Flash Flood Susceptibility Modelling Using Soft Computing-Based Approaches: From Bibliometric to Meta-Data Analysis and Future Research Directions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Extraction
2.2. Bibliometric Analysis
2.3. Meta-Data Analysis
3. Results: Bibliometric
3.1. Trend of Publication and Citations
3.2. Major Contributing Articles
3.3. Contributing Authors and Their Nature of Collaboration
3.4. Countries’ Contributions and Collaboration
3.5. Emerging Theme
4. Results: Meta-Analysis
4.1. Frequency and Comparative Performance of Algorithms for Flash Flood
4.2. Performance of Various Hybrid Models
4.3. Important Flash Flood Conditioning Factors
5. Discussion
5.1. Bibliometric Analysis
5.2. Meta-Data Analysis
6. Limitations of This Study
7. Conclusions
- (a)
- The publication trend graph indicated that the publication of articles in this research field started in 2016 and has increased since 2019.
- (b)
- Citation analysis indicated that papers titled “A comparative assessment of decision tree algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran” had the highest number of citations as per the Web of Science database collected as of October 2022.
- (c)
- The author’s keyword analysis showed that GIS, machine learning, statistical models, and analytical hierarchy processes were the central focuses of this research area.
- (d)
- The hybrid models performed better than the standalone models. Models combining metaheuristic optimization algorithms and machine-learning approaches performed better than other hybrid models.
- (a)
- Factors affecting flash floods may differ depending on climatic conditions and basin characteristics. Therefore, future studies should review the most important factors by characterizing the study areas concerning climate conditions and basin characteristics. More comparative studies of hybrid models in the same research area should be conducted to judge their performance explicitly.
- (b)
- While choosing better models and conditioning factors is essential for improving prediction performance, other aspects, such as the size and representation of training samples, are equally important for assessing the performance of flash flood susceptibility models.
- (c)
- The impact of input dataset resolution on the model’s performance has not been extensively explored. Therefore, future studies should explore the impact of the resolution of the input data on the outcome of flash flood susceptibility maps.
- (d)
- A critical reflection of the transferability of flash flood susceptibility models is necessary. Hence, future studies should explore the validity of transferring the developed flash flood susceptibility model and evaluate its performance using new data from another region. However, before transferring the model to a new region, it is essential to carefully evaluate its similarities and differences. It is also recommended to use a robust statistical method to validate the model’s performance on new data from other regions to ensure reliability and accuracy.
- (e)
- Future studies should also compare the output of the flash flood susceptibility model obtained using computing-based techniques with the physically based model output to identify the strengths and weaknesses of each approach and determine which is better suited for different applications and scenarios.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References | Model Used (Best Model in Bold) | Study Area | Top 5 Predictors Reported (in No Order) | Implementation Scale | Resolution of the Map Generated | Performance of Models (Based on AUC) | Data against Which the Model Are Validated |
---|---|---|---|---|---|---|---|
[51] | LMT, REPT, NBT, ADT | Iran | Ground slope, altitude, Topographic Wetness Index (TWI), river density, distance from river. | Regional (4014 km2) | - | ADT-0.976 NBT-0.974 LMT-0971 REPT-0.811 | Past field survey data |
[52] | RF, ANN, SVM | China | Elevation, longitude, drainage density, soil moisture, average annual daily maximum Precipitation | National (4,280,000 km2) | 11.1 × 11.1 km | RF: 0.838 | Historical flooding record |
[53] | DLNN, MLP-NN, SVM | Vietnam | Elevation, slope, curvature, soil type, lithology | Regional (1465.07 km2) | - | DLNN-0.960 | Past field survey data |
[55] | SE, SI, Wf | Iran | Distance from River, Rainfall, Geology Land use, NDVI | Regional (4015 km2). | 20 × 20 m | SE-0.914 SI-0.987 Wf-0.976 | Documentary source and field data |
[65] | NBT, NB, SAW, TOPSIS, VIKOR | China | Elevation, distance from river, NDVI, soil type, Slope | Regional (4053.16 km2). | - | NBT-0.984 NB-0.979 SAW-0.97 TOPSIS-0.968 VIKOR-0.965 | Past field survey data |
[54] | GLMBoost, BayesGLM, RF | Iran | Elevation, drainage density (Dd), distance from stream (Dfs), normalized difference vegetation index (NDVIland use | Regional (11,290 km2) | 30 × 30 m | - | Inundation map generated from Sentinel 2 images |
[56] | PSO-ELM, MLP-ANN, SVM, Decision Tree | Vietnam | Elevation, slope, aspect, curvature, Toposhade, | Regional (1510.4 km2) | 20 × 20 m | PSO-ELM- 0.954 MLP-ANN-0.938 SVM-0.93 Decision Tree-0.912 | Past field survey data |
[7] | PSO-MARS, BNN, SVM, CT | Vietnam | Elevation, slope, toposhade, aspect, topographic wetness index | Regional (1510.4 km2) | 10 × 10 m | PSO-MARS: 0.96 | Historical record |
[57] | FURIA-GA-Bagging; FURIA-GA-LogitBoost; FURIA-GA-AdaBoost | Vietnam | Elevation, slope, topographic wetness index (TWI), toposhade, lithology cover | Regional (1510 km2) | - | FURIA-GA-bagging: 0.9540 FURIA-GA-LogitBoost: 0.8330 FURIA-GA-AdaBoost: 0.9520 | Field Survey |
[79] | RF-ADTree SVM-Polynomial, SVM-RVF, LR, AD-Tree, NBMU | Iran | Distance to river, geomorphology, Landsuse, HG, Geology, Slope | Regional (489.49 km2) | - | RF-ADTree-0.906 SVM-Polynomial-0.879 SVM-RVF-0.867 LR-0.75 AD-Tree-0.861 NBMU-0.811 | Field Survey, Past data |
[71] | DBPGA, LR, LMT, ADT, NBT, ANFIS-BAT, ANFIS-CA, ANFIS-IWO, ANFIS-ICA, ANFIS-FA | Iran | No ranking | Regional (4014 km2) | - | DBPGA: 0.989 ANFIS-BAT: 0.944 ANFIS-CA: 0.921 ANFIS-IWO: 0.939 ANFIS-ICA: 0.947 ANFIS-FA: 0.917 | Historical record |
[8] | FR, SI | China | No ranking | Local (7.98 km2) | - | - | Documentary source and field data |
[58] | ANN, SVM, RF, RS, Dagging | Bangladesh | Slope, topographic roughness index (TRI), elevation, LULC, distance to road | Regional (2284 km2) | 30 × 30 m | Dagging-0.873 SVM-0.86 ANN-0.83 RF-0.91 | Historical data sources, fieldwork, perception of local residents, and Google Earth |
[59] | FR; FR+LR | Saudi Arabia | Slope, Elevation, Curvature, Geology, Land use | Regional (219 km2) | 5 × 5 m | FR-0.896 FR-LR: 0.913 | Field survey |
[80] | ADT, FT, KLR, MLP, QDA | Iran | Elevation, slope, distance from rivers, land use, lithology | Regional (1605 km2) | - | - | Historical flood map |
[81] | kNN–AHP, KS–AHP, KS, KNN | Romania | Slope angle, profile curvature, curve number, lithology, modified Fournier index | Regional (2600 km2) | 30 × 30 m | kNN–AHP: 0.901 KS–AHP: 0.886 | Remote sensing images and field survey |
[82] | DNN-GWO, DNN-GOA, DNN-SSO, | Vietnam | NDVI, distance to river, aspect, slope, NDBI | - | 30 × 30 m | DNN-GWO: 0.96 DNN-GOA: 0.96 DNN-SSO: 0.97 | Sentinel-1A images in combination with field surveys |
[83] | ABM-CDT, Bag-CDT, Dag-CDT, MBAB-CDT CDT | Iran | Distance from rivers, elevation, slope, soil, lithology. | Regional (1605 km2) | 12.5 × 12.5 m | ABM-CDT: 0.957 Dag-CDT: 0.947 MBAB-CDT: 0.933 Bag-CDT: 0.932 | Historical record |
[84] | LR-FR, LR-WoE, SVM-FR, SVM-WoE | Romania | Slope angle, land use, lithology, plan curvature, and profile curvature | Regional (2600 km2) | 30 × 30 m | LR-FR: 0.888 LR-WOE: 0.885 SVM-FR: 0.887 SVM-WOE: 0.883 | Orthorectified aerial imagery and field survey |
[73] | MLP-FR, MLP-WOE, RF-FR, RF-WOE | Romania | Slope angle, LULC, distance from river, rainfall, stream power index | Regional (2509 km2) | - | MLP-FR: 0.940 MLP-WOE: 0.946 RF-FR: 0.999 RF-WOE: 0.968 CART-WOE: 0.938 CART-FR: 0.937 | Historical record |
[74] | FA-LM-ANN; LM-ANN; FA-ANN–SVM; CT | Vietnam | No ranking | Regional (1510.4 km2) | - | FA-LM-ANN: 0.985 LM-ANN: 0.957 FA-ANN: 0.972 | Sentinel-1A SAR imagery |
[85] | AHP, IAE, ADT-IOE, ADT-AHP | Romania | Slope angle, topographic position index, plan curvature, land use, convergence index | Regional (363 km2) | - | ADT-IOE: 0.972 ADT-AHP: 0.926 | Google Earth aerial imagery |
[86] | BRT, ERT, PRF, RF, RRF | Iran | Altitude, slope, aspect, Plan curvature, profile curvature | Regional (2056.75 km2) | - | BRT: 0.75 ERT: 0.82 PRF: 0.79 RF: 0.78 RRF:0.80 | Field survey and local authority |
[87] | SI, LR-SI, CART-SI, MLP-SI, RF-SI, SVM-SI | Romania | Slope relief, L-S Factor, Topographic Wetness Index (TWI), profile curvature and Topographic Position Index (TPI), land use | Regional (340 km2) | 30 × 30 m | LR-SI: 0.915 CART-SI: 0.929 MLP-SI: 0.942 RF-SI: 0.903 SVM-SI: 0.894 | Aerial imagery and field measurements |
[22] | LMT, RF, ADT, WoE, LMT-WoE. RF-WoE, ADT-WoE | Romania | Slope, profile curvature, curve number, lithology, modified Fournier index | Regional (2600 km2) | 30 × 30 m | LMT-WoE: 0.906 RF-WoE: 0.893 ADT-WoE: 0.917 | Aerial Imagery and field survey |
[88] | RS, MJ, RAb | Iran | Elevation, stream distance, precipitation, land use/land cover (LU/LC), normalized difference vegetation index (NDVI) | Regional (11,290 km2) | - | RS: 0.931 MJ: 0.901 RAb: 0.889 | Historical record and field survey |
[89] | FT, BFT, DFT, RFT | Iran | Elevation, Drainage density, distance to stream, rainfall, NDVI | Regional (11,290 km2) | - | BFT-0.86 DFT-0.85 RFT-0.84 | Historical record |
[90] | NB-CF, NB-EBF, MLP-CF, MLP-EBF | Romania | Slope angle, convergence index, hydrological soil groups, lithology, land use | Regional (2600 km2) | - | NB-CF: 0.929 NB-EBF: 0.884 MLP-CF: 0.932 MLP-EBF: 0.912 | Orthophotomaps and field survey |
[32] | LMT, KLR, RBFC, NBM | Vietnam | - | - | - | LMT: 0.988; KLR: 0.985; RBFC: 0.984; NBM: 0.983 | Aerial photographs, satellite images, and field surveys |
[20] | FR, WoE | Romania | No ranking | Regional (340 km2) | - | - | Orthophotomaps |
[70] | AHP | China | - | National | - | - | - |
[26] | CNN, RNN | Iran | Slope degree, altitude, plan curvature, proximity to rivers, lithology | Regional (12,000 km2) | 30 × 30 m | - | Google Earth images and historical data |
[91] | AHP | Iraq | No ranking | Regional (2098 km2) | 30 × 30 m | - | - |
[92] | ANFIS-CF, ANFIS-WOE, ANFIS-AHP | Romania | Slope, distance from river, LULC, lithology, elevation | Regional (4456 km2) | - | ANFIS-CF: 0.947 ANFIS-WOE: 0.932 ANFIS-AHP: 0.930 | Historical record |
[25] | DNN-AHP, DNN-FR | Romania | Land use, profile curvature, hydrological soil group, lithology, slope angle | Regional (2600 km2) | 30 × 30 m | DNN-AHP: 0.979 DNN-FR: 0.957 | Google Earth images and field survey data |
[30] | HFPS-RSTree, SVM, RF. C4.5 Dt, LMT | Vietnam | Elevation, slope, aspect, plan curvature, and profile curvature | Regional (1435 km2) | 30 × 30 m | HFPS-RSTree: 0.967 | Sentinel-1 C band images |
[66] | FR, MLP, MLP-FR | Romania | Slope, elevation above channel (EaC), distance from rivers (DfR), plan curvature (PLC), Topographic Wetness Index (TWI) | Regional (5264 km2) | 25 × 25 m | MLP-FR: 0.986 | Satellite imagery and from the RUSLE |
[27] | RF, BRT, XGBoost, CART | Romania | Slope, LS factor, TWI, Pasture, HGS | Regional (340 km2) | - | RF model: 0.956, BRT: 0.899 XGBoost: 0.892, CART: 0.868 | Google Earth aerial imagery |
[93] | AHP-FR | Pakistan | Distance from the river, drainage density, slope, elevation, and rainfall. | Regional (14,850 km2) | 12.5 × 12.5 m | AHP-FR: 0.81 | Historical record |
[94] | DLNN-FR, DLNN-WOE, ADT-FR, ADT-WOE, WOE, FR), DLNN, ADT | Romania | Slope, profile curvature, land use, Topographic Position Index (TPI), Topographic Wetness Index (TWI) | Regional (340 km2) | - | DLNN-FR: 0.942 DLNN-WOE: 0.96 ADT-FR: 0.919 ADT-WOE: 0.94 | Google Earth images |
[95] | AHP | Egypt | Elevation, slope, lithology, topographic wetness index, distance from the stream | Regional (2900 km2) | - | NA | - |
[96] | SVR-GOA, SVR-PSO, SVR | India | No ranking | Regional (364.9 km2) | - | SVR-GOA: 0.951 SVR-PSO: 0.948 SVR: 0.911 | Historical record |
[75] | GA-BN-NN; MLP-BP; GA-MLP; SFLA-MLP | Iran | Elevation, slope angle, the topographic wetness index (TWI), distance to river, drainage density | Regional (4014 km2) | 30 × 30 m | GA-BN-NN-0.966 MLP-BP-0.908 GA-MLP-0.888 SFLA-MLP-0.941 | Aerial photograph, Field survey, and report |
[67] | CF. LR, CF-LR | China | 6 h precipitation (H6_100) within a 100-year return period, 24 h precipitation (H24_100) within a 100-year return period, annual rainfall, population density, and economic density. | National (120,000 km2) | 30 × 30 m | CF-LR: 0.86 | Historical record |
[68] | ANN, DLNN, PSO | India | Aspect, elevation, slope, plan curvature, profile curvature | Regional (465 km2) | - | ANN: 0.914 DLNN: 0.920 PSO: 0.942 | Historical records, satellite images, and aerial photographs, |
[97] | BRT, CART, NBT | UAE | No ranking | Regional (11,871 km2) | - | NA | Google Earth application and local reports of newspapers |
[98] | QPSO-CDTree; | Vietnam | Slope, elevation, curvature, topographic wetness index, LULC | Regional (629 km2) | 30 × 30 m | QPSO-CDTree: 0.949 | Past record inventory database |
[99] | Geomorphic approach | Pakistan | Geomorphic ranking | Regional (391 km2) | - | - | Historical record |
[31] | REPT, Decorate-REPT, AdaBoostM1-REPT, Bagging-REPT, and MultiBoostAB-REPT | Vietnam | No ranking | Regional (4662.5 km2) | - | Decorate-REPT: 0.988 AdaBoostM1-REPT: 0.983 Bagging-REPT: 0.960 MultiBoostAB-REPT: 0.939 | Field survey |
[100] | GIS Matrix Method | Bosnia and Herzegovina | No ranking | Regional (6289.19 km2) | - | NA | Field survey |
[77] | DLNN-AHP, NB-AHP, MLP-AHP, FAHP | Romania | Slope, LULC, convergence index, hydrological soil group, TPI | Regional (363 km2) | - | DLNN-AHP: 0.971 NB-AHP: 0.945 MLP-AHP: 0.888 FAHP: 0.836 | Aerial imagery from Google Earth |
[101] | SVM, CART, CNN, SVM-FMV, CART-FMV, CNN-FMV | China | Altitude, topographic wetness index (TWI), maximum three-day precipitation (M3DP), land cover, soil texture | Regional (90,016 km2) | 1 km × 1 km | SVM-FMV: 0.915 CART-FMV: 0.915 CNN-FMV: 0.935 | Historical record |
[102] | AHP | Bangladesh | slope, rainfall, land use land cover, drainage density, digital elevation model | Regional (8590 km2) | - | NA | Historical record |
[103] | RF, LightGBM, CatBoost | Egypt | TRI, TWI, DEM, slope, distance to river | Regional (138 km2) | - | RF: 0.99 LightGBM: 0.98 CatBoost: 0.97 | Field surveys and records of historical flood events |
[104] | FR, FR-AHP | Malaysia | No ranking | - | - | FR: 0.90 FR-AHP: 0.90 | Field visit and Google Earth Pro |
[105] | LR, LR-SVM-MLP, SVM, MLP | Pakistan | Distance from river, TWI, curvature, SPI, slope | - | 30 × 30 m | LR: 0.978 SVM: 0.968 MLP: 0.985 LR-SVM-MLP: 0.99 | |
[106] | SI-LR, SI-KNN, SI-RF, SI-XGB | Malaysia | Elevation, distance from river, lithology, river density, rainfall | - | - | SI-LR: 0.977 SI-KNN: 0.98 SI-RF: 0.995 SI-XGB: 0.997 | Historical record |
[107] | CNN, LR, KNN | Pakistan | Slope, distance to river, TWI, elevation, distance to road | Regional (1586 km2) | 12.5 × 12.5 m | CNN: 0.98 LR: 0.97 KNN: 0.95 | Historical report |
[108] | - | Egypt | Hydro morphometric parameters | Regional (61,000 km2) | - | - | - |
[109] | FR, FR-SVR, FR-SVR-GWO, FR-SVR-WOA | Iran | No ranking | Regional (17,953 km2) | - | FR: 0.86 FR-SVR: 0.83 FR-SVR-GWO: 0.88 FR-SVR-WOA: 0.87 | Field survey and historical report |
[69] | SVM, LR, Ensemble | Multi-country | No ranking | National (50,640,400 km2) | 11.1 × 11.1 km | SVM: 0.932 LR: 0.933 Ensmeble: 0.934 | International Disaster Database (EM-DAT) and the Global Active Archive of Large Flood Events. |
[110] | AHP, FR, AHP-FR | Turkey | No ranking | Regional (13,108 km2) | - | AHP: 0.965 FR: 0.989 AHP-FR: 0.992 | News sources and satellite images |
[111] | SE-RF, SE-ANN | Greece | Lithology, LULC, slope, elevation, TWI | Regional (1200 km2) | 25 × 25 m | SE-RF: 0.87 SE:ANN: 0.773 | Field survey and past record |
[11] | AHP, F-AHP, ANP, F-ANP, Adaboost | Iran | Runoff, distance from stream, slope, LULC, geology | Regional (11,888 km2) | - | AHP: 0.779 F-AHP: 0.750 ANP: 0.850 F-ANP: 0.843 Adaboost: 0.864 | Field survey and historical report |
References
- Messner, F.; Meyer, V. Flood damage, vulnerability and risk perception–challenges for flood damage research. In Flood Risk Management: Hazards, Vulnerability and Mitigation Measures; Springer: Berlin/Heidelberg, Germany, 2006; pp. 149–167. [Google Scholar]
- Nachappa, T.G.; Piralilou, S.T.; Gholamnia, K.; Ghorbanzadeh, O.; Rahmati, O.; Blaschke, T. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J. Hydrol. 2020, 590, 125275. [Google Scholar] [CrossRef]
- Iliadis, C.; Galiatsatou, P.; Glenis, V.; Prinos, P.; Kilsby, C. Urban Flood Modelling under Extreme Rainfall Conditions for Building-Level Flood Exposure Analysis. Hydrology 2023, 10, 172. [Google Scholar] [CrossRef]
- Wahlstrom, M.; Guha-Sapir, D. The Human Cost of Weather-Related Disasters 1995–2015; UNISDR: Geneva, Switzerland, 2015. [Google Scholar]
- Avashia, V.; Garg, A. Implications of land use transitions and climate change on local flooding in urban areas: An assessment of 42 Indian cities. Land Use Policy 2020, 95, 104571. [Google Scholar] [CrossRef]
- Hinge, G.; Hamouda, M.A.; Long, D.; Mohamed, M.M. Hydrologic utility of satellite precipitation products in flood Prediction: A meta-data analysis and lessons learnt. J. Hydrol. 2022, 612, 128103. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.-D.; Pham, T.-D.; Ngo, P.-T.T.; Hoa, P.V.; Minh, N.Q.; Tran, X.-T.; Samui, P. A new intelligence approach based on GIS-based Multivariate Adaptive Regression Splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. J. Hydrol. 2019, 575, 314–326. [Google Scholar]
- Cao, C.; Xu, P.; Wang, Y.; Chen, J.; Zheng, L.; Niu, C. Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability 2016, 8, 948. [Google Scholar] [CrossRef]
- Ghosh, S.; Saha, S.; Bera, B. Flood susceptibility zonation using advanced ensemble machine learning models within Himalayan foreland basin. Nat. Hazards Res. 2022, 2, 363–374. [Google Scholar] [CrossRef]
- Costache, R.; Arabameri, A.; Moayedi, H.; Pham, Q.B.; Santosh, M.; Nguyen, H.; Pandey, M.; Pham, B.T. Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naïve Bayes, XGBoost and classification and regression tree. Geocarto Int. 2021, 37, 6780–6807. [Google Scholar] [CrossRef]
- Rezaie-Balf, M.; Ghaemi, A.; Jun, C.S.; Band, S.; Bateni, S.M. Towards an integrative, spatially-explicit modeling for flash floods susceptibility mapping based on remote sensing and flood inventory data in Southern Caspian Sea Littoral, Iran. Geocarto Int. 2022, 37, 12638–12668. [Google Scholar] [CrossRef]
- David, A.; Schmalz, B. Flood hazard analysis in small catchments: Comparison of hydrological and hydrodynamic approaches by the use of direct rainfall. J. Flood Risk Manag. 2020, 13, e12639. [Google Scholar] [CrossRef]
- Jong, P.; van den Brink, M. Between tradition and innovation: Developing Flood Risk Management Plans in the Netherlands. J. Flood Risk Manag. 2017, 10, 155–163. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Tsanis, I.K.; Koutroulis, A.G. Application of the HBV hydrological model in a flash flood case in Slovenia. Nat. Hazards Earth Syst. Sci. 2010, 10, 2713–2725. [Google Scholar] [CrossRef]
- Hamouda, M.A.; Hinge, G.; Yemane, H.S.; Al Mosteka, H.; Makki, M.; Mohamed, M.M. Reliability of GPM IMERG Satellite Precipitation Data for Modelling Flash Flood Events in Selected Watersheds in the UAE. Remote Sens. 2023, 15, 3991. [Google Scholar] [CrossRef]
- Glenis, V.; Kutija, V.; Kilsby, C.G. A fully hydrodynamic urban flood modelling system representing buildings, green space and interventions. Environ. Model. Softw. 2018, 109, 272–292. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, G. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques. J. Hydrol. 2016, 540, 331–339. [Google Scholar] [CrossRef]
- Willis, T.; Wright, N.; Sleigh, A. Systematic analysis of uncertainty in 2D flood inundation models. Environ. Model. Softw. 2019, 122, 104520. [Google Scholar] [CrossRef]
- Costache, R.; Zaharia, L. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment–case study: Bâsca Chiojdului River catchment (Romania). J. Earth Syst. Sci. 2017, 126, 59. [Google Scholar] [CrossRef]
- Zaharia, L.; Costache, R.; Prăvălie, R.; Minea, G. Assessment and mapping of flood potential in the Slănic catchment in Romania. J. Earth Syst. Sci. 2015, 124, 1311–1324. [Google Scholar] [CrossRef]
- Costache, R. Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration. Stoch. Environ. Res. Risk Assess. 2019, 33, 1375–1402. [Google Scholar] [CrossRef]
- Koem, C.; Tantanee, S. Flash flood hazard mapping based on AHP with GIS and satellite information in Kampong Speu Province, Cambodia. Int. J. Disaster Resil. Built Environ. 2020, 12, 457–470. [Google Scholar] [CrossRef]
- Radwan, F.; Alazba, A.A.; Mossad, A. Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophys. 2019, 67, 215–229. [Google Scholar] [CrossRef]
- Costache, R.; Ngo, P.T.T.; Bui, D.T. Novel ensembles of deep learning neural network and statistical learning for flash-flood susceptibility mapping. Water 2020, 12, 1549. [Google Scholar] [CrossRef]
- Panahi, M.; Jaafari, A.; Shirzadi, A.; Shahabi, H.; Rahmati, O.; Omidvar, E.; Lee, S.; Bui, D.T. Deep learning neural networks for spatially explicit prediction of flash flood probability. Geosci. Front. 2021, 12, 101076. [Google Scholar] [CrossRef]
- Abedi, R.; Costache, R.; Shafizadeh-Moghadam, H.; Pham, Q.B. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto Int. 2021, 37, 5479–5496. [Google Scholar] [CrossRef]
- Muñoz, P.; Orellana-Alvear, J.; Willems, P.; Célleri, R. Flash-flood forecasting in an Andean mountain catchment—Development of a step-wise methodology based on the random forest algorithm. Water 2018, 10, 1519. [Google Scholar] [CrossRef]
- Chen, W.; Hong, H.; Li, S.; Shahabi, H.; Wang, Y.; Wang, X.; Ahmad, B. Bin Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J. Hydrol. 2019, 575, 864–873. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Thi Ngo, P.-T.; Pham, T.D.; Dou, J.; Song, X.; Hoang, N.-D.; Tran, D.A.; Cao, D.P.; Aydilek, I.B.; Amiri, M. A new hybrid firefly–PSO optimized random subspace tree intelligence for torrential rainfall-induced flash flood susceptible mapping. Remote Sens. 2020, 12, 2688. [Google Scholar] [CrossRef]
- Ha, H.; Luu, C.; Bui, Q.D.; Pham, D.-H.; Hoang, T.; Nguyen, V.-P.; Vu, M.T.; Pham, B.T. Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models. Nat. Hazards 2021, 109, 1247–1270. [Google Scholar] [CrossRef]
- Pham, B.T.; Van Phong, T.; Nguyen, H.D.; Qi, C.; Al-Ansari, N.; Amini, A.; Ho, L.S.; Tuyen, T.T.; Yen, H.P.H.; Ly, H.-B. A comparative study of kernel logistic regression, radial basis function classifier, multinomial naïve bayes, and logistic model tree for flash flood susceptibility mapping. Water 2020, 12, 239. [Google Scholar] [CrossRef]
- Hapuarachchi, H.A.P.; Wang, Q.J.; Pagano, T.C. A review of advances in flash flood forecasting. Hydrol. Process. 2011, 25, 2771–2784. [Google Scholar] [CrossRef]
- Saleh, A.; Yuzir, A.; Abustan, I. Flash flood susceptibility modelling: A review. In Proceedings of the 3rd National Conference on Wind & Earthquake Engineering and International Seminar On Sustainable Construction Engineering, Kuala Lumpur, Malaysia, 12–13 July 2019; IOP Publishing: Bristol, UK, 2020; Volume 712, p. 12005. [Google Scholar]
- Zanchetta, A.D.L.; Coulibaly, P. Recent advances in real-time pluvial flash flood forecasting. Water 2020, 12, 570. [Google Scholar] [CrossRef]
- Liu, C.; Guo, L.; Ye, L.; Zhang, S.; Zhao, Y.; Song, T. A review of advances in China’s flash flood early-warning system. Nat. Hazards 2018, 92, 619–634. [Google Scholar] [CrossRef]
- Hinge, G.; Mohamed, M.M.; Long, D.; Hamouda, M.A. Meta-Analysis in Using Satellite Precipitation Products for Drought Monitoring: Lessons Learnt and Way Forward. Remote Sens. 2021, 13, 4353. [Google Scholar] [CrossRef]
- Islam, A.; Hassini, S.; El-Dakhakhni, W. A systematic bibliometric review of optimization and resilience within low impact development stormwater management practices. J. Hydrol. 2021, 599, 126457. [Google Scholar] [CrossRef]
- Maditati, D.R.; Munim, Z.H.; Schramm, H.-J.; Kummer, S. A review of green supply chain management: From bibliometric analysis to a conceptual framework and future research directions. Resour. Conserv. Recycl. 2018, 139, 150–162. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Ho, Y.-S. Bibliometric analysis of tsunami research. Scientometrics 2007, 73, 3–17. [Google Scholar] [CrossRef]
- Dordi, T.; Henstra, D.; Thistlethwaite, J. Flood risk management and governance: A bibliometric review of the literature. J. Flood Risk Manag. 2022, 15, e12797. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; Álvarez-García, J.; González-Vázquez, E.; Río-Rama, D.; de la Cruz, M. Wastewater management: Bibliometric analysis of scientific literature. Water 2020, 12, 2963. [Google Scholar] [CrossRef]
- Wu, J.; Wu, X.; Zhang, J. Development trend and frontier of stormwater management (1980–2019): A bibliometric overview based on CiteSpace. Water 2019, 11, 1908. [Google Scholar] [CrossRef]
- Garfield, E.; Paris, S.; Stock, W.G. HistCiteTM: A software tool for informetric analysis of citation linkage. Inf. Wiss. Prax. 2006, 57, 391. [Google Scholar]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Wehling, P.; LaBudde, R.A.; Brunelle, S.L.; Nelson, M.T. Probability of detection (POD) as a statistical model for the validation of qualitative methods. J. AOAC Int. 2011, 94, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Plataridis, K.; Mallios, Z. Flood susceptibility mapping using hybrid models optimized with Artificial Bee Colony. J. Hydrol. 2023, 624, 129961. [Google Scholar] [CrossRef]
- Ling, C.X.; Huang, J.; Zhang, H. AUC: A statistically consistent and more discriminating measure than accuracy. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003; Volume 3, pp. 519–524. [Google Scholar]
- Bentivoglio, R.; Isufi, E.; Jonkman, S.N.; Taormina, R. Deep Learning Methods for Flood Mapping: A Review of Existing Applications and Future Research Directions. Hydrol. Earth Syst. Sci. 2021, 26, 4345–4378. [Google Scholar] [CrossRef]
- De Moel, H.; Jongman, B.; Kreibich, H.; Merz, B.; Penning-Rowsell, E.; Ward, P.J. Flood risk assessments at different spatial scales. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 865–890. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Bui, D.T. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Pang, B.; Xu, Z.; Yue, J.; Tu, T. Mapping flood susceptibility in mountainous areas on a national scale in China. Sci. Total Environ. 2018, 615, 1133–1142. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.-D.; Martínez-Álvarez, F.; Ngo, P.-T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci. Total Environ. 2020, 701, 134413. [Google Scholar]
- Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Sci. Total Environ. 2020, 711, 135161. [Google Scholar] [CrossRef]
- Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ. Monit. Assess. 2016, 188, 656. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Ngo, P.-T.T.; Pham, T.D.; Jaafari, A.; Minh, N.Q.; Hoa, P.V.; Samui, P. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 2019, 179, 184–196. [Google Scholar] [CrossRef]
- Bui, D.T.; Tsangaratos, P.; Ngo, P.-T.T.; Pham, T.D.; Pham, B.T. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Sci. Total Environ. 2019, 668, 1038–1054. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2021, 12, 101075. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Sefry, S.A. Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ. Earth Sci. 2016, 75, 12. [Google Scholar] [CrossRef]
- Mohamed, A.; Razak, A.Z.A.; Abdullah, Z. Most-Cited Research Publications on Educational Leadership and Management: A Bibliometric Analysis. Int. Online J. Educ. Leadersh. 2020, 4, 33–50. [Google Scholar]
- Elkhrachy, I. Flash flood hazard mapping using satellite images and GIS tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt. J. Remote Sens. Space Sci. 2015, 18, 261–278. [Google Scholar] [CrossRef]
- Bandi, A.S.; Meshapam, S.; Deva, P. A geospatial approach to flash flood hazard mapping in the city of Warangal, Telangana, India. Environ. Socio-Econ. Stud. 2019, 7, 1–13. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Amarnath, G. Applications of satellite-based rainfall estimates in flood inundation modeling—A case study in Mundeni Aru River Basin, Sri Lanka. Remote Sens. 2017, 9, 998. [Google Scholar] [CrossRef]
- Nair, A.S.; Soman, M.K.; Girish, P.; Karmakar, S.; Indu, J. Evaluating SWOT Water Level Information Using a Large Scale Hydrology Simulator: A Case Study Over India. Adv. Space Res. 2022, 70, 1362–1374. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.-B.; Gróf, G.; Ho, H.L. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Popa, M.C.; Peptenatu, D.; Drăghici, C.C.; Diaconu, D.C. Flood hazard mapping using the flood and flash-flood potential index in the Buzău river catchment, Romania. Water 2019, 11, 2116. [Google Scholar] [CrossRef]
- Cao, Y.; Jia, H.; Xiong, J.; Cheng, W.; Li, K.; Pang, Q.; Yong, Z. Flash Flood Susceptibility Assessment Based on Geodetector, Certainty Factor, and Logistic Regression Analyses in Fujian Province, China. ISPRS Int. J. Geo-Inf. 2020, 9, 748. [Google Scholar] [CrossRef]
- Chakrabortty, R.; Chandra Pal, S.; Rezaie, F.; Arabameri, A.; Lee, S.; Roy, P.; Saha, A.; Chowdhuri, I.; Moayedi, H. Flash-flood hazard susceptibility mapping in Kangsabati River Basin, India. Geocarto Int. 2021, 37, 6713–6735. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xiong, J.; Cheng, W.; Li, Y.; Cao, Y.; He, Y.; Duan, Y.; He, W.; Yang, G. Assessment of flood susceptibility mapping using support vector machine, logistic regression and their ensemble techniques in the Belt and Road region. Geocarto Int. 2022, 37, 9817–9846. [Google Scholar] [CrossRef]
- Xiong, J.; Li, J.; Cheng, W.; Wang, N.; Guo, L. A GIS-based support vector machine model for flash flood vulnerability assessment and mapping in China. ISPRS Int. J. Geo-Inf. 2019, 8, 297. [Google Scholar] [CrossRef]
- Shahabi, H.; Shirzadi, A.; Ronoud, S.; Asadi, S.; Pham, B.T.; Mansouripour, F.; Geertsema, M.; Clague, J.J.; Bui, D.T. Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geosci. Front. 2021, 12, 101100. [Google Scholar] [CrossRef]
- Zaharia, L.; Costache, R.; Prăvălie, R.; Ioana-Toroimac, G. Mapping flood and flooding potential indices: A methodological approach to identifying areas susceptible to flood and flooding risk. Case study: The Prahova catchment (Romania). Front. Earth Sci. 2017, 11, 229–247. [Google Scholar] [CrossRef]
- Costache, R.; Bui, D.T. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Sci. Total Environ. 2019, 691, 1098–1118. [Google Scholar] [CrossRef]
- Ngo, P.-T.T.; Hoang, N.-D.; Pradhan, B.; Nguyen, Q.K.; Tran, X.T.; Nguyen, Q.M.; Nguyen, V.N.; Samui, P.; Tien Bui, D. A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using sentinel-1 SAR imagery and geospatial data. Sensors 2018, 18, 3704. [Google Scholar] [CrossRef]
- Shirzadi, A.; Asadi, S.; Shahabi, H.; Ronoud, S.; Clague, J.J.; Khosravi, K.; Pham, B.T.; Ahmad, B.B.; Bui, D.T. A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Eng. Appl. Artif. Intell. 2020, 96, 103971. [Google Scholar] [CrossRef]
- Prasad, P.; Loveson, V.J.; Das, B.; Kotha, M. Novel ensemble machine learning models in flood susceptibility mapping. Geocarto Int. 2021, 37, 4571–4593. [Google Scholar] [CrossRef]
- Costache, R.; Tin, T.T.; Arabameri, A.; Crăciun, A.; Ajin, R.S.; Costache, I.; Islam, A.R.M.T.; Abba, S.I.; Sahana, M.; Avand, M. Flash-flood hazard using deep learning based on H2O R package and fuzzy-multicriteria decision-making analysis. J. Hydrol. 2022, 609, 127747. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Tien Bui, D.; Shirzadi, A.; Shahabi, H.; Chapi, K.; Omidavr, E.; Pham, B.T.; Talebpour Asl, D.; Khaledian, H.; Pradhan, B.; Panahi, M. A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors 2019, 19, 2444. [Google Scholar] [CrossRef]
- Janizadeh, S.; Avand, M.; Jaafari, A.; Van Phong, T.; Bayat, M.; Ahmadisharaf, E.; Prakash, I.; Pham, B.T.; Lee, S. Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh watershed, Iran. Sustainability 2019, 11, 5426. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.I.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sens. 2019, 12, 106. [Google Scholar] [CrossRef]
- Bui, Q.-T.; Nguyen, Q.-H.; Nguyen, X.L.; Pham, V.D.; Nguyen, H.D.; Pham, V.-M. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. J. Hydrol. 2020, 581, 124379. [Google Scholar] [CrossRef]
- Pham, B.T.; Avand, M.; Janizadeh, S.; Van Phong, T.; Al-Ansari, N.; Ho, L.S.; Das, S.; Van Le, H.; Amini, A.; Bozchaloei, S.K. GIS based hybrid computational approaches for flash flood susceptibility assessment. Water 2020, 12, 683. [Google Scholar] [CrossRef]
- Costache, R. Flash-Flood Potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models. Sci. Total Environ. 2019, 659, 1115–1134. [Google Scholar] [CrossRef]
- Costache, R.; Bui, D.T. Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Sci. Total Environ. 2020, 712, 136492. [Google Scholar] [CrossRef]
- Band, S.S.; Janizadeh, S.; Chandra Pal, S.; Saha, A.; Chakrabortty, R.; Melesse, A.M.; Mosavi, A. Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sens. 2020, 12, 3568. [Google Scholar] [CrossRef]
- Costache, R.; Hong, H.; Pham, Q.B. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Sci. Total Environ. 2020, 711, 134514. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Mukherjee, K.; Blaschke, T.; Chen, W.; Ngo, P.T.T.; Band, S.S. Modeling spatial flood using novel ensemble artificial intelligence approaches in northern Iran. Remote Sens. 2020, 12, 3423. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Chen, W.; Roy, J.; Pradhan, B.; Bui, D.T. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J. Hydrol. 2020, 587, 125007. [Google Scholar] [CrossRef]
- Costache, R.; Hong, H.; Wang, Y. Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics. Catena 2019, 183, 104179. [Google Scholar] [CrossRef]
- Al-Abadi, A.M.; Shahid, S.; Al-Ali, A.K. A GIS-based integration of catastrophe theory and analytical hierarchy process for mapping flood susceptibility: A case study of Teeb area, Southern Iraq. Environ. Earth Sci. 2016, 75, 687. [Google Scholar] [CrossRef]
- Costache, R.; Țîncu, R.; Elkhrachy, I.; Pham, Q.B.; Popa, M.C.; Diaconu, D.C.; Avand, M.; Costache, I.; Arabameri, A.; Bui, D.T. New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping. Hydrol. Sci. J. 2020, 65, 2816–2837. [Google Scholar] [CrossRef]
- Waqas, H.; Lu, L.; Tariq, A.; Li, Q.; Baqa, M.F.; Xing, J.; Sajjad, A. Flash flood susceptibility assessment and zonation using an integrating analytic hierarchy process and frequency ratio model for the Chitral District, Khyber Pakhtunkhwa, Pakistan. Water 2021, 13, 1650. [Google Scholar] [CrossRef]
- Costache, R.; Arabameri, A.; Blaschke, T.; Pham, Q.B.; Pham, B.T.; Pandey, M.; Arora, A.; Linh, N.T.T.; Costache, I. Flash-flood potential mapping using deep learning, alternating decision trees and data provided by remote sensing sensors. Sensors 2021, 21, 280. [Google Scholar] [CrossRef]
- El-Magd, S.A.A.; Amer, R.A.; Embaby, A. Multi-criteria decision-making for the analysis of flash floods: A case study of Awlad Toq-Sherq, Southeast Sohag, Egypt. J. Afr. Earth Sci. 2020, 162, 103709. [Google Scholar] [CrossRef]
- Ruidas, D.; Chakrabortty, R.; Islam, A.R.M.; Saha, A.; Pal, S.C. A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India. Environ. Earth Sci. 2022, 81, 145. [Google Scholar] [CrossRef]
- Elmahdy, S.; Ali, T.; Mohamed, M. Flash Flood Susceptibility modeling and magnitude index using machine learning and geohydrological models: A modified hybrid approach. Remote Sens. 2020, 12, 2695. [Google Scholar] [CrossRef]
- Ngo, P.-T.T.; Pham, T.D.; Nhu, V.-H.; Le, T.T.; Tran, D.A.; Phan, D.C.; Hoa, P.V.; Amaro-Mellado, J.L.; Bui, D.T. A novel hybrid quantum-PSO and credal decision tree ensemble for tropical cyclone induced flash flood susceptibility mapping with geospatial data. J. Hydrol. 2021, 596, 125682. [Google Scholar] [CrossRef]
- Mahmood, S.; Rahman, A.-U. Flash flood susceptibility modelling using geomorphometric approach in the Ushairy Basin, eastern Hindu Kush. J. Earth Syst. Sci. 2019, 128, 43. [Google Scholar] [CrossRef]
- Tošić, R.; Lovrić, N.; Dragićević, S.; Manojlović, S. Assessment of torrential flood susceptibility using GIS matrix method: Case study-VRBAS river basin (B&H). Carpathian J. Earth Environ. Sci. 2018, 13, 369–382. [Google Scholar]
- Liu, J.; Wang, J.; Xiong, J.; Cheng, W.; Sun, H.; Yong, Z.; Wang, N. Hybrid Models Incorporating Bivariate Statistics and Machine Learning Methods for Flash Flood Susceptibility Assessment Based on Remote Sensing Datasets. Remote Sens. 2021, 13, 4945. [Google Scholar] [CrossRef]
- Haque, M.; Siddika, S.; Sresto, M.A.; Saroar, M.; Shabab, K.R. Geo-spatial Analysis for Flash Flood Susceptibility Mapping in the North-East Haor (Wetland) Region in Bangladesh. Earth Syst. Environ. 2021, 5, 365–384. [Google Scholar] [CrossRef]
- Saber, M.; Boulmaiz, T.; Guermoui, M.; Abdrabo, K.I.; Kantoush, S.A.; Sumi, T.; Boutaghane, H.; Nohara, D.; Mabrouk, E. Examining LightGBM and CatBoost models for wadi flash flood susceptibility prediction. Geocarto Int. 2021, 37, 7462–7487. [Google Scholar] [CrossRef]
- Saleh, A.; Yuzir, A.; Sabtu, N. Flash flood susceptibility mapping of sungai pinang catchment using frequency ratio. Sains Malays. 2022, 51, 51–65. [Google Scholar] [CrossRef]
- Yaseen, A.; Lu, J.; Chen, X. Flood susceptibility mapping in an arid region of Pakistan through ensemble machine learning model. Stoch. Environ. Res. Risk Assess. 2022, 36, 3041–3061. [Google Scholar] [CrossRef]
- Saleh, A.; Yuzir, A.; Sabtu, N.; Abujayyab, S.K.M.; Bunmi, M.R.; Pham, Q.B. Flash flood susceptibility mapping in urban area using genetic algorithm and ensemble method. Geocarto Int. 2022, 37, 10199–10228. [Google Scholar] [CrossRef]
- Ullah, K.; Wang, Y.; Fang, Z.; Wang, L.; Rahman, M. Multi-hazard susceptibility mapping based on Convolutional Neural Networks. Geosci. Front. 2022, 13, 101425. [Google Scholar] [CrossRef]
- El-Rawy, M.; Elsadek, W.M.; De Smedt, F. Flash Flood Susceptibility Mapping in Sinai, Egypt Using Hydromorphic Data, Principal Component Analysis and Logistic Regression. Water 2022, 14, 2434. [Google Scholar] [CrossRef]
- Rezaie, F.; Panahi, M.; Bateni, S.M.; Jun, C.; Neale, C.M.U.; Lee, S. Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping. Nat. Hazards 2022, 114, 1247–1283. [Google Scholar] [CrossRef]
- Yilmaz, O.S. Flood hazard susceptibility areas mapping using Analytical Hierarchical Process (AHP), Frequency Ratio (FR) and AHP-FR ensemble based on Geographic Information Systems (GIS): A case study for Kastamonu, Türkiye. Acta Geophys. 2022, 70, 2747–2769. [Google Scholar] [CrossRef]
- Ilia, I.; Tsangaratos, P.; Tzampoglou, P.; Chen, W.; Hong, H. Flash flood susceptibility mapping using stacking ensemble machine learning models. Geocarto Int. 2022, 37, 15010–15036. [Google Scholar] [CrossRef]
Sr. No. | Articles | TGCS |
---|---|---|
1 | [51] | 321 |
2 | [52] | 153 |
3 | [53] | 150 |
4 | [55] | 125 |
5 | [54] | 124 |
6 | [56] | 123 |
7 | [57] | 118 |
8 | [8] | 115 |
9 | [58] | 111 |
10 | [59] | 105 |
Author | Numbers of Publications | TGCS |
---|---|---|
Dieu Tien Bui | 17 | 1172 |
Costache Romulus | 16 | 784 |
Binh Thai Pham | 10 | 725 |
Phuong Thao Thi Ngo | 9 | 565 |
Quoc Bao Pham | 7 | 327 |
Tien Dat Pham | 6 | 461 |
Alireza Arabameri | 6 | 132 |
Pham Viet Hao | 5 | 344 |
Nhat-Duc Hoang | 4 | 271 |
Mohammadtaghi Avand | 4 | 201 |
Rank by Recs | Rank by TGCS | ||||
---|---|---|---|---|---|
Sr. No. | Country | Number of Publications | Sr. No. | Country | Citation Number |
1 | Vietnam | 30 | 1 | Vietnam | 1890 |
2 | Iran | 20 | 2 | Iran | 1207 |
3 | Romania | 17 | 3 | India | 819 |
4 | China | 16 | 4 | Romania | 806 |
5 | India | 12 | 5 | Norway | 658 |
6 | Norway | 9 | 6 | China | 579 |
7 | Japan | 7 | 7 | Japan | 466 |
8 | South Korea | 7 | 8 | USA | 314 |
9 | Austria | 5 | 9 | England | 284 |
10 | Egypt | 5 | 10 | South Korea | 249 |
Keyword | Occurrence |
---|---|
Frequency Ratio | 27 |
GIS | 25 |
Logistic Regression | 24 |
Weight of Evidence | 20 |
Statistical Models | 14 |
Support Vector Machine | 12 |
Analytical Hierarchical Process | 10 |
Machine Learning | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinge, G.; Hamouda, M.A.; Mohamed, M.M. Flash Flood Susceptibility Modelling Using Soft Computing-Based Approaches: From Bibliometric to Meta-Data Analysis and Future Research Directions. Water 2024, 16, 173. https://doi.org/10.3390/w16010173
Hinge G, Hamouda MA, Mohamed MM. Flash Flood Susceptibility Modelling Using Soft Computing-Based Approaches: From Bibliometric to Meta-Data Analysis and Future Research Directions. Water. 2024; 16(1):173. https://doi.org/10.3390/w16010173
Chicago/Turabian StyleHinge, Gilbert, Mohamed A. Hamouda, and Mohamed M. Mohamed. 2024. "Flash Flood Susceptibility Modelling Using Soft Computing-Based Approaches: From Bibliometric to Meta-Data Analysis and Future Research Directions" Water 16, no. 1: 173. https://doi.org/10.3390/w16010173
APA StyleHinge, G., Hamouda, M. A., & Mohamed, M. M. (2024). Flash Flood Susceptibility Modelling Using Soft Computing-Based Approaches: From Bibliometric to Meta-Data Analysis and Future Research Directions. Water, 16(1), 173. https://doi.org/10.3390/w16010173