Adsorption Mechanism of Methylene Blue on Purified Red Phosphorus and Effects of Different Temperatures on Methylene Blue Desorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Purification of Commercial RP
2.3. Characterization
2.4. Experimental Procedures
2.5. A Statistical Physics Model
3. Results and Discussion
3.1. Characterizations of Purified RP before and after Adsorption of MB
3.2. MB Adsorption Mechanism by Purified RP at Molecular Level
3.2.1. The n, Dm and qsat of Purified RP for MB
3.2.2. Interpretation of the Adsorption Mechanism of MB via ΔrGmθ
3.3. Effects of Different Dyes, Purified RP Dose, MB Dose and pH on Adsorption
3.3.1. Adsorption of Different Dyes by Purified RP
3.3.2. Effects of Purified RP Dose, MB Dose and pH on the Adsorption of MB
3.4. Effects of Different Temperatures on MB Desorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Guo, S.; Gong, Y.; Wang, L. Potential trade-off between water consumption and water quality: Life cycle assessment of nonaqueous solvent dyeing. Water Res. 2022, 215, 118222. [Google Scholar] [CrossRef] [PubMed]
- Routoula, E.; Patwardhan, S. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential. Environ. Sci. Technol. 2019, 54, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Zong, M.; Song, D.; Zhang, X.; Huang, X.; Lu, X.; Rosso, K. Facet-dependent photodegradation of methylene blue by hematite nanoplates in visible light. Environ. Sci. Technol. 2021, 55, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Netto, M.S.; Oliveira, M.; Seliem, M.K.; Dotto, G.L.; Bonilla-Petriciolet, A.; Li, Q. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chem. Eng. J. 2020, 388, 124263. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. J. Mol. Liq. 2020, 309, 113094. [Google Scholar] [CrossRef]
- Mittal, Y.; Dash, S.; Srivastava, P.; Mishra, P.M.; Aminabhavi, T.; Yadav, A. Azo dye containing wastewater treatment in earthen membrane based unplanted two chambered constructed wetlands-microbial fuel cells: A new design for enhanced performance. Chem. Eng. J. 2022, 427, 131856. [Google Scholar] [CrossRef]
- Jin, X.; Wang, R.; Jin, P.; Shi, X.; Wang, Y.; Xu, L.; Wang, X.; Xu, H. How can accumulated organics and salts deteriorate the biological treatment unit in the printing and dyeing wastewater recycling system? Chem. Eng. J. 2021, 413, 127528. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Zhuang, J.; Shi, H. Hierarchical microsphere encapsulated in graphene oxide composite for durable synergetic membrane separation and Fenton-like degradation. Chem. Eng. J. 2022, 430, 133124. [Google Scholar] [CrossRef]
- Mei, R.; Wei, Q.; Zhu, C.; Ye, W.; Zhou, B.; Ma, L.; Yu, Z.; Zhou, K. 3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: A high-efficiency electrochemical degradation of RB-19 dye wastewater under low current. Appl. Catal. B -Eviron. 2019, 245, 420–427. [Google Scholar] [CrossRef]
- Usman, M.A.; Khan, A.Y. Selective adsorption of anionic dye from wastewater using polyethyleneimine based macroporous sponge: Batch and continuous studies. J. Hazard. Mater. 2022, 428, 128238. [Google Scholar] [CrossRef]
- Liu, Y.; Xiang, Y.; Xu, H.; Li, H. The reuse of nano-TiO2 under different concentration of CO32− using coagulation process and its photocatalytic ability in treatment of methyl orange. Sep. Purif. Technol. 2022, 282, 120152. [Google Scholar] [CrossRef]
- McNeice, P.; Reid, A.; Imam, H.; McDonagh, C.; Walby, J.D.; Collins, T.; Marr, A.C.; Marr, P.C. Designing materials for aqueous catalysis: Ionic liquid gel and silica sphere entrapped iron-TAML catalysts for oxidative degradation of dyes. Environ. Sci. Technol. 2020, 54, 14026–14035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xie, M.; Zhao, J.; Wei, S.; Zheng, H.; Zhang, S. Key structural features that determine the selectivity of UV/acetylacetone for the degradation of aromatic pollutants when compared to UV/H2O2. Water Res. 2021, 196, 117046. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yang, S.; Ding, J.; Chen, C.; Zhong, L.; Ding, L.; Ma, M.; Sun, G.; Huang, Z.; Ren, N. Immobilized redox mediators on modified biochar and their role on azo dye biotransformation in anaerobic biological systems: Mechanisms, biodegradation pathway and theoretical calculation. Chem. Eng. J. 2021, 423, 130300. [Google Scholar] [CrossRef]
- Hilares, R.T.; Atoche-Garay, D.F.; Pagaza, D.A.P.; Ahmed, M.A.; Andrade, G.; Santos, J.C. Promising physicochemical technologies for poultry slaughterhouse wastewater treatment: A critical review. J. Environ. Chem. Eng. 2021, 9, 105174. [Google Scholar] [CrossRef]
- Peydayesh, M.; Suta, T.; Usuelli, M.; Handschin, S.; Canelli, G.; Bagnani, M.; Mezzenga, R. Sustainable removal of microplastics and natural organic matter from water by coagulation-flocculation with protein amyloid fibrils. Environ. Sci. Technol. 2021, 55, 8848–8858. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.; Li, D.; Mo, Z.; Hankins, N.P.; She, Q. Exploring the limitations of osmotically assisted reverse osmosis: Membrane fouling and the limiting flux br. Environ. Sci. Technol. 2022, 56, 6678–6688. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, K.; Gai, W.; Chung, T. Nanofiltration-inspired janus membranes with simultaneous wetting and fouling resistance for membrane distillation. Environ. Sci. Technol. 2021, 55, 7654. [Google Scholar] [CrossRef]
- Xu, D.; Zheng, J.; Zhang, X.; Lin, D.; Gao, Q.; Luo, X.; Zhu, X.; Li, G.; Liang, H.; Van der Bruggen, B. Mechanistic insights of a thermoresponsive interface for fouling control of thin-film composite nanofiltration membranes. Environ. Sci. Technol. 2022, 56, 1927–1937. [Google Scholar] [CrossRef]
- Chen, T.; Dong, S.; Guo, X.; Chu, W.; Xu, T.; Yin, D. Dissolved organic carbon removal and CX3R-type byproduct formation during the peroxymonosulfate pre-oxidation followed by coagulation. Chem. Eng. J. 2021, 421, 129654. [Google Scholar] [CrossRef]
- Chen, T.; Yu, Z.; Xu, T.; Xiao, R.; Chu, W.; Yin, D. Formation and degradation mechanisms of CX3R-type oxidation by-products during cobalt catalyzed peroxymonosulfate oxidation: The roles of Co3+ and SO4−. J. Hazard. Mater. 2021, 405, 124243. [Google Scholar] [CrossRef]
- Wu, M.; Ding, S.; Cao, Z.; Du, Z.; Tang, Y.; Chen, X.; Chu, W. Insights into the formation and mitigation of iodinated disinfection by-products during household cooking with Laminaria japonica (Haidai). Water Res. 2022, 225, 119177. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cai, Y.; Li, G.; Wang, W.; Wong, P.K.; An, T. Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation. Water Res. 2022, 218, 118407. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wang, C.; Cheng, X.; Zhang, Y.; Li, W.; Wang, J.; Tian, Z.; Chu, W.; Korshin, G.V.; Guo, H. Interactions between the antibiotic tetracycline and humic acid: Examination of the binding sites, and effects of complexation on the oxidation of tetracycline. Water Res. 2021, 202, 117379. [Google Scholar] [CrossRef]
- Pazdzior, K.; Bilinska, L.; Ledakowicz, S. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 2019, 376, 120597. [Google Scholar] [CrossRef]
- Aravind, P.; Selvaraj, H.; Ferro, S.; Sundaram, M. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment. J. Hazard. Mater. 2016, 318, 203–215. [Google Scholar] [CrossRef]
- Tang, D.; Li, J.; Yang, Z.; Jiang, X.; Huang, L.; Guo, X.; Li, Y.; Zhu, J.; Sun, X. Fabrication and mechanism exploration of oxygen-incorporated 1T-MoS2 with high adsorption performance on methylene blue. Chem. Eng. J. 2022, 428, 130954. [Google Scholar] [CrossRef]
- Yazidi, A.; Sellaoui, L.; Dotto, G.; Bonilla-Petriciolet, A.; Frohlich, A.C.; Ben Lamine, A. Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: Application of advanced statistical physics models. J. Mol. Liq. 2019, 283, 276–286. [Google Scholar] [CrossRef]
- Al-asad, H.A.; Parniske, J.; Qian, J.; Alex, J.; Ramaswami, S.; Kaetzl, K.; Morck, T. Development and application of a predictive model for advanced wastewater treatment by adsorption onto powdered activated carbon. Water Res. 2022, 217, 118427. [Google Scholar] [CrossRef]
- Yuan, J.; Passeport, E.; Hofmann, R. Understanding adsorption and biodegradation in granular activated carbon for drinking water treatment: A critical review. Water Res. 2022, 210, 118026. [Google Scholar] [CrossRef]
- Yang, W.; Cai, C.; Dai, X. Interactions between virus surrogates and sewage sludge vary by viral analyte: Recovery, persistence, and sorption. Water Res. 2022, 210, 117995. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, C.; Patel, D.; Jung, H.; Liu, P.; Wan, B.; Pavlostathis, S.G.; Tang, Y. Coevolution of iron, phosphorus, and sulfur speciation during anaerobic digestion with hydrothermal pretreatment of sewage sludge. Environ. Sci. Technol. 2020, 54, 8362–8372. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yu, Q.; Liu, W.; Wang, J.; Guo, W.; Jia, E.; Zeng, Q.; Qin, R.; Zheng, J.; Hofmockel, K.S.; et al. Molecular determination of organic adsorption sites on smectite during Fe redox processes using ToF-SIMS analysis. Environ. Sci. Technol. 2021, 55, 7123–7134. [Google Scholar] [CrossRef] [PubMed]
- Montavon, G.; Lerouge, C.; David, K.; Ribet, S.; Hassan-Loni, Y.; Leferrec, M.; Bailly, C.; Robinet, J.-C.; Grambow, B. Nickel retention on callovo-oxfordian clay: Applicability of existing adsorption models for dilute systems to real compact rock. Environ. Sci. Technol. 2020, 54, 12226–12234. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Gayathri, R.; Rathi, B.S. A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. Chemosphere 2021, 285, 131438. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, Z.; Liu, Y.; Fu, R. Facile synthesis of ultrathin red phosphorus nanosheets with excellent photocatalytic performances. Mater. Lett. 2019, 236, 542–546. [Google Scholar] [CrossRef]
- Yang, H.; Ye, S.; Zeng, Z.; Zeng, G.; Tan, X.; Xiao, R.; Wang, J.; Song, B.; Du, L.; Qin, M.; et al. Utilization of biochar for resource recovery from water: A review. Chem. Eng. J. 2020, 397, 125502. [Google Scholar] [CrossRef]
- Gupta, S.; Sireesha, S.N.; Sreedhar, I.; Patel, C.; Anitha, K.L. Latest trends in heavy metal removal from wastewater by biochar based sorbents. J. Water. Process. Eng. 2022, 38, 101561. [Google Scholar] [CrossRef]
- He, C.; Fang, K.; Gong, H.; Liu, J.; Song, X.; Liang, R.; He, Q.; Yuan, Q.; Wang, K. Advanced organic recovery from municipal wastewater with an enhanced magnetic separation (EMS) system: Pilot-scale verification. Water Res. 2022, 217, 118449. [Google Scholar] [CrossRef]
- Orlov, A.; Demenko, D.; Bignaud, C.; Valtz, A.; Marcou, G.; Horvath, D.; Coquelet, C.; Varnek, A.; De Meyer, F. Chemoinformatics-driven design of new physical solvents for selective CO2 absorption. Environ. Sci. Technol. 2021, 55, 15542–15553. [Google Scholar] [CrossRef]
- Acevedo-Garcia, V.; Rosales, E.; Puga, A.; Pazos, M.; Sanroman, A. Synthesis and use of efficient adsorbents under the principles of circular economy: Waste valorisation and electroadvanced oxidation process regeneration. Sep. Purif. Technol. 2020, 242, 116796. [Google Scholar] [CrossRef]
- Fu, K.; Liu, X.; Lv, C.; Luo, J.; Sun, M.; Luo, S.; Crittenden, J. Superselective Hg(II) removal from water using a thiol-laced MOF-based sponge monolith: Performance and mechanism. Environ. Sci. Technol. 2022, 56, 2677–2688. [Google Scholar] [CrossRef] [PubMed]
- Fadillah, G.; Saleh, T.; Wahyuningsih, S.; Putri, E.N.K.; Febrianastuti, S. Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chem. Eng. J. 2019, 378, 122140. [Google Scholar] [CrossRef]
- Zhao, J.; Dang, Z.; Muddassir, M.; Raza, S.; Zhong, A.; Wang, X.; Jin, J. A new Cd(II)-based coordination polymer for efficient photocatalytic removal of organic dyes. Molecules 2023, 28, 6848. [Google Scholar] [CrossRef]
- Liu, E.; Du, Y.; Bai, X.; Fan, J.; Hu, X. Synergistic improvement of Cr(VI) reduction and RhB degradation using RP/g-C3N4 photocatalyst under visible light irradiation. Arab. J. Chem. 2020, 13, 3836–3848. [Google Scholar] [CrossRef]
- Li, S.; Ng, Y.H.; Zhu, R.; Lv, S.; Wu, C.; Liu, Y.; Jing, L.; Deng, J.; Dai, H. In situ construction of elemental phosphorus nanorod-modified TiO2 photocatalysts for efficient visible-light-driven H2 generation. Appl. Catal. B -Eviron. 2021, 297, 120412. [Google Scholar] [CrossRef]
- Sellaoui, L.; Guedidi, H.; Knani, S.; Reinert, L.; Duclaux, L.; Ben Lamine, A. Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon. Fluid Phase Equilib. 2015, 387, 103–110. [Google Scholar] [CrossRef]
- Wu, C.; Jing, L.; Deng, J.; Liu, Y.; Li, S.; Lv, S.; Sun, Y.; Zhang, Q.; Dai, H. Elemental red phosphorus-based photocatalysts for environmental remediation: A review. Chemosphere 2021, 274, 129793. [Google Scholar] [CrossRef]
- Guo, C.; Du, H.; Ma, Y.; Qi, K.; Zhu, E.; Su, Z.; Huojiaaihemaiti, M.; Wang, X. Visible-light photocatalytic activity enhancement of red phosphorus dispersed on the exfoliated kaolin for pollutant degradation and hydrogen evolution. J. Colloid Interface Sci. 2021, 585, 167–177. [Google Scholar] [CrossRef]
- Saeeda, A.; Sharif, M.; Iqbal, M. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption. J. Hazard. Mater. 2010, 179, 564–572. [Google Scholar] [CrossRef]
- Sellaouia, L.; Francob, D.; Ghallaa, H.; Georginb, J.; Nettob, M.S.; Dottob, G.L.; Bonilla-Petricioletc, A.; Belmabroukd, H.; Bajahzar, A. Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations. Chem. Eng. J. 2020, 394, 125011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Sun, J.; Jiang, R.; Zhang, T.; Zhang, Y.; Li, X. Adsorption Mechanism of Methylene Blue on Purified Red Phosphorus and Effects of Different Temperatures on Methylene Blue Desorption. Water 2024, 16, 167. https://doi.org/10.3390/w16010167
Chen T, Sun J, Jiang R, Zhang T, Zhang Y, Li X. Adsorption Mechanism of Methylene Blue on Purified Red Phosphorus and Effects of Different Temperatures on Methylene Blue Desorption. Water. 2024; 16(1):167. https://doi.org/10.3390/w16010167
Chicago/Turabian StyleChen, Tiantian, Jiayu Sun, Ruixue Jiang, Tongfei Zhang, Yulei Zhang, and Xiaochen Li. 2024. "Adsorption Mechanism of Methylene Blue on Purified Red Phosphorus and Effects of Different Temperatures on Methylene Blue Desorption" Water 16, no. 1: 167. https://doi.org/10.3390/w16010167
APA StyleChen, T., Sun, J., Jiang, R., Zhang, T., Zhang, Y., & Li, X. (2024). Adsorption Mechanism of Methylene Blue on Purified Red Phosphorus and Effects of Different Temperatures on Methylene Blue Desorption. Water, 16(1), 167. https://doi.org/10.3390/w16010167