Assessing the Impacts of Climate Change and Water Extraction on Thermal Stratification and Water Quality of a Subtropical Lake Using the GLM-AED Model
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Model Setup and Inputs
2.3. Model Calibration and Analysis
2.4. Scenarios
3. Results
3.1. Performance of the GLM-AED Model
3.2. Baseline Condition
3.3. Changes in Hydrodynamic Regimes under Future Conditions
3.3.1. Impact of Warming Temperatures (T)
3.3.2. Impact from Climate Change (CC)
3.3.3. Impact from Climate Change and Increased Water Withdrawal (CE)
3.3.4. Impact on Epilimnetic Water Quality
3.3.5. Impact on Hypoxia
3.4. Contributions of Warming Temperatures under Climate Change Conditions
3.5. Impact of Water Supply Extraction
4. Discussion and Conclusions
4.1. Model Uncertainty and Limitations
4.2. Challenges of Water Resource Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilson, M.A.; Carpenter, S.R. Economic Valuation of Freshwater Ecosystem Services in the United States: 1971–1997. Ecol. Appl. 1999, 9, 772–783. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Bucak, T.; Trolle, D.; Tavşanoğlu, Ü.N.; Çakıroğlu, A.İ.; Özen, A.; Jeppesen, E.; Beklioğlu, M. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Sci. Total Environ. 2018, 621, 802–816. [Google Scholar] [CrossRef] [PubMed]
- Jenny, J.-P.; Francus, P.; Normandeau, A.; Lapointe, F.; Perga, M.-E.; Ojala, A.; Schimmelmann, A.; Zolitschka, B. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Chang. Biol. 2016, 22, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Couture, R.-M.; Tominaga, K.; Starrfelt, J.; Moe, S.J.; Kaste, Ø.; Wright, R.F. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate. Environ. Sci. Process. Impacts 2014, 16, 1588–1599. [Google Scholar] [CrossRef] [PubMed]
- Klug, J.L.; Richardson, D.C.; Ewing, H.A.; Hargreaves, B.R.; Samal, N.R.; Vachon, D.; Pierson, D.C.; Lindsey, A.M.; O’Donnell, D.M.; Effler, S.W.; et al. Ecosystem effects of a tropical cyclone on a network of lakes in northeastern North America. Environ. Sci. Technol. 2012, 46, 11693–11701. [Google Scholar] [CrossRef]
- Weber, M.; Rinke, K.; Hipsey, M.R.; Boehrer, B. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia. J. Environ. Manag. 2017, 197, 96–105. [Google Scholar] [CrossRef]
- Ward, N.K.; Steele, B.G.; Weathers, K.C.; Cottingham, K.L.; Ewing, H.A.; Hanson, P.C.; Carey, C.C. Differential responses of maximum versus median chlorophyll-a to air temperature and nutrient loads in an oligotrophic lake over 31 years. Water Resour. Res. 2020, 56, e2020WR027296. [Google Scholar] [CrossRef]
- Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012, 46, 1394–1407. [Google Scholar] [CrossRef]
- Gudasz, C.; Bastviken, D.; Steger, K.; Premke, K.; Sobek, S.; Tranvik, L.J. Temperature-controlled organic carbon mineralization in lake sediments. Nature 2010, 466, 478–481. [Google Scholar] [CrossRef]
- Read, J.S.; Hamilton, D.P.; Jones, I.D.; Muraoka, K.; Winslow, L.A.; Kroiss, R.; Wu, C.H.; Gaiser, E. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ. Modell. Softw. 2011, 26, 1325–1336. [Google Scholar] [CrossRef]
- Schauser, I.; Chorus, I. Water and phosphorus mass balance of Lake Tegel and Schlachtensee—A modelling approach. Water Res. 2009, 43, 1788–1800. [Google Scholar] [CrossRef] [PubMed]
- Gächter, R.; Müller, B. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol. Oceanogr. 2003, 48, 929–933. [Google Scholar] [CrossRef]
- Beutel, M.W. Inhibition of ammonia release from anoxic profundal sediments in lakes using hypolimnetic oxygenation. Ecol. Eng. 2006, 28, 271–279. [Google Scholar] [CrossRef]
- Jones, I.D.; Elliott, J.A. Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake. Freshwater Biol. 2007, 52, 988–997. [Google Scholar] [CrossRef]
- Wüest, A.; Lorke, A. Small-scale hydrodynamics in lakes. Annu. Rev. Fluid Mech. 2003, 35, 373–412. [Google Scholar] [CrossRef]
- Nürnberg, G.K.; Hartley, R.; Davis, E. Hypolimnetic withdrawal in two North American lakes with anoxic phosphorus release from the sediment. Water Res. 1987, 21, 923–928. [Google Scholar] [CrossRef]
- Jöhnk, K.D.; Huisman, J.; Sharples, J.; Sommeijer, B.; Visser, P.M.; Stroom, J. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Chang. Biol. 2008, 14, 495–512. [Google Scholar] [CrossRef]
- Kanoshina, I.; Lips, U.; Leppänen, J.-M. The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2003, 2, 29–41. [Google Scholar] [CrossRef]
- Ibelings, B.W.; Vonk, M.; Los, H.F.J.; van der Molen, D.T.; Mooij, W.M. Fuzzy modeling of cyanobacterial surface waterblooms: Validation with NOAA-AVHRR satellite images. Ecol. Appl. 2003, 13, 1456–1472. [Google Scholar] [CrossRef]
- Hense, I. Regulative feedback mechanisms in cyanobacteria-driven systems: A model study. Mar. Ecol. Prog. Ser. 2007, 339, 41–47. [Google Scholar] [CrossRef]
- North, R.P.; North, R.L.; Livingstone, D.M.; Köster, O.; Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: Consequences of a climate regime shift. Glob. Chang. Biol. 2014, 20, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Woolway, R.I.; Weyhenmeyer, G.A.; Schmid, M.; Dokulil, M.T.; de Eyto, E.; Maberly, S.C.; May, L.; Merchant, C.J. Substantial increase in minimum lake surface temperatures under climate change. Clim. Chang. 2019, 155, 81–94. [Google Scholar] [CrossRef]
- Fenocchi, A.; Rogora, M.; Sibilla, S.; Ciampittiello, M.; Dresti, C. Forecasting the evolution in the mixing regime of a deep subalpine lake under climate change scenarios through numerical modelling (Lake Maggiore, Northern Italy/Southern Switzerland). Clim. Dyn. 2018, 51, 3521–3536. [Google Scholar] [CrossRef]
- Jennings, E.; Jones, S.; Arvola, L.; Staehr, P.A.; Gaiser, E.; Jones, I.D.; Weathers, K.C.; Weyhenmeyer, G.A.; Chiu, C.-Y.; De Eyto, E. Effects of weather-related episodic events in lakes: An analysis based on high-frequency data. Freshwater Biol. 2012, 57, 589–601. [Google Scholar] [CrossRef]
- Jeppesen, E.; Kronvang, B.; Meerhoff, M.; Søndergaard, M.; Hansen, K.M.; Andersen, H.E.; Lauridsen, T.L.; Liboriussen, L.; Beklioglu, M.; Ozen, A.; et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J. Environ. Qual. 2009, 38, 1930–1941. [Google Scholar] [CrossRef]
- De Senerpont Domis, L.N.; Elser, J.J.; Gsell, A.S.; Husar, V.L.M.; Ibelings, B.W.; Jeppesen, E.; Kosten, S.; Mooij, W.M.; Roland, F.; Sommer, U.; et al. Plankton dynamics under different climatic conditions in space and time. Freshwater Biol. 2013, 58, 463–482. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
- Me, W.; Hamilton, D.P.; McBride, C.G.; Abell, J.M.; Hicks, B.J. Modelling hydrology and water quality in a mixed land use catchment and eutrophic lake: Effects of nutrient load reductions and climate change. Environ. Modell. Softw. 2018, 109, 114–133. [Google Scholar] [CrossRef]
- Çalışkan, A.; Elçi, Ş. Effects of selective withdrawal on hydrodynamics of a stratified reservoir. Water Resour. Manag. 2009, 23, 1257–1273. [Google Scholar] [CrossRef]
- Casamitjana, X.; Serra, T.; Colomer, J.; Baserba, C.; Pérez-Losada, J. Effects of the water withdrawal in the stratification patterns of a reservoir. Hydrobiologia 2003, 504, 21–28. [Google Scholar] [CrossRef]
- Kerimoglu, O.; Rinke, K. Stratification dynamics in a shallow reservoir under different hydro-meteorological scenarios and operational strategies. Water Resour. Res. 2013, 49, 7518–7527. [Google Scholar] [CrossRef]
- Bormans, M.; Maršálek, B.; Jančula, D. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: A review. Aquat. Ecol. 2016, 50, 407–422. [Google Scholar] [CrossRef]
- Weber, M.; Boehrer, B.; Rinke, K. Minimizing environmental impact whilst securing drinking water quantity and quality demands from a reservoir. River Res. Appl. 2019, 35, 365–374. [Google Scholar] [CrossRef]
- Calamita, E.; Vanzo, D.; Wehrli, B.; Schmid, M. Lake modeling reveals management opportunities for improving water quality downstream of transboundary tropical dams. Water Resour. Res. 2021, 57, e2020WR027465. [Google Scholar] [CrossRef]
- Cheng, Y.; Voisin, N.; Yearsley, J.R.; Nijssen, B. Reservoirs modify river thermal regime sensitivity to climate change: A case study in the southeastern United States. Water Resour. Res. 2020, 56, e2019WR025784. [Google Scholar] [CrossRef]
- Bertone, E.; Stewart, R.A.; Zhang, H.; O’Halloran, K. Analysis of the mixing processes in the subtropical Advancetown Lake, Australia. J. Hydrol. 2015, 522, 67–79. [Google Scholar] [CrossRef]
- Hipsey, M.R.; Bruce, L.C.; Boon, C.; Busch, B.; Carey, C.C.; Hamilton, D.P.; Hanson, P.C.; Read, J.S.; de Sousa, E.; Weber, M.; et al. A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). Geosci. Model Dev. 2019, 12, 473–523. [Google Scholar] [CrossRef]
- Bruce, L.C.; Frassl, M.A.; Arhonditsis, G.B.; Gal, G.; Hamilton, D.P.; Hanson, P.C.; Hetherington, A.L.; Melack, J.M.; Read, J.S.; Rinke, K.; et al. A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environ. Modell. Softw. 2018, 102, 274–291. [Google Scholar] [CrossRef]
- Hipsey, M.R.; Bruce, L.C.; Hamilton, D.P. Aquatic Ecodynamics (AED) Model Library Science Manual: DRAFT v4; The University of Western Australia: Crawley, Australia, 2013. [Google Scholar]
- Deng, C.; Zhang, H.; Hamilton, D. Sensitivity of streamflow and nutrient loads to climate induced changes in leaf area index and soil organic carbon in a sub-tropical catchment. J. Hydrol. Reg. Stud. 2023. under revision. [Google Scholar]
- Luo, L.; Hamilton, D.; Han, B. Estimation of total cloud cover from solar radiation observations at Lake Rotorua, New Zealand. Solar Energy 2010, 84, 501–506. [Google Scholar] [CrossRef]
- Winslow, L.; Read, J.; Woolway, R.; Brentrup, J.; Leach, T.; Zwart, J.; Albers, S.; Collinge, D. Package ‘rLakeAnalyzer’: Lake Physics Tools (Version 1.11.4.1). 2022. Available online: https://CRAN.R-project.org/package=rLakeAnalyzer (accessed on 6 November 2023).
- Idso, S.B. On the concept of lake stability. Limnol. Oceanogr. 1973, 18, 681–683. [Google Scholar] [CrossRef]
- Schlabing, D.; Frassl, M.A.; Eder, M.M.; Rinke, K.; Bárdossy, A. Use of a weather generator for simulating climate change effects on ecosystems: A case study on Lake Constance. Environ. Modell. Softw. 2014, 61, 326–338. [Google Scholar] [CrossRef]
- Soares, L.M.V.; Calijuri, M.d.C.; Silva, T.F.d.G.; de Moraes Novo, E.M.L.; Cairo, C.T.; Barbosa, C.C.F. A parameterization strategy for hydrodynamic modelling of a cascade of poorly monitored reservoirs in Brazil. Environ. Modell. Softw. 2020, 134, 104803. [Google Scholar] [CrossRef]
- Syktus, J.; Toombs, N.; Wong, K.K.-H.; Trancoso, R.; Ahrens, D. Queensland Future Climate Dataset—Downscaled CMIP5 Climate Projections for RCP8.5 and RCP4.5; Terrestrial Ecosystem Research Network: Brisbane, Queensland, Australia, 2020. [Google Scholar]
- Queensland Government Statistician’s Office. Queensland Government Population Projections, 2018 Edition: LGAs and SA2s. 2018. Available online: https://www.qgso.qld.gov.au/issues/5276/qld-population-projections-regions-reports-local-government-areas-sa2-report-2018-edn.pdf (accessed on 20 November 2019).
- Fenocchi, A.; Rogora, M.; Sibilla, S.; Dresti, C. Relevance of inflows on the thermodynamic structure and on the modeling of a deep subalpine lake (Lake Maggiore, Northern Italy/Southern Switzerland). Limnologica 2017, 63, 42–56. [Google Scholar] [CrossRef]
- Martin, J.L.; Wlosinski, J.H. A comparison of reservoir oxygen predictions from one-and two-dimensional models. Lake Reserv. Manag. 1986, 2, 98–103. [Google Scholar] [CrossRef]
- Verburg, P.; Antenucci, J.P. Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. J. Geophys. Res. 2010, 115, D11109. [Google Scholar] [CrossRef]
- Soares, L.M.V.; Silva, T.F.d.G.; Vinçon-Leite, B.; Eleutério, J.C.; de Lima, L.C.; Nascimento, N.d.O. Modelling drought impacts on the hydrodynamics of a tropical water supply reservoir. Inland Waters 2019, 9, 422–437. [Google Scholar] [CrossRef]
- Zohary, T.; Ostrovsky, I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Heiskanen, J.J.; Mammarella, I.; Ojala, A.; Stepanenko, V.; Erkkilä, K.-M.; Miettinen, H.; Sandström, H.; Eugster, W.; Leppäranta, M.; Järvinen, H.; et al. Effects of water clarity on lake stratification and lake-atmosphere heat exchange. J. Geophys. Res. Atmos. 2015, 120, 7412–7428. [Google Scholar] [CrossRef]
- Li, S.; Bush, R.T.; Mao, R.; Xiong, L.; Ye, C. Extreme drought causes distinct water acidification and eutrophication in the Lower Lakes (Lakes Alexandrina and Albert), Australia. J. Hydrol. 2017, 544, 133–146. [Google Scholar] [CrossRef]
- Sherman, B.; Whittington, J.; Oliver, R. The impact of artificial destratification on water quality in Chaffey Reservoir. Adv. Limnol. 2000, 55, 15–29. [Google Scholar]
- Visser, P.M.; Ibelings, B.W.; Bormans, M.; Huisman, J. Artificial mixing to control cyanobacterial blooms: A review. Aquat. Ecol. 2016, 50, 423–441. [Google Scholar] [CrossRef]
- Trolle, D.; Hamilton, D.P.; Pilditch, C.A.; Duggan, I.C.; Jeppesen, E. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management. Environ. Modell. Softw. 2011, 26, 354–370. [Google Scholar] [CrossRef]
- Sarmento, H.; Montoya, J.M.; Vázquez-Domínguez, E.; Vaqué, D.; Gasol, J.M. Warming effects on marine microbial food web processes: How far can we go when it comes to predictions? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2137–2149. [Google Scholar] [CrossRef]
- Malmaeus, J.M.; Blenckner, T.; Markensten, H.; Persson, I. Lake phosphorus dynamics and climate warming: A mechanistic model approach. Ecol. Modell. 2006, 190, 1–14. [Google Scholar] [CrossRef]
- Gudasz, C.; Sobek, S.; Bastviken, D.; Koehler, B.; Tranvik, L.J. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments. J. Geophys. Res. Biogeosci. 2015, 120, 1215–1225. [Google Scholar] [CrossRef]
- Brookes, J.D.; Carey, C.C. Ecology. Resilience to blooms. Science 2011, 334, 46–47. [Google Scholar] [CrossRef]
- Jeppesen, E.; Søndergaard, M.; Jensen, J.P.; Havens, K.E.; Anneville, O.; Carvalho, L.; Coveney, M.; Deneke, R.; Dokulil, M.T.; Foy, B.O.; et al. Lake responses to reduced nutrient loading—An analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 2005, 50, 1747–1771. [Google Scholar] [CrossRef]
- Yamashita, Y.; Jaffé, R.; Maie, N.; Tanoue, E. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol. Oceanogr. 2008, 53, 1900–1908. [Google Scholar] [CrossRef]
- An, S.; Chen, F.; Chen, S.; Feng, M.; Jiang, M.; Xu, L.; Wen, S.; Zhang, Q.; Xu, J.; Du, Y.; et al. In-lake processing counteracts the effect of allochthonous input on the composition of color dissolved organic matter in a deep lake. Sci. Total Environ. 2023, 856, 158970. [Google Scholar] [CrossRef] [PubMed]
- Christianson, K.R.; Johnson, B.M.; Hooten, M.B. Compound effects of water clarity, inflow, wind and climate warming on mountain lake thermal regimes. Aquat. Sci. 2020, 82, 6. [Google Scholar] [CrossRef]
- Thrane, J.-E.; Hessen, D.O.; Andersen, T. The absorption of light in lakes: Negative impact of dissolved organic carbon on primary productivity. Ecosystems 2014, 17, 1040–1052. [Google Scholar] [CrossRef]
- Heino, J.; Virkkala, R.; Toivonen, H. Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biol. Rev. Camb. Philos. Soc. 2009, 84, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Rasconi, S.; Winter, K.; Kainz, M.J. Temperature increase and fluctuation induce phytoplankton biodiversity loss—Evidence from a multi-seasonal mesocosm experiment. Ecol. Evol. 2017, 7, 2936–2946. [Google Scholar] [CrossRef]
- Gaugush, R.F. Mixing event in Eau Galle Lake. Lake Reserv. Manag. 1984, 1, 286–291. [Google Scholar] [CrossRef]
- Castelletti, A.; Yajima, H.; Giuliani, M.; Soncini-Sessa, R.; Weber, E. Planning the optimal operation of a multioutlet water reservoir with water quality and quantity targets. J. Water Resour. Plann. Manag. 2014, 140, 496–510. [Google Scholar] [CrossRef]
- Mesman, J.P.; Ayala, A.I.; Adrian, R.; De Eyto, E.; Frassl, M.A.; Goyette, S.; Kasparian, J.; Perroud, M.; Stelzer, J.; Pierson, D.C.; et al. Performance of one-dimensional hydrodynamic lake models during short-term extreme weather events. Environ. Modell. Softw. 2020, 133, 104852. [Google Scholar] [CrossRef]
Symbol | Description | Range or Default | Assigned Value |
---|---|---|---|
Hydrodynamic | |||
Ck | Mixing efficiency—convective overturn [-] | 0.1–0.2 | 0.14 |
Cw | Mixing efficiency—wind stirring [-] | 0.2–0.3 | 0.21 |
Cs | Mixing efficiency—shear production [-] | 0.2–0.3 | 0.29 |
CT | Mixing efficiency—unsteady turbulence effects [-] | 0.2–0.7 | 0.56 |
CHYP | Mixing efficiency—hypolimnetic turbulence [-] | 0.4–0.8 | 0.74 |
Dissolved oxygen | |||
Fsed_oxy | Sediment oxygen demand [mmol m−2 d−1] | −100–0 | −55 |
Ksed_oxy | Half-saturation concentration of oxygen sediment flux [mmol m−3] | 10–100 | 100 |
Nitrogen | |||
Rnitrif | Maximum reaction rate of nitrification at 20 °C [d−1] | 0.1 | 0.1 |
Rdenit | Maximum reaction rate of denitrification at 20 °C [d−1] | 0.3 | 0.05 |
Knitrif | Half-saturation oxygen concentration for nitrification [mmol m−3] | 80 | 40 |
Kdenit | Half-saturation oxygen concentration for denitrification [mmol m−3] | 2 | 30 |
Fsed_amm | Sediment NH4-N flux [mmol m−2 d−1] | 40 | 3 |
Ksed_amm | Half-saturation oxygen concentration controls NH4-N flux [mmol m−3] | 25 | 15 |
Phosphorous | |||
Fsed_frp | Sediment PO4-P flux [mmol m−2 day−1] | - | 0.05 |
Ksed_frp | Half-saturation oxygen concentration controls PO4-P flux [mmol m−3] | - | 50 |
Organic matter | |||
Rpoc_hydrol | Maximum rate of decomposition of particulate organic carbon (POC) at 20 °C [d−1] | 0.01–0.08 | 0.02 |
Rdoc_minerl | Maximum rate of aerobic mineralization of labile dissolved organic carbon (DOC) at 20 °C [d−1] | 0.01–0.08 | 0.08 |
d_pom | Diameter of particulate organic matter (POM) [m] | - | 5 × 10−6 |
Rpon_hydrol | Maximum rate of decomposition of particulate organic nitrogen (PON) at 20 °C [d−1] | 0.01–0.08 | 0.08 |
Rdon_minerl | Maximum rate of aerobic mineralization of labile dissolved organic nitrogen (DON) at 20 °C [d−1] | 0.01–0.08 | 0.08 |
Rpop_hydrol | Maximum rate of decomposition of particulate organic phosphorous (POP) at 20 °C [d−1] | 0.01–0.08 | 0.01 |
Rdop_minerl | Maximum rate of aerobic mineralization of labile dissolved organic phosphorous (DOP) at 20 °C [d−1] | 0.01–0.08 | 0.08 |
theta_hydrol | Temperature multiplier for the temperature dependence of particulate decomposition rate [-] | 1 | 1.04 |
theta_minerl | Temperature multiplier for temperature dependence of mineralization rate [-] | 1 | 1.08 |
Fsed_doc | Sediment DOC flux [mmol m−2 d−1] | - | 10 |
Depth (m) | Water Temperature | Dissolved Oxygen | ||||||
---|---|---|---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | |||||
r | RMSE | r | RMSE | r | RMSE | r | RMSE | |
2 | 0.985 † | 0.66 | 0.994 † | 0.43 | 0.744 † | 1.01 | 0.732 † | 0.58 |
10 | 0.891 † | 0.98 | 0.862 † | 0.96 | 0.735 † | 2.20 | 0.783 † | 1.75 |
15 | 0.934 † | 0.70 | 0.946 † | 0.69 | 0.806 † | 1.73 | 0.821 † | 1.57 |
20 | 0.939 † | 0.42 | 0.721 † | 0.53 | 0.916 † | 1.23 | 0.843 † | 1.42 |
40 | 0.442 † | 0.32 | 0.673 † | 0.50 | 0.759 † | 1.49 | 0.743 † | 2.11 |
Overall | 0.970 † | 0.62 | 0.980 † | 0.57 | 0.860 † | 1.63 | 0.755 † | 2.07 |
Period | Statistics | NH4-H | NO3-N | TN | PO4-P | TP | TOC | Chl-a |
---|---|---|---|---|---|---|---|---|
mg/L | μg/L | |||||||
Calibration | r | 0.838 † | 0.377 | 0.326 † | 0.212 | 0.166 | 0.486 † | −0.244 |
RMSE | 0.009 | 0.032 | 0.075 | 0.004 | 0.008 | 0.686 | 1.872 | |
Validation | r | 0.938 † | 0.693 † | 0.224 | −0.035 | 0.230 | 0.419 * | −0.102 |
RMSE | 0.006 | 0.020 | 0.038 | 0.005 | 0.005 | 0.656 | 0.988 |
Variable | (CC-T)/(T-Baseline) | (CE-CC)/(CC-Baseline) | ||||||
---|---|---|---|---|---|---|---|---|
R45 | R48 | R85 | R88 | R45 | R48 | R85 | R88 | |
Surface Tw | ||||||||
Bottom Tw | ||||||||
Thermocline depth | ||||||||
Epilimnion thickness | ||||||||
Metalimnion thickness * | ||||||||
ST | ||||||||
Surface DO | ||||||||
TN | ||||||||
TP | ||||||||
Chl-a | ||||||||
Hypoxia front depth | ||||||||
Stratification duration | ||||||||
Color scale | <−1 | −1–0 | 0–1 | >1 |
Variable | WE | R45 | R48 | R85 | R88 |
---|---|---|---|---|---|
Surface Tw (°C) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bottom Tw (°C) | 0.1 | 0.0 | 0.0 | 0.1 | −0.1 |
Thermocline depth (m) | 0.4 | 0.6 | 0.9 | −1.9 | −1.0 |
Epilimnion thickness (m) | 0.6 | 0.8 | 0.9 | −2.1 | −0.9 |
Metalimnion thickness (m) * | −0.4 | −0.9 | −0.3 | 0.5 | 0.7 |
ST (J/m2) | −56 | −36 | −80 | −53 | −75 |
Surface DO (%) | 0.6 | 0.4 | 0.3 | 0.5 | 0.4 |
TN (%) | 2.2 | 3.1 | 0.4 | −0.4 | 1.4 |
TP (%) | 2.2 | −1.1 | −2.8 | −8.9 | −0.6 |
Chl-a (%) | 4.3 | 3.2 | 3.3 | 2.7 | 4.9 |
Hypoxia depth (m) | −1.2 | −0.5 | 0.5 | −0.3 | −0.4 |
Stratification (day/year) | −0.5 | 0.3 | −7.4 | 3.9 | −5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Zhang, H.; Hamilton, D.P. Assessing the Impacts of Climate Change and Water Extraction on Thermal Stratification and Water Quality of a Subtropical Lake Using the GLM-AED Model. Water 2024, 16, 151. https://doi.org/10.3390/w16010151
Deng C, Zhang H, Hamilton DP. Assessing the Impacts of Climate Change and Water Extraction on Thermal Stratification and Water Quality of a Subtropical Lake Using the GLM-AED Model. Water. 2024; 16(1):151. https://doi.org/10.3390/w16010151
Chicago/Turabian StyleDeng, Chao, Hong Zhang, and David P. Hamilton. 2024. "Assessing the Impacts of Climate Change and Water Extraction on Thermal Stratification and Water Quality of a Subtropical Lake Using the GLM-AED Model" Water 16, no. 1: 151. https://doi.org/10.3390/w16010151
APA StyleDeng, C., Zhang, H., & Hamilton, D. P. (2024). Assessing the Impacts of Climate Change and Water Extraction on Thermal Stratification and Water Quality of a Subtropical Lake Using the GLM-AED Model. Water, 16(1), 151. https://doi.org/10.3390/w16010151