Towards Groundwater-Level Prediction Using Prophet Forecasting Method by Exploiting a High-Resolution Hydrogeological Monitoring System
Abstract
:1. Introduction
- How do unsaturated zone variables, like soil volumetric water content, bulk electric conductivity, and soil temperature improve groundwater level predictions compared to precipitation and air temperature data and previously observed groundwater levels?
- Can our proposed Prophet model accurately forecast groundwater levels in a shallow aquifer by integrating high-resolution hydrological monitoring, both from meteorological data and both from the vadose zone data?
- What is the impact of monitoring the vadose zone at different depths on groundwater level predictions in the study area?
2. Materials and Methods
2.1. Hydrogeological Features of the Study Site
2.2. Monitoring System and Data Collection
2.3. Groundwater Level Forecasting
- g(t): trend function, models non-periodic changes, it can be logarithmic;
- s(t): seasonality function, relying on the Fourier series, provides a flexible model of periodic effects to model changes that are repeated at regular time intervals (e.g., weekly and yearly seasonality); it is also possible to have more than one seasonality in the same series;
- h(t): holidays, models irregular events that temporarily alter the time series;
- : error term, represents changes in the time series that the model does not capture, is regarded as a normal distribution.
2.4. RAPS Method
- N: the amount of data in the time series;
- : the value of an individual sample i = 1, 2, …, N;
- : average value of the observed sample;
- : the value of the standard deviation of the time series.
3. Results
3.1. Hydrological Characterization and Collected Dataset
3.2. Forecasting Scenarios
- Mean Absolute Error (MAE), which is the absolute value of the difference between paired accurate and predicted data;
- Mean Absolute Percentage Error (MAPE), which is the percentage expression of MAE obtained through the normalization by the real data;
- Root Mean Squared Error (RMSE) is the average difference between predicted and real data;
- Correlation is the strength and direction of the linear relationship between predicted and actual values.
3.2.1. From Atmosphere (Box 1) to Saurated Zone (Box 3)
3.2.2. From Vadose Zone (Box 2) to Saurated Zone (Box 3)
- Depth 0.6 m: The regressors used in this scenario are T 0.6 m, VWC 0.6 m and EC 0.6 m. The resulting plot is observed in Figure 6, and the observed values of MAE, MAPE, RMSE, and correlation are 0.255, 0.086, 0.270, and 0.850, where the errors are lesser than the atmospheric variables. The optimal hyperparameters marked a changepoint prior scale of 0.9, a changepoint range of 0.9, a prior scale for electric conductivity of 0.5, a prior scale for soil temperature of 0.000001, a prior scale for water content of 1.0, a seasonality mode set to ‘multiplicative’ a seasonality prior scale of 15.0. The daily, weekly, and yearly seasonality are set to ‘True’. On visually observing, the forecasted values follow a very similar trend to the observed data points.
- Depth 0.9 m: Further increasing the depth till 0.9 m, we use the regressors as T 0.9 m, VWC 0.9 m and EC 0.9 m, respectively. The resulting plot is observed in Figure 7, and the observed values of MAE, MAPE, RMSE, and correlation are 0.274, 0.090, 0.374, and 0.833. The overall performance has been depreciated compared to 0.6 m depth; however, the performance is slightly better than the atmospheric variables. The optimal hyperparameters marked a changepoint prior scale of 0.9, a changepoint range of 0.95, a prior scale for electric conductivity of 0.7, a prior scale for soil temperature of 0.000001, a prior scale for water content of 1.0, a seasonality mode set to ‘additive’ a seasonality prior scale of 0.01. The daily, weekly, and yearly seasonality are set to ‘True’.
- Depth 1.7 m: The final scenario is implemented at 1.7 m, and here we utilize the regressors T 1.7 m, VWC 1.7 m, and EC 1.7 m. The resulting plot is observed in Figure 8. The observed values of MAPE, MAE, and correlation are 0.189, 0.062, 0.244 and 0.923. The calculated errors are considerably lower and offer the most efficient performance when compared between different depths of the vadose zone. The hyperparameters used to produce the forecast included a changepoint prior scale of 0.7, a changepoint range of 0.95, a prior scale for electric conductivity of 0.000001, a prior scale for soil temperature of 0.5, a prior scale for water content of 0.5, a seasonality mode set to ‘additive’ a seasonality prior scale of 0.01. The daily, weekly, and yearly seasonality are set to ‘True’.
3.2.3. RAPS Method and Trend Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29. [Google Scholar]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Ilmonen, J.; Karakaya, N.; Kupfersberger, H.; Kvœrner, J.; et al. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 14, 770–781. [Google Scholar] [CrossRef]
- Klemeš, J.J. Industrial water recycle/reuse. Curr. Opin. Chem. Eng. 2012, 1, 238–245. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Chang. 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Delgado, J.A.; Groffman, P.M.; Nearing, M.A.; Goddard, T.; Reicosky, D.; Lal, R.; Kitchen, N.R.; Rice, C.W.; Towery, D.; Salon, P. Conservation practices to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 118A–129A. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Dahan, O. Vadose zone monitoring as a key to groundwater protection. Front. Water 2020, 2, 61. [Google Scholar] [CrossRef]
- Poulain, A.; Watlet, A.; Kaufmann, O.; Van Camp, M.; Jourde, H.; Mazzilli, N.; Rochez, G.; Deleu, R.; Quinif, Y.; Hallet, V. Assessment of groundwater recharge processes through karst vadose zone by cave percolation monitoring. Hydrol. Process. 2018, 32, 2069–2083. [Google Scholar] [CrossRef]
- Singh, G.; Kaur, G.; Williard, K.; Schoonover, J.; Kang, J. Monitoring of water and solute transport in the vadose zone: A review. Vadose Zone J. 2018, 17, 1–23. [Google Scholar] [CrossRef]
- Harter, T.; Hopmans, J.W.; Feddes, R. Role of Vadose Zone Flow Processes in Regional Scale Hydrology: Review, Opportunities and Challenges; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume 6, pp. 179–208. [Google Scholar]
- Seiler, K.P.; Gat, J.R. Groundwater Recharge from Run-Off, Infiltration and Percolation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 55. [Google Scholar]
- Nogueira, G.E.; Gonçalves, R.D. Groundwater recharge in phreatic aquifers, a case study: Modeling unsaturated zone and recharge rates of the Rio Claro Aquifer using Hydrus-1D. Holos Environ. 2021, 21, 402–422. [Google Scholar] [CrossRef]
- Cassiani, G.; Binley, A.; Ferré, T.P. Unsaturated zone processes. In Applied Hydrogeophysics; Springer: Berlin/Heidelberg, Germany, 2006; pp. 75–116. [Google Scholar]
- Lin, H. Earth’s Critical Zone and hydropedology: Concepts, characteristics, and advances. Hydrol. Earth Syst. Sci. 2010, 14, 25–45. [Google Scholar] [CrossRef]
- Goss, M.J.; Ehlers, W.; Unc, A. The role of lysimeters in the development of our understanding of processes in the vadose zone relevant to contamination of groundwater aquifers. Phys. Chem. Earth Parts A/B/C 2010, 35, 913–926. [Google Scholar] [CrossRef]
- Tanner, J.L. Understanding and Modelling of Surface and Groundwater Interactions. Ph.D. Thesis, Rhodes University, Rhodes, Greece, 2013. [Google Scholar]
- Calderwood, A.J.; Pauloo, R.A.; Yoder, A.M.; Fogg, G.E. Low-cost, open source wireless sensor network for real-time, scalable groundwater monitoring. Water 2020, 12, 1066. [Google Scholar] [CrossRef]
- Barzegar, M.; Blanks, S.; Gharehdash, S.; Timms, W. Development of IOT-based low-cost MEMS pressure sensor for groundwater level monitoring. Meas. Sci. Technol. 2023, 34, 115103. [Google Scholar] [CrossRef]
- Mammoliti, E.; Fronzi, D.; Mancini, A.; Valigi, D.; Tazioli, A. WaterbalANce, a WebApp for Thornthwaite–Mather Water Balance Computation: Comparison of applications in two European watersheds. Hydrology 2021, 8, 34. [Google Scholar] [CrossRef]
- Donker, N. WTRBLN: A computer program to calculate water balance. Comput. Geosci. 1987, 13, 95–122. [Google Scholar] [CrossRef]
- Mammoliti, E.; Fronzi, D.; Palpacelli, S.; Biagiola, N.; Tazioli, A. Assessment of urban landslide groundwater characteristics and origin using artificial tracers, hydro-chemical and stable isotope approaches. Environ. Earth Sci. 2023, 82, 211. [Google Scholar] [CrossRef]
- Mao, W.; Yang, J.; Zhu, Y.; Ye, M.; Liu, Z.; Wu, J. An efficient soil water balance model based on hybrid numerical and statistical methods. J. Hydrol. 2018, 559, 721–735. [Google Scholar] [CrossRef]
- Loliyana, V.D.; Patel, P.L. A physics based distributed integrated hydrological model in prediction of water balance of a semi-arid catchment in India. Environ. Model. Softw. 2020, 127, 104677. [Google Scholar] [CrossRef]
- Berthelin, R.; Olarinoye, T.; Rinderer, M.; Mudarra, M.; Demand, D.; Scheller, M.; Hartmann, A. Estimating karst groundwater recharge from soil moisture observations–a new method tested at the Swabian Alb, southwest Germany. Hydrol. Earth Syst. Sci. 2023, 27, 385–400. [Google Scholar] [CrossRef]
- Fronzi, D.; Di Curzio, D.; Rusi, S.; Valigi, D.; Tazioli, A. Comparison between periodic tracer tests and time-series analysis to assess mid-and long-term recharge model changes due to multiple strong seismic events in carbonate aquifers. Water 2020, 12, 3073. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
- Mammoliti, E.; Di Stefano, F.; Fronzi, D.; Mancini, A.; Malinverni, E.S.; Tazioli, A. A machine learning approach to extract rock mass discontinuity orientation and spacing, from laser scanner point clouds. Remote Sens. 2022, 14, 2365. [Google Scholar] [CrossRef]
- Maniar, H.; Ryali, S.; Kulkarni, M.S.; Abubakar, A. Machine-learning methods in geoscience. In Proceedings of the SEG International Exposition and Annual Meeting, SEG, Tokyo, Japan, 12–14 November 2018; p. SEG-2018. [Google Scholar]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine learning for the geosciences: Challenges and opportunities. IEEE Trans. Knowl. Data Eng. 2018, 31, 1544–1554. [Google Scholar] [CrossRef]
- Dramsch, J.S. 70 years of machine learning in geoscience in review. Adv. Geophys. 2020, 61, 1–55. [Google Scholar]
- Shirmohammadi, B.; Vafakhah, M.; Moosavi, V.; Moghaddamnia, A. Application of several data-driven techniques for predicting groundwater level. Water Resour. Manag. 2013, 27, 419–432. [Google Scholar] [CrossRef]
- Sarma, R.; Singh, S. A comparative study of data-driven models for groundwater level forecasting. Water Resour. Manag. 2022, 36, 2741–2756. [Google Scholar] [CrossRef]
- Amiri, S.; Rajabi, A.; Shabanlou, S.; Yosefvand, F.; Izadbakhsh, M.A. Prediction of groundwater level variations using deep learning methods and GMS numerical model. Earth Sci. Inform. 2023, 1–15. [Google Scholar] [CrossRef]
- Rajaee, T.; Ebrahimi, H.; Nourani, V. A review of the artificial intelligence methods in groundwater level modeling. J. Hydrol. 2019, 572, 336–351. [Google Scholar] [CrossRef]
- Vadiati, M.; Rajabi Yami, Z.; Eskandari, E.; Nakhaei, M.; Kisi, O. Application of artificial intelligence models for prediction of groundwater level fluctuations: Case study (Tehran-Karaj alluvial aquifer). Environ. Monit. Assess. 2022, 194, 619. [Google Scholar] [CrossRef]
- Sharafati, A.; Asadollah, S.B.H.S.; Neshat, A. A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. J. Hydrol. 2020, 591, 125468. [Google Scholar] [CrossRef]
- Najafabadipour, A.; Kamali, G.; Nezamabadi-pour, H. The Innovative Combination of Time Series Analysis Methods for the Forecasting of Groundwater Fluctuations. Water Resour. 2022, 49, 283–291. [Google Scholar] [CrossRef]
- Yan, Z.; Lu, X.; Wu, L. Exploring the Effect of Meteorological Factors on Predicting Hourly Water Levels Based on CEEMDAN and LSTM. Water 2023, 15, 3190. [Google Scholar] [CrossRef]
- Dadhich, A.P.; Goyal, R.; Dadhich, P.N. Assessment and prediction of groundwater using geospatial and ANN modeling. Water Resour. Manag. 2021, 35, 2879–2893. [Google Scholar] [CrossRef]
- Khozani, Z.S.; Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; El-Shafie, A. Combining autoregressive integrated moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level. J. Clean. Prod. 2022, 348, 131224. [Google Scholar] [CrossRef]
- Galdelli, A.; Narang, G.; Migliorelli, L.; Izzo, A.D.; Mancini, A.; Zingaretti, P. An AI-Driven Prototype for Groundwater Level Prediction: Exploring the Gorgovivo Spring Case Study. In Proceedings of the International Conference on Image Analysis and Processing, Udine, Italy, 11–15 September 2023; Springer: Cham, Switzerland, 2023; pp. 418–429. [Google Scholar]
- Khan, J.; Lee, E.; Balobaid, A.S.; Kim, K. A Comprehensive Review of Conventional, Machine Leaning, and Deep Learning Models for Groundwater Level (GWL) Forecasting. Appl. Sci. 2023, 13, 2743. [Google Scholar] [CrossRef]
- Afrifa, S.; Zhang, T.; Appiahene, P.; Varadarajan, V. Mathematical and Machine Learning Models for Groundwater Level Changes: A Systematic Review and Bibliographic Analysis. Future Internet 2022, 14, 259. [Google Scholar] [CrossRef]
- Ren, H.; Cromwell, E.; Kravitz, B.; Chen, X. Using long short-term memory models to fill data gaps in hydrological monitoring networks. Hydrol. Earth Syst. Sci. 2022, 26, 1727–1743. [Google Scholar] [CrossRef]
- Taylor, S.J.; Letham, B. Forecasting at scale. PeerJ 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Zarinmehr, H.; Tizro, A.T.; Fryar, A.E.; Pour, M.K.; Fasihi, R. Prediction of groundwater level variations based on gravity recovery and climate experiment (GRACE) satellite data and a time-series analysis: A case study in the Lake Urmia basin, Iran. Environ. Earth Sci. 2022, 81, 180. [Google Scholar] [CrossRef]
- Aguilera, H.; Guardiola-Albert, C.; Naranjo-Fernández, N.; Kohfahl, C. Towards flexible groundwater-level prediction for adaptive water management: Using Facebook’s Prophet forecasting approach. Hydrol. Sci. J. 2019, 64, 1504–1518. [Google Scholar] [CrossRef]
- Mussi, M.; Nanni, T.; Tazioli, A.; Vivalda, P.M. The Mt Conero limestone ridge: The contribution of stable isotopes to the identification of the recharge area of aquifers. Ital. J. Geosci. 2017, 136, 186–197. [Google Scholar] [CrossRef]
- Fronzi, D.; Gaiolini, M.; Mammoliti, E.; Colombani, N.; Palpacelli, S.; Marcellini, M.; Tazioli, A. Groundwater-surface water interaction revealed by meteorological trends and groundwater fluctuations on stream water level. Acque Sotter.-Ital. J. Groundw. 2022, 11, 19–28. [Google Scholar] [CrossRef]
- Aquilanti, L.; Clementi, F.; Nanni, T.; Palpacelli, S.; Tazioli, A.; Vivalda, P.M. DNA and fluorescein tracer tests to study the recharge, groundwater flowpath and hydraulic contact of aquifers in the Umbria-Marche limestone ridge (central Apennines, Italy). Environ. Earth Sci. 2016, 75, 1–17. [Google Scholar] [CrossRef]
- Tassetti, A.N.; Galdelli, A.; Pulcinella, J.; Mancini, A.; Bolognini, L. Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System. Sensors 2022, 22, 839. [Google Scholar] [CrossRef] [PubMed]
- Galdelli, A.; Mancini, A.; Tassetti, A.N.; Ferrà Vega, C.; Armelloni, E.; Scarcella, G.; Fabi, G.; Zingaretti, P. A Cloud Computing Architecture to Map Trawling Activities Using Positioning Data. In Proceedings of the 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Beijing, China, 12–15 October 2019; Volume 9, p. V009T12A035. [Google Scholar]
- Galdelli, A.; Mancini, A.; Frontoni, E.; Tassetti, A.N. A Feature Encoding Approach and a Cloud Computing Architecture to Map Fishing Activities. In Proceedings of the 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Virtual, 17–19 August 2021; Volume 7, p. V007T07A003. [Google Scholar]
- Ho, S.; Xie, M. The use of ARIMA models for reliability forecasting and analysis. Comput. Ind. Eng. 1998, 35, 213–216. [Google Scholar] [CrossRef]
- Šrajbek, M.; Đurin, B.; Sušilović, P.; Singh, S.K. Application of the RAPS Method for Determining the Dependence of Nitrate Concentration in Groundwater on the Amount of Precipitation. Earth 2023, 4, 266–277. [Google Scholar] [CrossRef]
- Fiorillo, F.; Petitta, M.; Preziosi, E.; Rusi, S.; Esposito, L.; Tallini, M. Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environ. Earth Sci. 2015, 74, 153–172. [Google Scholar] [CrossRef]
- Garbrecht, J.; Fernandez, G.P. Visualization of Trends and Fluctuations in Climatic Records 1. J. Am. Water Resour. Assoc. 1994, 30, 297–306. [Google Scholar] [CrossRef]
- Santangelo, M.; Althuwaynee, O.; Alvioli, M.; Ardizzone, F.; Bianchi, C.; Bornaetxea, T.; Brunetti, M.; Bucci, F.; Cardinali, M.; Donnini, M.; et al. Inventory of landslides triggered by an extreme rainfall event in Marche-Umbria, Italy, on 15 September 2022. Sci. Data 2023, 10, 427. [Google Scholar] [CrossRef]
- Torcasio, R.C.; Papa, M.; Del Frate, F.; Dietrich, S.; Toffah, F.E.; Federico, S. Study of the Intense Meteorological Event Occurred in September 2022 over the Marche Region with WRF Model: Impact of Lightning Data Assimilation on Rainfall and Lightning Prediction. Atmosphere 2023, 14, 1152. [Google Scholar] [CrossRef]
- Morelli, S.; Bonì, R.; Guidi, E.; De Donatis, M.; Pappafico, G.; Francioni, M. L’alluvione delle Marche del 15 settembre 2022, cause e conseguenze. Cult. Territ. Linguaggi 2023, 24, 136–147. [Google Scholar]
- Luhmann, A.J.; Covington, M.D.; Alexander, S.C.; Chai, S.Y.; Schwartz, B.F.; Groten, J.T.; Alexander, E.C., Jr. Comparing conservative and nonconservative tracers in karst and using them to estimate flow path geometry. J. Hydrol. 2012, 448, 201–211. [Google Scholar] [CrossRef]
- Westhoff, M.; Bogaard, T.; Savenije, H. Quantifying the effect of in-stream rock clasts on the retardation of heat along a stream. Adv. Water Resour. 2010, 33, 1417–1425. [Google Scholar] [CrossRef]
- Owolabi, O.O.; Sunter, D.A. Bayesian Optimization and Hierarchical Forecasting of Non-Weather-Related Electric Power Outages. Energies 2022, 15, 1958. [Google Scholar] [CrossRef]
- Triebe, O.; Hewamalage, H.; Pilyugina, P.; Laptev, N.; Bergmeir, C.; Rajagopal, R. NeuralProphet: Explainable Forecasting at Scale, 2021.
- Mancini, A.; Cosoli, G.; Galdelli, A.; Violini, L.; Pandarese, G.; Mobili, A.; Blasi, E.; Tittarelli, F.; Revel, G.M. A monitoring platform for the built environment: Towards the development of an early warning system in a seismic context. In Proceedings of the 2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), Milano, Italy, 29–31 May 2023; pp. 102–106. [Google Scholar]
- Wang, J.; Li, C.; Li, L.; Huang, Z.; Wang, C.; Zhang, H.; Zhang, Z. InSAR time-series deformation forecasting surrounding Salt Lake using deep transformer models. Sci. Total Environ. 2023, 858, 159744. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
Scenario | Hyperparameters | Values |
---|---|---|
Box 1 to Box 3 | changepoint_prior_scale | [0.01, 0.05, 0.1, 0.7, 0.9] |
seasonality_mode | [’additive’, ’multiplicative’] | |
seasonality_prior_scale | [0.01, 2.0, 12.0, 15.0, 75.0] | |
prior_scale_temperature | [0.000001, 0.01, 0.5, 0.7, 1.0] | |
prior_scale_rain | [0.000001, 0.01, 0.5, 0.7, 1.0] | |
changepoint_range | [0.70, 0.85, 0.90, 0.95] | |
daily_seasonality | [’True’, ’False’] | |
weekly_seasonality | [’True’, ’False’] | |
yearly_seasonality | [’True’, ’False’] | |
Box 2 to Box 3 | changepoint_prior_scale | [0.01, 0.05, 0.1, 0.7, 0.9] |
seasonality_mode | [’additive’, ’multiplicative’] | |
seasonality_prior_scale | [0.01, 2.0, 12.0, 15.0, 75.0] | |
prior_scale_water_content | [0.000001, 0.01, 0.5, 0.7, 1.0] | |
prior_scale_soil_temperature | [0.000001, 0.01, 0.5, 0.7, 1.0] | |
prior_scale_electric_conductivity | [0.000001, 0.01, 0.5, 0.7, 1.0] | |
changepoint_range | [0.70, 0.85, 0.90, 0.95] | |
daily_seasonality | [’True’, ’False’] | |
weekly_seasonality | [’True’, ’False’] | |
yearly_seasonality | [’True’, ’False’] |
Box n° | Hydrological Variable | Measurement Unit | Mean | Min | 25th | Median | 75th | Max |
---|---|---|---|---|---|---|---|---|
1 | P | mm/15min | 0.02 | 0 | 0 | 0 | 0 | 12 |
T | °C | 14.1 | 0 | 7.12 | 12.53 | 19.61 | 35 | |
2 | T 0.6 m | °C | 14.6 | 6.7 | 9.7 | 12.7 | 19.2 | 25.5 |
VWC 0.6 m | m3/m3 | 0.31 | 0.22 | 0.27 | 0.33 | 0.35 | 0.4 | |
EC 0.6 m | mS/cm | 0.4 | 0.22 | 0.29 | 0.46 | 0.49 | 0.64 | |
T 0.9 m | °C | 14.5 | 8.3 | 10.1 | 12.7 | 18.8 | 23.4 | |
VWC 0.9 m | m3/m3 | 0.32 | 0.24 | 0.28 | 0.33 | 0.35 | 0.4 | |
EC 0.9 m | mS/cm | 0.51 | 0.31 | 0.42 | 0.55 | 0.58 | 0.79 | |
T 1.7 m | °C | 14.5 | 10 | 11.4 | 13.3 | 18.1 | 20.8 | |
VWC 1.7 m | m3/m3 | 0.29 | 0.24 | 0.25 | 0.3 | 0.32 | 0.36 | |
EC 1.7 m | mS/cm | 0.51 | 0.24 | 0.26 | 0.46 | 0.65 | 1.05 | |
3 | GWL | m | −6.39 | −9.7 | −9.2 | −6.42 | −4.19 | −2.5 |
Scenario | Depth | Additive Regressors | MAE | MAPE | RMSE | Correlation |
---|---|---|---|---|---|---|
Box 1 to Box 3 | Surface | P, T | 0.299 | 0.101 | 0.356 | 0.857 |
Box 2 to Box 3 | Depth 0.6 m | T 0.6 m, VWC 0.6 m, EC 0.6 m | 0.255 | 0.086 | 0.270 | 0.850 |
Box 2 to Box 3 | Depth 0.9 m | T 0.9 m, VWC 0.9 m, EC 0.9 m | 0.274 | 0.090 | 0.374 | 0.833 |
Box 2 to Box 3 | Depth 1.7 m | T 1.7 m, VWC 1.7 m, EC 1.7 m | 0.189 | 0.062 | 0.244 | 0.923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fronzi, D.; Narang, G.; Galdelli, A.; Pepi, A.; Mancini, A.; Tazioli, A. Towards Groundwater-Level Prediction Using Prophet Forecasting Method by Exploiting a High-Resolution Hydrogeological Monitoring System. Water 2024, 16, 152. https://doi.org/10.3390/w16010152
Fronzi D, Narang G, Galdelli A, Pepi A, Mancini A, Tazioli A. Towards Groundwater-Level Prediction Using Prophet Forecasting Method by Exploiting a High-Resolution Hydrogeological Monitoring System. Water. 2024; 16(1):152. https://doi.org/10.3390/w16010152
Chicago/Turabian StyleFronzi, Davide, Gagan Narang, Alessandro Galdelli, Alessandro Pepi, Adriano Mancini, and Alberto Tazioli. 2024. "Towards Groundwater-Level Prediction Using Prophet Forecasting Method by Exploiting a High-Resolution Hydrogeological Monitoring System" Water 16, no. 1: 152. https://doi.org/10.3390/w16010152
APA StyleFronzi, D., Narang, G., Galdelli, A., Pepi, A., Mancini, A., & Tazioli, A. (2024). Towards Groundwater-Level Prediction Using Prophet Forecasting Method by Exploiting a High-Resolution Hydrogeological Monitoring System. Water, 16(1), 152. https://doi.org/10.3390/w16010152