi.org/10.3390/w16010123