Application and Efficacy of Management Interventions for the Control of Microplastics in Freshwater Bodies: A Systematic Review
Abstract
:1. Introduction
- What are the temporal, geographic and thematic trends in research on the application of interventions to prevent or remove MPs in freshwater bodies?
- How do these research trends relate to the policy and regulatory evolution of microplastic pollution control?
- What types of MPs and which catchment compartments represent research priorities?
- What types of interventions and combinations thereof are being prioritized (i.e., what are the comparative levels of uptake of different interventions), and where?
- What are the comparative levels of efficacy of the different interventions, and which combinations appear to be most effective?
2. Methodology
2.1. Search Strategy, Eligibility & Inclusion
2.2. Data Extraction & Management
2.3. Data Analysis
3. Results & Discussion
3.1. Scope of Publications on MP Interventions in Freshwater Systems
3.2. Location of Studies
3.3. Types of MP
3.4. Type and Application of Interventions for Freshwater Systems
- (1)
- Source control—measures to prevent MPs from coming into contact with (stormwater) runoff in natural and/or built environments; this includes clean technologies—any technology-based process, product or service that reduces/prevents MP inputs into the environment [74];
- (2)
- Wastewater/sludge treatment—physical water treatment, biological water treatment, chemical treatment, and sludge treatment aimed at removing MPs and other pollutants [113];
- (3)
- Bioremediation—use of either naturally occurring or deliberately introduced microorganisms or other forms of life to consume and break down MPs, to clean up a chronically or episodically polluted site [77];
- (4)
- Stormwater treatment—the installation of structural controls primarily designed to remove MPs from stormwater runoff before this water is released into natural freshwater bodies [86];
- (5)
- In situ water/sediment treatment—the physical removal of MPs from water or sediment in a natural freshwater body [99].
3.5. Levels of Efficacy across Interventions
3.6. Overview of Knowledge Gaps & Recommendations Extracted from Review Articles
4. Concluding Remarks & Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Search Strategies
References
- Ahmad, I.; Abdullah, N.; Koji, I.; Yuzir, A.; Mohamad, S.E. Potential of Microalgae in Bioremediation of Wastewater. Bull. Chem. React. Eng. Catal. 2021, 16, 413–429. [Google Scholar] [CrossRef]
- Ali, S.; Faizi, B.; Waqas, H.; Asghar, M.; Zarei, N.; Hashmi, M.Z.; Anjum, S. Bibliometric Analysis of Emerging Trends in Research on Microplastic Pollution in Post-Paris Agreement and Post-COVID-19 Pandemic World. In Soren Microplastic Pollution: Environmental Occurrence and Treatment Technologies, Emerging Contaminants and Associated Treatment Technologies; Hashmi, M.Z., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 511–538. [Google Scholar] [CrossRef]
- Wong, J.K.H.; Lee, K.K.; Tang, K.H.D.; Yap, P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 2020, 719, 137512. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L.; Hamid, S.H.; Hu, X.; Torikai, A. Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B Biol. 1998, 46, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.; Baker, J.E.; Bamford, H.A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9–11, 2008, University of Washington Tacoma, Tacoma, WA, USA; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2023. Available online: https://repository.library.noaa.gov/view/noaa/2509 (accessed on 29 July 2023).
- Juliano, C.; Magrini, G.A. Cosmetic Ingredients as Emerging Pollutants of Environmental and Health Concern. A Mini-Review. Cosmetics 2017, 4, 11. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Sol, D.; Laca Amanda Laca Adriana Diaz, M. Wastewater treatment approaches to remove microplastics: Microfibre incidence and fate. In Polluting Textiles: The Problem with Microfibres, Routledge Explorations in Environmental Studies; Routledge by Taylor & Francis: Oxford, UK, 2022. [Google Scholar]
- Wilson, D.C.; Velis, C.A. Waste management—Still a global challenge in the 21st century: An evidence-based call for action. Waste Manag. Res. 2015, 33, 1049–1051. [Google Scholar] [CrossRef]
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef]
- Peng, J.; Wang, J.; Cai, L. Current understanding of microplastics in the environment: Occurrence, fate, risks, and what we should do. Integr. Environ. Assess. Manag. 2017, 13, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.K.; Jain, M.; Kataria, N.; Sahoo, P.K.; Garg, V.K.; Yadav, A. Microplastics in multimedia environment: A systematic review on its fate, transport, quantification, health risk, and remedial measures. Groundw. Sustain. Dev. 2023, 20, 100889. [Google Scholar] [CrossRef]
- Yusuf, A.; Sodiq, A.; Giwa, A.; Eke, J.; Pikuda, O.; Eniola, J.O.; Ajiwokewu, B.; Sambudi, N.S.; Bilad, M.R. Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards. Environ. Pollut. 2022, 292, 118421. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Lambert, S. Microplastics Are Contaminants of Emerging Concern in Freshwater Environments: An Overview. In Freshwater Microplastics: Challenges for Regulation and Management, The Handbook of Environmental Chemistry; Springer Open: Oslo, Norway; Berlin/Heidelberg, Germany, 2018; pp. 1–23. [Google Scholar] [CrossRef]
- Raza, M.; Lee, J.-Y.; Cha, J. Microplastics in soil and freshwater: Understanding sources, distribution, potential impacts, and regulations for management. Sci. Prog. 2022, 105, 00368504221126676. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, J.; Wang, C.; Chen, A.; You, Y.; Yang, S.; Liu, H.; Jiang, G.; Wu, Y.; Li, Y. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Front. Environ. Sci. Eng. 2021, 16, 1. [Google Scholar] [CrossRef]
- Xu, Y.; Chan, F.K.S.; He, J.; Johnson, M.; Gibbins, C.; Kay, P.; Stanton, T.; Xu, Y.; Li, G.; Feng, M.; et al. A critical review of microplastic pollution in urban freshwater environments and legislative progress in China: Recommendations and insights. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2637–2680. [Google Scholar] [CrossRef]
- Atugoda, T.; Piyumali, H.; Liyanage, S.; Mahatantila, K.; Vithanage, M. Fate and behavior of microplastics in freshwater systems. In Handbook of Microplastics in the Environment; Springer: Cham, Switzerland, 2022; pp. 781–811. [Google Scholar] [CrossRef]
- Brennholt, N.; He, B.M.; Reifferscheid, G. Freshwater Microplastics: Emerging Environmental Contaminants? In Freshwater Microplastics: Challenges for Regulation and Management, The Handbook of Environmental Chemistry; Springer Open: Oslo, Norway; Berlin/Heidelberg, Germany, 2018; pp. 239–272. [Google Scholar] [CrossRef]
- Yin, L.; Wen, X.; Huang, D.; Zeng, G.; Deng, R.; Liu, R.; Zhou, Z.; Tao, J.; Xiao, R.; Pan, H. Microplastics retention by reeds in freshwater environment. Sci. Total Environ. 2021, 790, 148200. [Google Scholar] [CrossRef]
- Meera, S.P.; Bhattacharyya, M.; Nizam, A.; Kumar, A. A review on microplastic pollution in the mangrove wetlands and microbial strategies for its remediation. Environ. Sci. Pollut. Res. 2022, 29, 4865–4879. [Google Scholar] [CrossRef]
- Zhong, L.; Wu, T.; Sun, H.-J.; Ding, J.; Pang, J.-W.; Zhang, L.; Ren, N.-Q.; Yang, S.-S. Recent advances towards micro(nano)plastics research in wetland ecosystems: A systematic review on sources, removal, and ecological impacts. J. Hazard. Mater. 2023, 452, 131341. [Google Scholar] [CrossRef]
- Park, H.; Park, B. Review of Microplastic Distribution, Toxicity, Analysis Methods, and Removal Technologies. Water 2021, 13, 2736. [Google Scholar] [CrossRef]
- Tang, S.; Gao, L.; Gao, H.; Chen, Z.; Zou, D. Microplastics pollution in China water ecosystems: A review of the abundance, characteristics, fate, risk and removal. Water Sci. Technol. 2020, 82, 1495–1508. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, T.; Glassom, D. Decreased growth and survival in small juvenile fish, after chronic exposure to environmentally relevant concentrations of microplastic. Mar. Pollut. Bull. 2019, 145, 254–259. [Google Scholar] [CrossRef]
- Murray, F.; Cowie, P.R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 2011, 62, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Zettler, E.R.; Mincer, T.J.; Amaral-Zettler, L.A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fei, Y.; Wang, H.; Chen, Y.; Huang, S.; Yu, B.; Wang, J.; Tong, Y.; Wen, D.; Zhou, B.; et al. Interaction of Microplastics and Organic Pollutants: Quantification, Environmental Fates, and Ecological Consequences. In Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges, The Handbook of Environmental Chemistry; He, D., Luo, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 161–184. [Google Scholar] [CrossRef]
- Hildebrandt, L.; Nack, F.L.; Zimmermann, T.; Pröfrock, D. Microplastics as a Trojan horse for trace metals. J. Hazard. Mater. Lett. 2021, 2, 100035. [Google Scholar] [CrossRef]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Gunaalan, K.; Fabbri, E.; Capolupo, M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms. Water Res. 2020, 184, 116170. [Google Scholar] [CrossRef]
- Naidoo, T.; Rajkaran, A.; Sershen. Impacts of plastic debris on biota and implications for human health: A South African perspective. South Afr. J. Sci. 2020, 116, 1–8. [Google Scholar] [CrossRef]
- Stang, C.; Mohamed, B.A.; Li, L.Y. Microplastic removal from urban stormwater: Current treatments and research gaps. J. Environ. Manag. 2022, 317, 115510. [Google Scholar] [CrossRef]
- Abeynayaka, A.; Werellagama, I.; Ngoc-Bao, P.; Hengesbaugh, M.; Gajanayake, P.; Nallaperuma, B.; Karkour, S.; Bui, X.-T.; Itsubo, N. Chapter 11—Microplastics in wastewater treatment plants. In Current Developments in Biotechnology and Bioengineering; Bui, X.-T., Nguyen, D.D., Nguyen, P.-D., Ngo, H.H., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 311–337. [Google Scholar] [CrossRef]
- Ngo, P.L.; Pramanik, B.K.; Shah, K.; Roychand, R. Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environ. Pollut. 2019, 255, 113326. [Google Scholar] [CrossRef]
- Liu, F.; Olesen, K.B.; Borregaard, A.R.; Vollertsen, J. Microplastics in urban and highway stormwater retention ponds. Sci. Total Environ. 2019, 671, 992–1000. [Google Scholar] [CrossRef]
- Moruzzi, R.B.; Speranza, L.G.; da Conceição, F.T.; de Souza Martins, S.T.; Busquets, R.; Campos, L.C. Stormwater Detention Reservoirs: An Opportunity for Monitoring and a Potential Site to Prevent the Spread of Urban Microplastics. Water 2020, 12, 1994. [Google Scholar] [CrossRef]
- Feilin, H.; Mingwei, S. Ecofriendly removing microplastics from rivers: A novel air flotation approach crafted with positively charged carrier. Process Saf. Environ. Prot. 2022, 168, 613–623. [Google Scholar] [CrossRef]
- Narciso-Ortiz, L.; Coreno-Alonso, A.; Mendoza-Olivares, D.; Lucho-Constantino, C.; Lizardi-Jimenez, M. Baseline for plastic and hydrocarbon pollution of rivers, reefs, and sediment on beaches in Veracruz State, Mexico, and a proposal for bioremediation. Environ. Sci. Pollut. Res. 2020, 27, 23035–23047. [Google Scholar] [CrossRef] [PubMed]
- Barceló, D.; Picó, Y. Microplastics in the global aquatic environment: Analysis, effects, remediation and policy solutions. J. Environ. Chem. Eng. 2019, 7, 103421. [Google Scholar] [CrossRef]
- McDevitt, J.P.; Criddle, C.S.; Morse, M.; Hale, R.C.; Bott, C.B.; Rochman, C.M. Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act—A New Standard Can Facilitate Improved Policy. Environ. Sci. Technol. 2017, 51, 6611–6617. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Bussi, G.; Hughes, J.M.R.; Castro-Castellon, A.T.; Norling, M.D.; Jeffers, E.S.; Rampley, C.P.N.; Read, D.S.; Horton, A.A. Modelling Microplastics in the River Thames: Sources, Sinks and Policy Implications. Water 2021, 13, 861. [Google Scholar] [CrossRef]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef]
- Günes-Durak, S. Investigation of microplastics removal methods from aquatic environments. Herit. Sustain. Dev. 2021, 3, 58–63. [Google Scholar] [CrossRef]
- Hanif, M.A.; Ibrahim, N.; Dahalan, F.A.; Ali, U.F.M.; Hasan, M.; Jalil, A.A. Microplastics and nanoplastics: Recent literature studies and patents on their removal from aqueous environment. Sci. Total. Environ. 2022, 810, 152115. [Google Scholar] [CrossRef]
- Miloloža, M.; Cvetnić, M.; Grgić, D.K.; Bulatović, V.O.; Ukić, Š.; Rogošić, M.; Dionysiou, D.D.; Kušić, H.; Bolanča, T. Biotreatment strategies for the removal of microplastics from freshwater systems. A review. Environ. Chem. Lett. 2022, 20, 1377–1402. [Google Scholar] [CrossRef]
- Mishra, S.; Das, A.P. Chapter 11—Current Treatment Technologies for Removal of Microplastic and Microfiber Pollutants from Wastewater. In Wastewater Treatment; Shah, M.P., Sarkar, A., Mandal, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 237–251. [Google Scholar] [CrossRef]
- Khadir, A.; Negarestani, M.; Kheradmand, A.; Sillanpää, M. Microplastic Pollution in Water and Their Removal in Various Wastewater Treatment Plants. In Microplastics Pollution in Aquatic Media: Occurrence, Detection, and Removal, Environmental Footprints and Eco-Design of Products and Processes; Sillanpää, M., Khadir, A., Muthu, S.S., Eds.; Springer: Singapore, 2022; pp. 247–271. [Google Scholar] [CrossRef]
- Mao, Y.; Zhao, Y.; Cotterill, S. Examining Current and Future Applications of Electrocoagulation in Wastewater Treatment. Water 2023, 15, 1455. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, R.P.; Rout, P.K.; Das, A.P. Chapter 3—Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics. In Development in Wastewater Treatment Research and Processes; Shah, M., Rodriguez-Couto, S., Biswas, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 45–60. [Google Scholar] [CrossRef]
- Shen, M.; Xiong, W.; Song, B.; Zhou, C.; Almatrafi, E.; Zeng, G.; Zhang, Y. Microplastics in landfill and leachate: Occurrence, environmental behavior and removal strategies. Chemosphere 2022, 305, 135325. [Google Scholar] [CrossRef] [PubMed]
- Chellasamy, G.; Kiriyanthan, R.M.; Maharajan, T.; Radha, A.; Yun, K. Remediation of microplastics using bionanomaterials: A review. Environ. Res. 2022, 208, 112724. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total. Environ. 2020, 707, 135578. [Google Scholar] [CrossRef] [PubMed]
- Padervand, M.; Lichtfouse, E.; Robert, D.; Wang, C. Removal of microplastics from the environment. A review. Environ. Chem. Lett. 2020, 18, 807–828. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Paul, J.; Lim, W.M.; O’cass, A.; Hao, A.W.; Bresciani, S. Scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR). Int. J. Consum. Stud. 2021, 45, O1–O16. [Google Scholar] [CrossRef]
- Sajid, S.; Alam, M.S.; Kok, J.K.; Rehman, M. Women’s participation in Science, Technology Engineering and Mathematics (STEM) education: A review of literature. Asia Proc. Soc. Sci. 2020, 6, 230–234. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Adib, D.; Mafigholami, R.; Tabeshkia, H.; Walker, T. Optimization of Polypropylene Microplastics Removal Using Conventional Coagulants in Drinking Water Treatment Plants via Response Surface Methodology. J. Environ. Health Sci. Eng. 2022, 20, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Alvim, C.; Valiente, S.; Bes-Pia, M.; Mendoza-Roca, J. Methodology for Removing Microplastics and Other Anthropogenic Microparticles from Sludge Dewatering System. J. Environ. Manag. 2022, 314, 115010. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Screening of Bacillus Strains Isolated from Mangrove Ecosystems in Peninsular Malaysia for Microplastic Degradation. Environ. Pollut. 2017, 231, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Auta, H.S.; Emenike, C.U.; Jayanthi, B.; Fauziah, S.H. Growth Kinetics and Biodeterioration of Polypropylene Microplastics by Bacillus Sp. and Rhodococcus Sp. Isolated from Mangrove Sediment. Mar. Pollut. Bull. 2018, 127, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, E.; Habibi, M.; Haddad, E.; Hasanin, M.; Angel, D.; Booth, A.; Sabbah, I. Microplastic Distributions in a Domestic Wastewater Treatment Plant: Removal Efficiency, Seasonal Variation and Influence of Sampling Technique. Sci. Total Environ. 2021, 752, 141880. [Google Scholar] [CrossRef]
- Blair, R.; Waldron, S.; Gauchotte-Lindsay, C. Average Daily Flow of Microplastics through a Tertiary Wastewater Treatment Plant over a Ten-Month Period. Water Res. 2019, 163, 114909. [Google Scholar] [CrossRef]
- Brooks, J.M.; Stewart, C.J.; Haberstroh, C.J.; Arias, M.E. Characteristics and Fate of Plastic Pollution in Urban Stormwater Ponds. Environ. Pollut. 2023, 320, 121052. [Google Scholar] [CrossRef]
- Bydalek, F.; Ifayemi, D.; Reynolds, L.; Barden, R.; Kasprzyk-Hordern, B.; Wenk, J. Microplastic Dynamics in a Free Water Surface Constructed Wetland. Sci. Total Environ. 2023, 858, 160113. [Google Scholar] [CrossRef]
- Carr, S.; Liu, J.; Tesoro, A. Transport and Fate of Microplastic Particles in Wastewater Treatment Plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Chand, R.; Kohansal, K.; Toor, S.; Pedersen, T.; Vollertsen, J. Microplastics degradation through hydrothermal liquefaction of wastewater treatment sludge. J. Clean. Prod. 2022, 335, 130383. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z.; Liu, Y.; Zhu, S.; Cai, X. Effects of Garbage Salvaging and Suspended Crossbar on Microplastic Pollution along a Typical Urban River. Environ. Geochem. Health 2022, 44, 3239–3248. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, T.; Hu, H.; Ao, H.; Xiong, X.; Shi, H.; Wu, C. Transport and Fate of Microplastics in Constructed Wetlands: A Microcosm Study. J. Hazard. Mater. 2021, 415, 125615. [Google Scholar] [CrossRef] [PubMed]
- Conley, K.; Clum, A.; Deepe, J.; Lane, H.; Beckingham, B. Wastewater Treatment Plants as a Source of Microplastics to an Urban Estuary: Removal Efficiencies and Loading per Capita over One Year. Water Res. X 2019, 3, 100030. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.; Silva, L.; Paulo, J.; Faria, M.; Nogueira, N.; Cordeiro, N. Microalgal-Based Biopolymer for Nano- and Microplastic Removal: A Possible Biosolution for Wastewater Treatment. Environ. Pollut. 2020, 263, 114385. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.; Faria, M.; Nogueira, N.; Ferreira, A.; Cordeiro, N. Marine vs Freshwater Microalgae Exopolymers as Biosolutions to Microplastics Pollution. Environ. Pollut. 2019, 249, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, G.; Ehteshami, M.; Mehrdadi, N.; Abedini, R. Identification and Analysis of Plastic Microparticles in the Inlet and Outlet of the Wastewater Treatment Plant and Investigation of the Relationship between Different Seasons of the Year with the Amount of Production and Emission of Particles. Adv. Mater. Sci. Eng. 2022, 2022, 8527899. [Google Scholar] [CrossRef]
- De Falco, F.; Di Pace, E.; Avella, M.; Gentile, G.; Errico, M.; Krzan, A.; ElKhiar, H.; Zupan, M.; Cocca, M. Development and Performance Evaluation of a Filtration System for Washing Machines to Reduce Microfiber Release in Wastewater. Water Air Soil Pollut. 2021, 232, 406. [Google Scholar] [CrossRef]
- Dou, Y.; Cheng, X.; Miao, M.; Wang, T.; Hao, T.; Zhang, Y.; Li, Y.; Ning, X.; Wang, Q. The Impact of Chlorination on the Tetracycline Sorption Behavior of Microplastics in Aqueous Solution. Sci. Total Environ. 2022, 849, 157800. [Google Scholar] [CrossRef]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of Microplastics in Wastewater Treatment Plants and Their Environmental Dispersion with Effluent and Sludge. Environ. Pollut. 2020, 259, 113837. [Google Scholar] [CrossRef]
- Elkhatib, D.; Oyanedel-Craver, V.; Carissimi, E. Electrocoagulation Applied for the Removal of Microplastics from Wastewater Treatment Facilities. Sep. Purif. Technol. 2021, 276, 118877. [Google Scholar] [CrossRef]
- Erdle, L. Microfibers in a Freshwater Ecosystem: Sources, Fate, Effects, and Mitigation. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2022. [Google Scholar]
- Fan, L.; Mohseni, A.; Schmidt, J.; Evans, B.; Murdoch, B.; Gao, L. Efficiency of Lagoon-Based Municipal Wastewater Treatment in Removing Microplastics. Sci. Total Environ. 2023, 876, 162714. [Google Scholar] [CrossRef] [PubMed]
- Gallitelli, L.; Di Lollo, G.; Adduce, C.; Maggi, M.R.; Trombetta, B.; Scalici, M. Aquatic Plants Entrap Different Size of Plastics in Indoor Flume Experiments. Sci. Total Environ. 2023, 863, 161051. [Google Scholar] [CrossRef]
- Gilbreath, A.; McKee, L.; Shimabuku, I.; Lin, D.; Werbowski, L.; Zhu, X.; Grbic, J.; Rochman, C. Multiyear Water Quality Performance and Mass Accumulation of PCBs, Mercury, Methylmercury, Copper, and Microplastics in a Bioretention Rain Garden. J. Sustain. Water Built Environ. 2019, 5, 04019004–1. [Google Scholar] [CrossRef]
- Gkanasos, A.; Tsiaras, K.; Triantaphyllidis, G.; Panagopoulos, A.; Pantazakos, G.; Owens, T.; Karametsis, C.; Pollani, A.; Nikoli, E.; Katsafados, N.; et al. Stopping Macroplastic and Microplastic Pollution at Source by Installing Novel Technologies in River Estuaries and Waste Water Treatment Plants: The CLAIM Project. Front. Mar. Sci. 2021, 8, 738876. [Google Scholar] [CrossRef]
- Herbort, A.F.; Sturm, M.T.; Schuhen, K. A New Approach for the Agglomeration and Subsequent Removal of Polyethylene, Polypropylene, and Mixtures of Both from Freshwater Systems—A Case Study. Environ. Sci. Pollut. Res. 2018, 25, 15226–15234. [Google Scholar] [CrossRef] [PubMed]
- Herbort, A.; Sturm, M.; Fiedler, S.; Abkai, G.; Schuhen, K. Alkoxy-Silyl Induced Agglomeration: A New Approach for the Sustainable Removal of Microplastic from Aquatic Systems. J. Polym. Environ. 2018, 26, 4258–4270. [Google Scholar] [CrossRef]
- Hidayaturrahman, H.; Lee, T.-G. A Study on Characteristics of Microplastic in Wastewater of South Korea: Identification, Quantification, and Fate of Microplastics during Treatment Process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef]
- Hongprasith, N.; Kittimethawong, C.; Lertluksanaporn, R.; Eamchotchawalit, T.; Kittipongvises, S.; Lohwacharin, J. IR Microspectroscopic Identification of Microplastics in Municipal Wastewater Treatment Plants. Environ. Sci. Pollut. Res. 2020, 27, 18557–18564. [Google Scholar] [CrossRef]
- Hsieh, L.; He, L.; Zhang, M.; Lv, W.; Yang, K.; Tong, M. Addition of Biochar as Thin Preamble Layer into Sand Filtration Columns Could Improve the Microplastics Removal from Water. Water Res. 2022, 221, 118783. [Google Scholar] [CrossRef]
- Hu, K.; Zhou, P.; Yang, Y.; Hall, T.; Nie, G.; Yao, Y.; Duan, X.; Wang, S. Degradation of Microplastics by a Thermal Fenton Reaction. ACS ES&T Eng. 2021, 2, 110–120. [Google Scholar] [CrossRef]
- Hu, P.; Su, K.; Sun, Y.; Li, P.; Cai, J.; Yang, H. Efficient Removal of Nano- and Micro- Sized Plastics Using a Starch-Based Coagulant in Conjunction with Polysilicic Acid. Sci. Total Environ. 2022, 850, 157829. [Google Scholar] [CrossRef] [PubMed]
- Järlskog, I.; Strömvall, A.-M.; Magnusson, K.; Gustafsson, M.; Polukarova, M.; Galfi, H.; Aronsson, M.; Andersson-Sköld, Y. Occurrence of Tire and Bitumen Wear Microplastics on Urban Streets and in Sweepsand and Washwater. Sci. Total Environ. 2020, 729, 138950. [Google Scholar] [CrossRef] [PubMed]
- Järlskog, I.; Strömvall, A.-M.; Magnusson, K.; Galfi, H.; Björklund, K.; Polukarova, M.; Garção, R.; Markiewicz, A.; Aronsson, M.; Gustafsson, M.; et al. Traffic-Related Microplastic Particles, Metals, and Organic Pollutants in an Urban Area under Reconstruction. Sci. Total Environ. 2021, 774, 145503. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Wang, M.; Ding, J.; Cao, W.; Sun, C. Occurrence and Seasonal Variation of Microplastics in the Effluent from Wastewater Treatment Plants in Qingdao, China. J. Mar. Sci. Eng. 2022, 10, 58. [Google Scholar] [CrossRef]
- Jiang, H.; Bu, J.; Bian, K.; Su, J.; Wang, Z.; Sun, H.; Wang, H.; Zhang, Y.; Wang, C. Surface Change of Microplastics in Aquatic Environment and the Removal by Froth Flotation Assisted with Cationic and Anionic Surfactants. Water Res. 2023, 233, 119794. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, Y.; Bian, K.; Wang, C.; Xie, X.; Wang, H.; Zhao, H. Is It Possible to Efficiently and Sustainably Remove Microplastics from Sediments Using Froth Flotation? Chem. Eng. J. 2022, 448, 137692. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, M.; Huang, Y.; Peng, J.; Zhao, J.; Chan, F.; Yu, X. Effects of Different Treatment Processes in Four Municipal Wastewater Treatment Plants on the Transport and Fate of Microplastics. Sci. Total Environ. 2022, 831, 154946. [Google Scholar] [CrossRef]
- Jiang, L.; Yin, M.; Tang, Y.; Dai, R.; Mo, L.; Yang, W.; Liang, Y.; Huang, K. Microfibers Shed from Synthetic Textiles during Laundry: Flow to Wastewater Treatment Plants or Release to Receiving Waters through Storm Drains? Process Saf. Environ. Prot. 2022, 168, 689–697. [Google Scholar] [CrossRef]
- Johnson, A.C.; Ball, H.; Cross, R.; Horton, A.A.; Jürgens, M.D.; Read, D.S.; Vollertsen, J.; Svendsen, C. Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. Environ. Sci. Technol. 2020, 54, 12326. [Google Scholar] [CrossRef]
- Kara, N.; Erkan, H.; Engin, G. Characterization and Removal of Microplastics in Landfill Leachate Treatment Plants in Istanbul, Turkey. Anal. Lett. 2023, 56, 1535–1548. [Google Scholar] [CrossRef]
- Keawchouy, S.; Na-Phatthalung, W.; Keaonaborn, D.; Jaichuedee, J.; Musikavong, C.; Sinyoung, S. Enhanced Coagulation Process for Removing Dissolved Organic Matter, Microplastics, and Silver Nanoparticles. J. Environ. Sci. Health—Part A Toxic/Hazard. Subst. Environ. Eng. 2022, 57, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.J.; London, M.G.; McCormick, A.R.; Rojas, M.; Scott, J.W.; Hoellein, T.J. Wastewater Treatment Alters Microbial Colonization of Microplastics. PLoS ONE 2021, 16, e0244443. [Google Scholar] [CrossRef] [PubMed]
- Kittipongvises, S.; Phetrak, A.; Hongprasith, N.; Lohwacharin, J. Unravelling Capability of Municipal Wastewater Treatment Plant in Thailand for Microplastics: Effects of Seasonality on Detection, Fate and Transport. J. Environ. Manag. 2022, 302, 113990. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, E.; Yücel, N.; Şahutoğlu, S.M. Microplastic Composition, Load and Removal Efficiency from Wastewater Treatment Plants Discharging into Orontes River. Int. J. Environ. Res. 2023, 17, 25. [Google Scholar] [CrossRef]
- Kwon, H.J.; Hidayaturrahman, H.; Shaik Gouse Peera; Lee, T.G. Elimination of Microplastics at Different Stages in Wastewater Treatment Plants. Water 2022, 14, 2404. [Google Scholar] [CrossRef]
- Lapointe, M.; Farner, J.; Hernandez, L.M. Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environ. Sci. Technol. 2020, 54, 8719–8727. [Google Scholar] [CrossRef]
- Le, T.; Truong, T.; Nguyen, P.; Le, Q.; Tran, Q.; Le, T.; Nguyen, Q.; Kieu-Le, T.; Strady, E. Evaluation of Microplastic Removal Efficiency of Wastewater-Treatment Plants in a Developing Country, Vietnam. Environ. Technol. Innov. 2023, 29, 102994. [Google Scholar] [CrossRef]
- Li, B.; Zhao, J.; Ge, W.; Li, W.; Yuan, H. Coagulation-Flocculation Performance and Floc Properties for Microplastics Removal by Magnesium Hydroxide and PAM. J. Environ. Chem. Eng. 2022, 10, 107263. [Google Scholar] [CrossRef]
- Liu, B.; Gao, Y.; Yue, Q.; Guo, K.; Gao, B. The Suitability and Mechanism of Polyaluminum-Titanium Chloride Composite Coagulant (PATC) for Polystyrene Microplastic Removal: Structural Characterization and Theoretical Calculation. Water Res. 2023, 232, 119690. [Google Scholar] [CrossRef]
- Liu, F.; Nord, N.; Bester, K.; Vollertsen, J. Microplastics Removal from Treated Wastewater by a Biofilter. Water 2020, 12, 1085. [Google Scholar] [CrossRef]
- Liu, F.; Vianello, A.; Vollertsen, J. Retention of Microplastics in Sediments of Urban and Highway Stormwater Retention Ponds. Environ. Pollut. 2019, 255, 113335. [Google Scholar] [CrossRef] [PubMed]
- Lofty, J.; Muhawenimana, V.; Wilson, C.; Ouro, P. Microplastics Removal from a Primary Settler Tank in a Wastewater Treatment Plant and Estimations of Contamination onto European Agricultural Land via Sewage Sludge Recycling. Environ. Pollut. 2022, 304, 119198. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Zhou, Z.; Yin, L.; Wen, X.; Xiao, R.; Du, L.; Zhu, L.; Liu, R.; Xu, Q.; Li, H.; et al. Microplastics Removal and Characteristics of Constructed Wetlands WWTPs in Rural Area of Changsha, China: A Different Situation from Urban WWTPs. Sci. Total Environ. 2022, 811, 152352. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Zhou, Z.; Wen, X.; Wang, J.; Xiao, R.; Wang, W.; Li, X.; Lai, X.; Zhang, Y.; Deng, C.; et al. Microplastics Removal and Characteristics of a Typical Multi-Combination and Multi-Stage Constructed Wetlands Wastewater Treatment Plant in Changsha, China. Chemosphere 2023, 312, 137199. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Ziajahromi, S.; Locke, A.; Neale, P.; Leusch, F. Microplastics Profile in Constructed Wetlands: Distribution, Retention and Implications. Environ. Pollut. 2022, 313, 120079. [Google Scholar] [CrossRef]
- Lv, X.; Dong, Q.; Zuo, Z.; Liu, Y.; Huang, X.; Wu, W.-M. Microplastics in a Municipal Wastewater Treatment Plant: Fate, Dynamic Distribution, Removal Efficiencies, and Control Strategies. J. Clean. Prod. 2019, 225, 579–586. [Google Scholar] [CrossRef]
- Masselter, T.; Schaumann, U.; Kampowski, T.; Ulrich, K.; Thielen, M.; Bold, G.; Speck, T. Improvement of a microfiber filter for domestic washing machines. Bioinspir. Biomim. 2022, 18, 016017. [Google Scholar] [CrossRef]
- Napper, I.; Barrett, A.; Thompson, R. The Efficiency of Devices Intended to Reduce Microfibre Release during Clothes Washing. Sci. Total Environ. 2020, 738, 140412. [Google Scholar] [CrossRef]
- Nie, C.; Yang, J.; Sang, C.; Xia, Y.; Huang, K. Reduction Performance of Microplastics and Their Behavior in a Vermi-Wetland during the Recycling of Excess Sludge: A Quantitative Assessment for Fluorescent Polymethyl Methacrylate. Sci. Total Environ. 2022, 832, 155005. [Google Scholar] [CrossRef]
- Nkosi, S.D.; Malinga, S.P.; Mabuba, N. Microplastics and Heavy Metals Removal from Fresh Water and Wastewater Systems Using a Membrane. Separations 2022, 9, 166. [Google Scholar] [CrossRef]
- Okoffo, E.; Rauert, C.; Thomas, K. Mass Quantification of Microplastic at Wastewater Treatment Plants by Pyrolysis-Gas Chromatography-Mass Spectrometry. Sci. Total Environ. 2023, 856, 159251. [Google Scholar] [CrossRef]
- Parashar, N.; Hait, S. Occurrence and Removal of Microplastics in a Hybrid Growth Sewage Treatment Plant from Bihar, India: A Preliminary Study. J. Clean. Prod. 2022, 18, 807–828. [Google Scholar] [CrossRef]
- Pathak, V.M. Exploitation of Bacterial Strains for Microplastics (LDPE) Biodegradation. Chemosphere 2023, 316, 137845. [Google Scholar] [CrossRef]
- Perren, W.; Wojtasik, A.; Cai, Q. Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega 2018, 3, 3357–3364. [Google Scholar] [CrossRef] [PubMed]
- Peydayesh, M.; Suta, T.; Usuelli, M.; Handschin, S.; Canelli, G.; Bagnani, M.; Mezzenga, R. Sustainable Removal of Microplastics and Natural Organic Matter from Water by Coagulation–Flocculation with Protein Amyloid Fibrils. Environ. Sci. Technol. 2021, 55, 8848. [Google Scholar] [CrossRef]
- Priyanka, M.; Saravanakumar, M.P. A Sustainable Approach for Removal of Microplastics from Water Matrix Using Colloidal Gas Aphrons: New Insights on Flotation Potential and Interfacial Mechanism. J. Clean. Prod. 2022, 334, 130198. [Google Scholar] [CrossRef]
- Radityaningrum, A.; Trihadiningrum, Y.; Mar’atusholihah; Soedjono, E.; Herumurti, W. Microplastic Contamination in Water Supply and the Removal Efficiencies of the Treatment Plants: A Case of Surabaya City, Indonesia. J. Water Process Eng. 2021, 43, 102195. [Google Scholar] [CrossRef]
- Ren, P.; Dou, M.; Wang, C.; Li, G.; Jia, R. Abundance and Removal Characteristics of Microplastics at a Wastewater Treatment Plant in Zhengzhou. Environ. Sci. Pollut. Res. 2020, 27, 36295–36305. [Google Scholar] [CrossRef]
- Rozman, U.; Klun, B.; Kalčíková, G. Distribution and Removal of Microplastics in a Horizontal Sub-Surface Flow Laboratory Constructed Wetland and Their Effects on the Treatment Efficiency. Chem. Eng. J. 2023, 461, 142076. [Google Scholar] [CrossRef]
- Rusthoven, I.R.; O’Reilly, C. The Effects of Sand, Cloth, and No Tertiary Filtration on Microplastic Particles; Illinois State University: Normal, IL, USA, 2019. [Google Scholar]
- Salmi, P.; Ryymin, K.; Karjalainen, A.K.; Mikola, A.; Uurasjärvi, E.; Talvitie, J. Particle Balance and Return Loops for Microplastics in a Tertiary-Level Wastewater Treatment Plant. Water Sci. Technol. 2021, 84, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Sarcletti, M.; Park, H.; Wirth, J.; Englisch, S.; Eigen, A.; Drobek, D.; Vivod, D.; Friedrich, B.; Tietze, R.; Alexiou, C.; et al. The Remediation of Nano-/Microplastics from Water. Mater. Today 2021, 48, 38–46. [Google Scholar] [CrossRef]
- Sarkar, D.J.; Das Sarkar, S.; Das, B.K.; Sahoo, B.K.; Das, A.; Nag, S.K.; Manna, R.K.; Behera, B.K.; Samanta, S. Occurrence, Fate and Removal of Microplastics as Heavy Metal Vector in Natural Wastewater Treatment Wetland System. Water Res. 2021, 192, 116853. [Google Scholar] [CrossRef] [PubMed]
- Schell, T.; Hurley, R.; Nizzetto, L.; Rico, A.; Vighi, M. Spatio-Temporal Distribution of Microplastics in a Mediterranean River Catchment: The Importance of Wastewater as an Environmental Pathway. J. Hazard. Mater. 2021, 420, 126481. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Kumar, R.; Yang, S.; Büttner, O. Microplastic Particle Emission from Wastewater Treatment Plant Effluents into River Networks in Germany: Loads, Spatial Patterns of Concentrations and Potential Toxicity. Sci. Total Environ. 2020, 737, 139544. [Google Scholar] [CrossRef] [PubMed]
- Schmidtmann, J.; Elagami, H.; Gilfedder, B.S.; Fleckenstein, J.H.; Papastavrou, G.; Mansfeld, U.; Peiffer, S. Heteroaggregation of PS Microplastic with Ferrihydrite Leads to Rapid Removal of Microplastic Particles from the Water Column. Environ. Sci. Process. Impacts 2022, 24, 1782–1789. [Google Scholar] [CrossRef]
- Shen, M.; Hu, T.; Huang, W.; Song, B.; Qin, M.; Yi, H.; Zeng, G.; Zhang, Y. Can Incineration Completely Eliminate Plastic Wastes? An Investigation of Microplastics and Heavy Metals in the Bottom Ash and Fly Ash from an Incineration Plant. Sci. Total Environ. 2021, 779, 146528. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Gao, W.; Zhang, Y.; He, D. Removal of Microplastics from Water by Magnetic Nano-Fe3O4. Sci. Total Environ. 2022, 802, 149838. [Google Scholar] [CrossRef]
- Shnada, A.H. Bioremediation of Microplastic using Microbes Isolated from Mangrove Sediments. Master’s Thesis, Universiti Malaya, Kuala Lumpur, Malaysia, 2018. Available online: http://studentsrepo.um.edu.my/ (accessed on 29 July 2023).
- Smyth, K.; Drake, J.; Li, Y.; Rochman, C.; Van Seters, T.; Passeport, E. Bioretention Cells Remove Microplastics from Urban Stormwater. Water Res. 2021, 191, 116785. [Google Scholar] [CrossRef]
- Sotiropoulou, M.; Stefanatou, A.; Schiza, S.; Petousi, I.; Stasinakis, A.S.; Fountoulakis, M.S. Removal of Microfiber in Vertical Flow Constructed Wetlands Treating Greywater. Sci. Total Environ. 2023, 858, 159723. [Google Scholar] [CrossRef]
- Sun, X.; Chen, Z.Y.; Kong, T.; Chen, Z.; Dong, Y.; Kolton, M.; Cao, Z.; Zhang, X.; Zhang, H.; Liu, G.; et al. Mycobacteriaceae Mineralizes Micropolyethylene in Riverine Ecosystems. Environ. Sci. Technol. 2022, 56, 15705–15717. [Google Scholar] [CrossRef] [PubMed]
- Swart, B.; Pihlajamaki, A.; Chew, Y.; Wenk, J. Microbubble-Microplastic Interactions in Batch Air Flotation. Chem. Eng. J. 2022, 449, 137866. [Google Scholar] [CrossRef]
- Tadsuwan, K.; Babel, S. Microplastic Abundance and Removal via an Ultrafiltration System Coupled to a Conventional Municipal Wastewater Treatment Plant in Thailand. J. Environ. Chem. Eng. 2022, 10, 107142. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, S.; Su, Y.; Wu, D.; Zhao, Y.; Xie, B. Removal of Microplastics from Aqueous Solutions by Magnetic Carbon Nanotubes. Chem. Eng. J. 2021, 406, 126804. [Google Scholar] [CrossRef]
- Tapeh, N.G.; Fataei, E.; Naji, A.; Imani, A.A.; Nasehi, F. Municipal Wastewater Efluent as a Source of Microplastic Pollution Crisis in the Qarasu River Water, Ardabil Province, Iran. Health Emerg. Disaster Q. 2022, 7, 117–126. [Google Scholar] [CrossRef]
- Thaiyal Nayahi, N.; Ou, B.; Liu, Y.; Janjaroen, D. Municipal Solid Waste Sanitary and Open Landfills: Contrasting Sources of Microplastics and Its Fate in Their Respective Treatment Systems. J. Clean. Prod. 2022, 380, 135095. [Google Scholar] [CrossRef]
- Uddin, S.; Behbehani, M.; Habibi, N.; Faizuddin, M.; Al-Murad, M.; Martinez-Guijarro, K.; Al-Sarawi, H.A.; Karam, Q. Microplastics in Kuwait’s Wastewater Streams. Sustainability 2022, 14, 15817. [Google Scholar] [CrossRef]
- Uoginte, I.; Pleskyte, S.; Pauraite, J.; Lujaniene, G. Seasonal Variation and Complex Analysis of Microplastic Distribution in Different WWTP Treatment Stages in Lithuania. Environ. Monit. Assess. 2022, 194, 829. [Google Scholar] [CrossRef]
- Venghaus, D.; Neupert, J.W.; Barjenbruch, M. Evaluation of a Modular Filter Concept to Reduce Microplastics and Other Solids from Urban Stormwater Runoff. Water 2023, 15, 506. [Google Scholar] [CrossRef]
- Wan, X.; Huang, H.; Liao, Z.; He, H.; Yue, Q.; Zhao, F.; Huang, H.; Huang, B.; Pan, X. The Distribution and Risk of Microplastics Discharged from Sewage Treatment Plants in Terrestrial and Aquatic Compartment. J. Environ. Manag. 2022, 314, 115067. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Duan, L.; Zhang, Y.; Zhou, Y.; Sui, Q.; Xu, D.; Qu, H.; Yu, G. Occurrence and Distribution of Microplastics in Domestic, Industrial, Agricultural and Aquacultural Wastewater Sources: A Case Study in Changzhou, China. Water Res. 2020, 182, 115956. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hernandez-Crespo, C.; Du, B.; Van Hulle, S.; Rousseau, D. Fate and Removal of Microplastics in Unplanted Lab-Scale Vertical Flow Constructed Wetlands. Sci. Total Environ. 2021, 778, 146152. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hernandez-Crespo, C.; Santoni, M.; Van Hulle, S.; Rousseau, D. Horizontal Subsurface Flow Constructed Wetlands as Tertiary Treatment: Can They Be an Efficient Barrier for Microplastics Pollution? Sci. Total Environ. 2020, 721, 137785. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ji, M.; Zhai, H.; Liu, Y. Occurrence of Phthalate Esters and Microplastics in Urban Secondary Effluents, Receiving Water Bodies and Reclaimed Water Treatment Processes. Sci. Total Environ. 2020, 737, 140219. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, W.; Huang, Z.; Zhou, N.; Xie, Y.; Tang, Y.; Tang, Y. Complete Digestion/Biodegradation of Polystyrene Microplastics by Greater Wax Moth (Galleria Mellonella) Larvae: Direct in Vivo Evidence, Gut Microbiota independence, and potential metabolic pathways. J. Hazard. Mater. 2022, 423, 127213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Tian, L.; Ju, L.; Liu, Y. The Removal Efficiency and Mechanism of Microplastic Enhancement by Positive Modification Dissolved Air Flotation. Water Environ. Res. 2021, 93, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Watkins, L.; Sullivan, P.J.; Walter, M.T. A Case Study Investigating Temporal Factors That Influence Microplastic Concentration in Streams under Different Treatment Regimes. Environ. Sci. Pollut. Res. 2019, 26, 21797–21807. [Google Scholar] [CrossRef]
- Wei, S.; Luo, H.; Zou, J.; Chen, J.; Pan, X.; Rousseau, D.; Li, J. Characteristics and Removal of Microplastics in Rural Domestic Wastewater Treatment Facilities of China. Sci. Total Environ. 2020, 739, 139935. [Google Scholar] [CrossRef]
- Wei, X.-F.; Bohlén, M.; Lindblad, C.; Hedenqvist, M.; Hakonen, A. Microplastics Generated from a Biodegradable Plastic in Freshwater and Seawater. Water Res. 2021, 198, 117123. [Google Scholar] [CrossRef]
- Werbowski, L.; Gilbreath, A.; Munno, K.; Zhu, X.; Grbic, J.; Wu, T.; Sutton, R.; Sedlak, M.; Deshpande, A.; Rochman, C. Urban Stormwater Runoff: A Major Pathway for Anthropogenic Particles, Black Rubbery Fragments, and Other Types of Microplastics to Urban Receiving Waters. ACS EST Water 2021, 1, 1420–1428. [Google Scholar] [CrossRef]
- White, E.M.; Horn, J.; Wang, S.; Crawford, B.; Ritchie, B.W.; Carraway, D.; Locklin, J. Comparative Study of the Biological Degradation of Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Microbeads in Municipal Wastewater in Environmental and Controlled Laboratory Conditions. Environ. Sci. Technol. 2021, 55, 11646–11656. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Liu, H.; Zhang, J.; Wang, D. Migration Characteristics of Microplastics Based on Source-Sink Investigation in a Typical Urban Wetland. Water Res. 2022, 213, 118154. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, L.; Jian, Y.; Xue, Y.; Gao, Y.; Peng, M.; Jiang, S.; Zhang, Q. Influence of Wastewater Treatment Process on Pollution Characteristics and Fate of Microplastics. Mar. Pollut. Bull. 2021, 169, 112448. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Jian, Y.; Xue, Y.; Hou, Q.; Wang, L. Microplastics in the Wastewater Treatment Plants (WWTPs): Occurrence and Removal. Chemosphere 2019, 235, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ou, Q.; Wang, X.; Hou, F.; Li, P.; van der Hoek, J.P.; Liu, G. Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography-Mass Spectrometry. Environ. Sci. Technol. 2023, 57, 3114–3123. [Google Scholar] [CrossRef]
- Yang, J.; Monnot, M.; Sun, Y.; Asia, L.; Wong-Wah-Chung, P.; Doumenq, P.; Moulin, P. Microplastics in Different Water Samples (Seawater, Freshwater, and Wastewater): Removal Efficiency of Membrane Treatment Processes. Water Res. 2023, 232, 119673. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Xu, D.; Liu, P.; Li, L. Enhanced Interfacial Adhesion of Polystyrene Bead Foams by Microwave Sintering for Microplastics Reduction. Ind. Eng. Chem. Res. 2021, 60, 8812–8820. [Google Scholar] [CrossRef]
- Yuan, F.; Yue, L.; Zhao, H.; Wu, H. Study on the Adsorption of Polystyrene Microplastics by Three-Dimensional Reduced Graphene Oxide. Water Sci. Technol. 2020, 81, 2163–2175. [Google Scholar] [CrossRef]
- Yuan, F.; Zhao, H.; Sun, H.; Zhao, J.; Sun, Y. Abundance, Morphology, and Removal Efficiency of Microplastics in Two Wastewater Treatment Plants in Nanjing, China. Environ. Sci. Pollut. Res. 2021, 28, 9327–9337. [Google Scholar] [CrossRef]
- Yuan, F.; Zhao, H.; Sun, H.; Sun, Y.; Zhao, J.; Xia, T. Investigation of Microplastics in Sludge from Five Wastewater Treatment Plants in Nanjing, China. J. Environ. Manag. 2022, 301, 113793. [Google Scholar] [CrossRef]
- Zhang, E.; Stocchino, A.; De Leo, A.; Fang, J.K.-H. Performance Assessment of Bubbles Barriers for Microplastic Remediation. Sci. Total Environ. 2022, 844, 157027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, J.; Kang, Z.; Wu, X.; Tang, L.; Qiang, Z.; Zhang, D.; Pan, X. Removal of Micron-Scale Microplastic Particles from Different Waters with Efficient Tool of Surface-Functionalized Microbubbles. J. Hazard. Mater. 2021, 404, 124095. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G.; Yue, J.; Xing, X.; Yang, Z.; Wang, X.; Wang, Q.; Zhang, J. Enhanced Removal of Polyethylene Terephthalate Microplastics through Polyaluminum Chloride Coagulation with Three Typical Coagulant Aids. Sci. Total Environ. 2021, 800, 149589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, J.; Liu, Z.; Tian, S.; Lu, J.; Mu, R.; Yuan, H. Coagulation Removal of Microplastics from Wastewater by Magnetic Magnesium Hydroxide and PAM. J. Water Process Eng. 2021, 43, 102250. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Q.; Li, J.; Li, Q.; Xu, H.; Ye, Q.; Wang, Y.; Shu, S.; Zhang, J. Removal of Polystyrene and Polyethylene Microplastics Using PAC and FeCl3 Coagulation: Performance and Mechanism. Sci. Total Environ. 2021, 752, 141837. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhou, L.; Ma, K. Microfiber from Textile Dyeing and Printing Wastewater of a Typical Industrial Park in China: Occurrence, Removal and Release. Sci. Total Environ. 2020, 739, 140329. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, Y.; Pang, G.; Jia, X.; Song, Y.; Guo, A.; Wang, A.; Zhang, S.; Ji, M. Microplastic Abundance, Characteristics and Removal in Large-Scale Multi-Stage Constructed Wetlands for Effluent Polishing in Northern China. Chem. Eng. J. 2022, 430, 132752. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Drapper, D.; Hornbuckle, A.; Rintoul, L.; Leusch, F.D.L. Microplastic Pollution in a Stormwater Floating Treatment Wetland: Detection of Tyre Particles in Sediment. Sci. Total Environ. 2020, 713, 136356. [Google Scholar] [CrossRef]
- Zou, Y.; Ye, C.; Pan, Y. Abundance and Characteristics of Microplastics in Municipal Wastewater Treatment Plant Effluent: A Case Study of Guangzhou, China. Environ. Sci. Pollut. Res. 2021, 28, 11572–11585. [Google Scholar] [CrossRef]
- Sorensen, R.M.; Jovanović, B. From nanoplastic to microplastic: A bibliometric analysis on the presence of plastic particles in the environment. Mar. Pollut. Bull. 2021, 163, 111926. [Google Scholar] [CrossRef]
- Blettler, M.C.; Abrial, E.; Khan, F.R.; Sivri, N.; Espinola, L.A. Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps. Water Res. 2018, 143, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A.; Walton, A.; Spurgeon, D.J.; Lahive, E.; Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total. Environ. 2017, 586, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Y.; Yan, Z.; Wang, H.; Chen, H.; Zhao, S.; Zhong, N.; Cheng, Y.; Acharya, K. Microplastics discharged from urban drainage system: Prominent contribution of sewer overflow pollution. Water Res. 2023, 236, 119976. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ashokkumar, V.; Amobonye, A.; Bhattacharjee, G.; Sirohi, R.; Singh, V.; Flora, G.; Kumar, V.; Pillai, S.; Zhang, Z.; et al. Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review. Environ. Pollut. 2023, 320, 121106. [Google Scholar] [CrossRef] [PubMed]
- Rani, A. Types and Sources of Microplastics; The Ubiquitous Environment Contaminant: A Review. J. Polym. Mater. 2022, 39, 17–35. [Google Scholar] [CrossRef]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef]
- Priya, A.; Anusha, G.; Thanigaivel, S.; Karthick, A.; Mohanavel, V.; Velmurugan, P.; Balasubramanian, B.; Ravichandran, M.; Kamyab, H.; Kirpichnikova, I.M.; et al. Removing microplastics from wastewater using leading-edge treatment technologies: A solution to microplastic pollution—A review. Bioprocess. Biosyst. Eng. 2023, 46, 309–321. [Google Scholar] [CrossRef]
- Vercauteren, M.; Semmouri, I.; Van Acker, E.; Pequeur, E.; Janssen, C.R.; Asselman, J. Toward a Better Understanding of the Contribution of Wastewater Treatment Plants to Microplastic Pollution in Receiving Waterways. Environ. Toxicol. Chem. 2023, 42, 642–654. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Rahman, S.; Alom, J.; Hasan, S.; Johir, M.; Mondal, M.I.H.; Lee, D.-Y.; Park, J.; Zhou, J.L.; Yoon, M.-H. Microplastic particles in the aquatic environment: A systematic review. Sci. Total. Environ. 2021, 775, 145793. [Google Scholar] [CrossRef]
- Estahbanati, M.K.; Kiendrebeogo, M.; Mostafazadeh, A.K.; Drogui, P.; Tyagi, R. Treatment processes for microplastics and nanoplastics in waters: State-of-the-art review. Mar. Pollut. Bull. 2021, 168, 112374. [Google Scholar] [CrossRef] [PubMed]
- Bodzek, M.; Pohl, A. Removal of microplastics in unit processes used in water and wastewater treatment: A review. Arch. Environ. Prot. 2022, 48, 102–128. [Google Scholar] [CrossRef]
- Hatinoğlu, M.D.; Sanin, F.D. Sewage sludge as a source of microplastics in the environment: A review of occurrence and fate during sludge treatment. J. Environ. Manag. 2021, 295, 113028. [Google Scholar] [CrossRef] [PubMed]
- Blair, R.M.; Waldron, S.; Phoenix, V.; Gauchotte-Lindsay, C. Micro- and Nanoplastic Pollution of Freshwater and Wastewater Treatment Systems. Springer Sci. Rev. 2017, 5, 19–30. [Google Scholar] [CrossRef]
- Uddin, S.; Fowler, S.W.; Behbehani, M. An assessment of microplastic inputs into the aquatic environment from wastewater streams. Mar. Pollut. Bull. 2020, 160, 111538. [Google Scholar] [CrossRef] [PubMed]
- Masiá, P.; Sol, D.; Ardura, A.; Laca, A.; Borrell, Y.J.; Dopico, E.; Laca, A.; Machado-Schiaffino, G.; Díaz, M.; Garcia-Vazquez, E. Bioremediation as a promising strategy for microplastics removal in wastewater treatment plants. Mar. Pollut. Bull. 2020, 156, 111252. [Google Scholar] [CrossRef] [PubMed]
- Malankowska, M.; Echaide-Gorriz, C.; Coronas, J. Microplastics in marine environment: A review on sources, classification, and potential remediation by membrane technology. Environ. Sci. Water Res. Technol. 2021, 7, 243–258. [Google Scholar] [CrossRef]
- Ni, B.-J.; Zhu, Z.-R.; Li, W.-H.; Yan, X.; Wei, W.; Xu, Q.; Xia, Z.; Dai, X.; Sun, J. Microplastics Mitigation in Sewage Sludge through Pyrolysis: The Role of Pyrolysis Temperature. Environ. Sci. Technol. Lett. 2020, 7, 961–967. [Google Scholar] [CrossRef]
- Zulkafli, A.H.; Hassan, H.; Ahmad, M.A.; Din, A.T.M.; Wasli, S.M. Co-pyrolysis of biomass and waste plastics for production of chemicals and liquid fuel: A review on the role of plastics and catalyst types. Arab. J. Chem. 2023, 16, 104389. [Google Scholar] [CrossRef]
- Coffin, S.; Wyer, H.; Leapman, J.C. Addressing the environmental and health impacts of microplastics requires open collaboration between diverse sectors. PLoS Biol. 2021, 19, e3000932. [Google Scholar] [CrossRef]
- Yardy, L.D.; Al-Jaibachi, R.; Callaghan, A. Chapter 9—Microplastics in freshwater ecosystems with special reference to tropical systems: Detection, impact, and management. In Emerging Freshwater Pollutants; Dalu, T., Tavengwa, N.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 151–169. [Google Scholar] [CrossRef]
- Xu, D.; Yin, X.; Zhou, S.; Jiang, Y.; Xi, X.; Sun, H.; Wang, J. A review on the remediation of microplastics using constructed wetlands: Bibliometric, co-occurrence, current trends, and future directions. Chemosphere 2022, 303, 134990. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.S.; De Falco, F. Microfibers: Environmental Problems and Textile Solutions. Microplastics 2022, 1, 626–639. [Google Scholar] [CrossRef]
- Wang, T.; Li, B.; Zou, X.; Wang, Y.; Li, Y.; Xu, Y.; Mao, L.; Zhang, C.; Yu, W. Emission of primary microplastics in mainland China: Invisible but not negligible. Water Res. 2019, 162, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; O’Connor, D.; Wang, L.; Wu, W.-M.; Luo, J.; Hou, D. Microplastics in urban runoff: Global occurrence and fate. Water Res. 2022, 225, 119129. [Google Scholar] [CrossRef]
- Tirkey, A.; Pandey, M.; Tiwari, A.; Sahu, R.L.; Kukkar, D.; Dubey, R.; Kim, K.; Pandey, S.K. Global distribution of microplastic contaminants in aquatic environments and their remediation strategies. Water Environ. Res. 2022, 94, e10819. [Google Scholar] [CrossRef]
- Tan, Y.; Dai, J.; Wu, X.; Wu, S.; Zhang, J. Characteristics, occurrence and fate of non-point source microplastic pollution in aquatic environments. J. Clean. Prod. 2022, 341, 130766. [Google Scholar] [CrossRef]
- Sajid, M.; Ihsanullah, I.; Khan, M.T.; Baig, N. Nanomaterials-based adsorbents for remediation of microplastics and nanoplastics in aqueous media: A review. Sep. Purif. Technol. 2022, 305, 122453. [Google Scholar] [CrossRef]
- Saini, A.; Sharma, J.G. Emerging microplastic contamination in ecosystem: An urge for environmental sustainability. J. Appl. Biol. Biotechnol. 2022, 10, 66–75. [Google Scholar] [CrossRef]
- Ramasamy, R.; Subramanian, R.B. Synthetic textile and microfiber pollution: A review on mitigation strategies. Environ. Sci. Pollut. Res. 2021, 28, 41596–41611. [Google Scholar] [CrossRef]
- Muthuvairavasamy, R. Mitigation, Management, and the Challenges Ahead. In Microplastics: Footprints on The Earth and Their Environmental Management; Springer International Publishing: Cham, Switzerland, 2022; pp. 67–72. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. 2020, 11, 5324. [Google Scholar] [CrossRef]
- Mishra, S.R.; Ahmaruzzaman, M. Microplastics: Identification, Toxicity and Their Remediation from Aqueous Streams. Sep. Purif. Rev. 2022, 52, 283–304. [Google Scholar] [CrossRef]
- Meng, Y.; Kelly, F.J.; Wright, S.L. Advances and challenges of microplastic pollution in freshwater ecosystems: A UK perspective. Environ. Pollut. 2020, 256, 113445. [Google Scholar] [CrossRef] [PubMed]
- Meegoda, J.N.; Hettiarachchi, M.C. A Path to a Reduction in Micro and Nanoplastics Pollution. Int. J. Environ. Res. Public Heal. 2023, 20, 5555. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Zhou, X.; Su, Y.; Wang, H.; Yu, R.; Zhou, S.; Xu, E.G.; Xing, B. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Sci. Total. Environ. 2021, 795, 148902. [Google Scholar] [CrossRef] [PubMed]
- López, A.F.; Fabiani, M.; Lassalle, V.; Spetter, C.; Severini, F. Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. Mar. Pollut. Bull. 2022, 174, 113276. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Chen, Y.; Chen, Z.; Yang, F.; Xie, Y.; Yao, W. Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect. Sci. Total. Environ. 2022, 851, 157991. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.; Moulaert, I.; Devriese, L.I.; Sandra, M.; Pauwels, I.; Goethals, P.L.; Everaert, G.; Catarino, A.I. A comprehensive assessment of plastic remediation technologies. Environ. Int. 2023, 173, 107854. [Google Scholar] [CrossRef]
- Lamichhane, G.; Acharya, A.; Marahatha, R.; Modi, B.; Paudel, R.; Adhikari, A.; Raut, B.K.; Aryal, S.; Parajuli, N. Microplastics in environment: Global concern, challenges, and controlling measures. Int. J. Environ. Sci. Technol. 2023, 20, 4673–4694. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Haider, A.; Ahmad, H.M.; Mohyuddin, A.; Aslam, H.M.U.; Nadeem, S.; Javed, M.; Othman, M.H.D.; Goh, H.H.; Chew, K.W. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. Chemosphere 2023, 325, 138367. [Google Scholar] [CrossRef]
- Kumar, M.; Chen, H.; Sarsaiya, S.; Qin, S.; Liu, H.; Awasthi, M.K.; Kumar, S.; Singh, L.; Zhang, Z.; Bolan, N.S.; et al. Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review. J. Hazard. Mater. 2021, 409, 124967. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T.; Wulandari, N.F.; Sibero, M.T.; Darmayati, Y.; Hatmanti, A. Overview of microplastics in the environment: Type, source, potential effects and removal strategies. Bioprocess. Biosyst. Eng. 2023, 46, 429–441. [Google Scholar] [CrossRef]
- Krantzberg, G. Plastic Pollution in the Great Lakes and Marine Waters: Sources, Effects and Policy Responses. J. Waste Resour. Recycl. 2019, 1, 107. [Google Scholar]
- Karbalaei, S.; Hanachi, P.; Walker, T.R.; Cole, M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 2018, 25, 36046–36063. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, H.; Nadeem, H.; Azeem, F.; Rasul, I.; Muzammil, S.; Zubair, M.; Imran, M.; Afzal, M.; Siddique, M.H. Chapter 5—Generation and impact of microplastics and nanoplastics from bioplastic sources. In Biodegradability of Conventional Plastics; Sarkar, A., Sharma, B., Shekhar, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 83–99. [Google Scholar] [CrossRef]
- Chaudhry, A.K.; Sachdeva, P. Microplastics’ origin, distribution, and rising hazard to aquatic organisms and human health: Socio-economic insinuations and management solutions. Reg. Stud. Mar. Sci. 2021, 48, 102018. [Google Scholar] [CrossRef]
- Geyer, R.; Gavigan, J.; Jackson, A.M.; Saccomanno, V.R.; Suh, S.; Gleason, M.G. Quantity and fate of synthetic microfiber emissions from apparel washing in California and strategies for their reduction. Environ. Pollut. 2022, 298, 118835. [Google Scholar] [CrossRef] [PubMed]
- Grünzner, M.; Pahl, S.; White, M.P.; Thompson, R.C. Exploring expert perceptions about microplastics: From sources to potential solutions. Microplast. Nanoplast. 2023, 3, 7. [Google Scholar] [CrossRef]
- Gupta, D.K.; Choudhary, D.; Vishwakarma, A.; Mudgal, M.; Srivastava, A.K.; Singh, A. Microplastics in freshwater environment: Occurrence, analysis, impact, control measures and challenges. Int. J. Environ. Sci. Technol. 2023, 20, 6865–6896. [Google Scholar] [CrossRef]
- Hann, S.; Sherrington, C.; Jamieson, O.; Hickman, M.; Kershaw, P.; Bapasola, A.; Cole, G. Investigating Options for Reducing Releases in the Aquatic Environment of Microplastics Emitted by (But Not Intentionally Added In) Products Final Report; Report for DG Environment of the European Commission; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Helinski, O.K.; Poor, C.J.; Wolfand, J.M. Ridding our rivers of plastic: A framework for plastic pollution capture device selection. Mar. Pollut. Bull. 2021, 165, 112095. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Su, F.; Peng, L.; Liu, D. The life cycle of micro-nano plastics in domestic sewage. Sci. Total. Environ. 2022, 802, 149658. [Google Scholar] [CrossRef]
- Fei, X.; He, H.; Pi, X.; Lu, X.; Chen, Q.; Ma, J.; Wang, Y.; Fang, M.; Wu, C.; Feng, S. The distribution, behavior, and release of macro- and micro-size plastic wastes in solid waste disposal sites. Crit. Rev. Environ. Sci. Technol. 2023, 53, 366–389. [Google Scholar] [CrossRef]
- Wang, J.; Bucci, K.; Helm, P.A.; Hoellein, T.; Hoffman, M.J.; Rooney, R.; Rochman, C.M. Runoff and discharge pathways of microplastics into freshwater ecosystems: A systematic review and meta-analysis. FACETS 2022, 7, 1473–1492. [Google Scholar] [CrossRef]
- Vaid, M.; Sarma, K.; Gupta, A. Microplastic pollution in aquatic environments with special emphasis on riverine systems: Current understanding and way forward. J. Environ. Manag. 2021, 293, 112860. [Google Scholar] [CrossRef]
- Ray, S.S.; Lee, H.K.; Huyen, D.T.T.; Chen, S.-S.; Kwon, Y.-N. Microplastics waste in environment: A perspective on recycling issues from PPE kits and face masks during the COVID-19 pandemic. Environ. Technol. Innov. 2022, 26, 102290. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, R.P.; Rath, C.C.; Das, A.P. Synthetic microfibers: Source, transport and their remediation. J. Water Process. Eng. 2020, 38, 101612. [Google Scholar] [CrossRef]
- Cera, A.; Cesarini, G.; Scalici, M. Microplastics in freshwater: What is the news from the world? Diversity 2020, 12, 276. [Google Scholar] [CrossRef]
- Kiran, B.R.; Kopperi, H.; Venkata Mohan, S.V. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives. Rev. Environ. Sci. Biotechnol. 2022, 21, 169–203. [Google Scholar] [CrossRef] [PubMed]
- Katare, Y.; Singh, P.; Singh Sankhla, M.; Singhal, M.; Jadhav, E.B.; Parihar, K.; Nikalje, B.T.; Trpathi, A.; Bhardwaj, L. Microplastics in Aquatic Environments: Sources, Ecotoxicity, Detection, & Remediation. Biointerface Res. Appl. Chem. 2021, 12, 3407–3428. [Google Scholar] [CrossRef]
- Adegoke, K.A.; Adu, F.A.; Oyebamiji, A.K.; Bamisaye, A.; Adigun, R.A.; Olasoji, S.O.; Ogunjinmi, O.E. Microplastics toxicity, detection, and removal from water/wastewater. Mar. Pollut. Bull. 2023, 187, 114546. [Google Scholar] [CrossRef]
- Azizi, N.; Pirsaheb, M.; Jaafarzadeh, N.; Nodehi, R.N. Microplastics removal from aquatic environment by coagulation: Selecting the best coagulant based on variables determined from a systematic review. Heliyon 2023, 9, e15664. [Google Scholar] [CrossRef]
- Barchiesi, M.; Chiavola, A.; Di Marcantonio, C.; Boni, M.R. Presence and fate of microplastics in the water sources: Focus on the role of wastewater and drinking water treatment plants. J. Water Process. Eng. 2021, 40, 101787. [Google Scholar] [CrossRef]
- Freeman, S.; Booth, A.M.; Sabbah, I.; Tiller, R.; Dierking, J.; Klun, K.; Rotter, A.; Ben-David, E.; Javidpour, J.; Angel, D.L. Between source and sea: The role of wastewater treatment in reducing marine microplastics. J. Environ. Manag. 2020, 266, 110642. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Musavi, S.F.; Habibi, M.; Maleki, R.; Golgoli, M.; Zargar, M.; Dumée, L.F.; Baroutian, S.; Razmjou, A. Molecular mechanisms of microplastics degradation: A review. Sep. Purif. Technol. 2023, 309, 122906. [Google Scholar] [CrossRef]
- El Hajjaji, S.; Dahchour, A.; Mabrouki, J.; Assou, Y.; Alanssari, N.; Elfarissi, L.; Benqlilou, H. Investigation of Microplastics in Water and Wastewater: A Review. In Water and Wastewater Management: Global Problems and Measures, Water and Wastewater Management; Bahadir, M., Haarstrick, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 207–219. [Google Scholar] [CrossRef]
- Hamidian, A.H.; Ozumchelouei, E.J.; Feizi, F.; Wu, C.; Zhang, Y.; Yang, M. A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals. J. Clean. Prod. 2021, 295, 126480. [Google Scholar] [CrossRef]
- Ho, L.; Goethals, P.L.M. Municipal wastewater treatment with pond technology: Historical review and future outlook. Ecol. Eng. 2020, 148, 105791. [Google Scholar] [CrossRef]
- Hou, L.; Kumar, D.; Yoo, C.G.; Gitsov, I.; Majumder, E.L.-W. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills. Chem. Eng. J. 2021, 406, 126715. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, M.; Wang, J.; Bassi, A. Current research trends on microplastic pollution from wastewater systems: A critical review. Rev. Environ. Sci. Biotechnol. 2019, 18, 207–230. [Google Scholar] [CrossRef]
- Iqbal, R.; Khan, M.T.; Bilal, H.; Aslam, M.M.; Khan, I.A.; Raja, S.; Arslan, M.; Nguyen, P.M. Microplastics as vectors of environmental contaminants: Interactions in the natural ecosystems. Hum. Ecol. Risk Assess. Int. J. 2022, 28, 1022–1042. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. A review of microplastics in wastewater, their persistence, interaction, and fate. J. Environ. Chem. Eng. 2021, 9, 106846. [Google Scholar] [CrossRef]
- Junaid, M.; Liu, S.; Liao, H.; Liu, X.; Wu, Y.; Wang, J. Wastewater plastisphere enhances antibiotic resistant elements, bacterial pathogens, and toxicological impacts in the environment. Sci. Total. Environ. 2022, 841, 156805. [Google Scholar] [CrossRef]
- Zhou, Y.; Kumar, M.; Sarsaiya, S.; Sirohi, R.; Awasthi, S.K.; Sindhu, R.; Binod, P.; Pandey, A.; Bolan, N.S.; Zhang, Z.; et al. Challenges and opportunities in bioremediation of micro-nano plastics: A review. Sci. Total. Environ. 2022, 802, 149823. [Google Scholar] [CrossRef]
- Wani, A.K.; Akhtar, N.; Naqash, N.; Rahayu, F.; Djajadi, D.; Chopra, C.; Singh, R.; Mulla, S.I.; Sher, F.; Américo-Pinheiro, J.H.P. Discovering untapped microbial communities through metagenomics for microplastic remediation: Recent advances, challenges, and way forward. Environ. Sci. Pollut. Res. 2023, 30, 81450–81473. [Google Scholar] [CrossRef]
- Thakur, S.; Mathur, S.; Patel, S.; Paital, B. Microplastic Accumulation and Degradation in Environment via Biotechnological Approaches. Water 2022, 14, 4053. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Hadibarata, T. The application of bioremediation in wastewater treatment plants for microplastics removal: A practical perspective. Bioprocess Biosyst. Eng. 2022, 45, 1865–1878. [Google Scholar] [CrossRef]
- Sutradhar, M. A review of microplastics pollution and its remediation methods: Current scenario and future aspects. Arch. Agric. Environ. Sci. 2022, 7, 288–293. [Google Scholar] [CrossRef]
- Sun, X.-L.; Xiang, H.; Xiong, H.-Q.; Fang, Y.-C.; Wang, Y. Bioremediation of microplastics in freshwater environments: A systematic review of biofilm culture, degradation mechanisms, and analytical methods. Sci. Total. Environ. 2023, 863, 160953. [Google Scholar] [CrossRef]
- Solanki, S.; Sinha, S.; Singh, R. Myco-degradation of microplastics: An account of identified pathways and analytical methods for their determination. Biodegradation 2022, 33, 529–556. [Google Scholar] [CrossRef]
- Singh, S.P.; Sharma, P.; Bano, A.; Nadda, A.K.; Varjani, S. Microbial communities in plastisphere and free-living microbes for microplastic degradation: A comprehensive review. Green Anal. Chem. 2022, 3, 100030. [Google Scholar] [CrossRef]
- Singh, R.P.; Mishra, S.; Das, A.P. Synthetic microfibers: Pollution toxicity and remediation. Chemosphere 2020, 257, 127199. [Google Scholar] [CrossRef]
- Pico, Y.; Alfarhan, A.; Barcelo, D. Nano- and microplastic analysis: Focus on their occurrence in freshwater ecosystems and remediation technologies. TrAC Trends Anal. Chem. 2019, 113, 409–425. [Google Scholar] [CrossRef]
- Othman, R.; Ramya, R.; Latif, N.H.M.; Sulaiman, W.S.H.W.; Hatta, F.A.M.; Ali, Q.A.M.; Jusoh, N.H.M. Mitigation of the Micro- and Nanoplastic Using Phycoremediation Technology. In Impact of Plastic Waste on the Marine Biota; Shahnawaz, M., Sangale, M.K., Daochen, Z., Ade, A.B., Eds.; Springer Nature: Singapore, 2022; pp. 183–208. [Google Scholar] [CrossRef]
- Magalhães, S.; Alves, L.; Medronho, B.; Romano, A.; Rasteiro, M.d.G. Microplastics in Ecosystems: From Current Trends to Bio-Based Removal Strategies. Molecules 2020, 25, 3954. [Google Scholar] [CrossRef]
- Anand, U.; Dey, S.; Bontempi, E.; Ducoli, S.; Vethaak, A.D.; Dey, A.; Federici, S. Biotechnological methods to remove microplastics: A review. Environ. Chem. Lett. 2023, 21, 1787–1810. [Google Scholar] [CrossRef]
- Barone, G.D.; Ferizović, D.; Biundo, A.; Lindblad, P. Hints at the Applicability of Microalgae and Cyanobacteria for the Biodegradation of Plastics. Sustainability 2020, 12, 10449. [Google Scholar] [CrossRef]
- Dey, S.; Rout, A.K.; Behera, B.K.; Ghosh, K. Plastisphere community assemblage of aquatic environment: Plastic-microbe interaction, role in degradation and characterization technologies. Environ. Microbiome 2022, 17, 32. [Google Scholar] [CrossRef]
- Gaur, V.K.; Gupta, S.; Sharma, P.; Gupta, P.; Varjani, S.; Srivastava, J.K.; Chang, J.-S.; Bui, X.-T. Metabolic Cascade for Remediation of Plastic Waste: A Case Study on Microplastic Degradation. Curr. Pollut. Rep. 2022, 8, 30–50. [Google Scholar] [CrossRef]
- Hadian-Ghazvini, S.; Hooriabad Saboor, F.; Safaee Ardekani, L. Bioremediation Techniques for Microplastics Removal. In Microplastics Pollution in Aquatic Media: Occurrence, Detection, and Removal, Environmental Footprints and Eco-Design of Products and Processes; Sillanpää, M., Khadir, A., Muthu, S.S., Eds.; Springer: Singapore, 2022; pp. 327–377. [Google Scholar] [CrossRef]
- Iroegbu, A.O.; Sadiku, R.E.; Ray, S.S.; Hamam, Y. Plastics in municipal drinking water and wastewater treatment plant effluents: Challenges and opportunities for South Africa—A review. Environ. Sci. Pollut. Res. 2020, 27, 12953–12966. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, M.; Chen, X.; Hu, L.; Xu, Y.; Fu, W.; Li, C. A comparative review of microplastics in lake systems from different countries and regions. Chemosphere 2022, 286, 131806. [Google Scholar] [CrossRef]
- Yalwaji, B.; John-Nwagwu, H.O.; Sogbanmu, T.O. Plastic pollution in the environment in Nigeria: A rapid systematic review of the sources, distribution, research gaps and policy needs. Sci. Afr. 2022, 16, e01220. [Google Scholar] [CrossRef]
- Sarkar, B.; Dissanayake, P.D.; Bolan, N.S.; Dar, J.Y.; Kumar, M.; Haque, N.; Mukhopadhyay, R.; Ramanayaka, S.; Biswas, J.K.; Tsang, D.C.; et al. Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environ. Res. 2022, 207, 112179. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, S.; Zhang, C.; Qin, W.; Lv, C. A framework for systematic microplastic ecological risk assessment at a national scale. Environ. Pollut. 2023, 327, 121631. [Google Scholar] [CrossRef]
- Prata, J.C.; Silva, A.L.P.; da Costa, J.P.; Mouneyrac, C.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. Int. J. Environ. Res. Public Health 2019, 16, 2411. [Google Scholar] [CrossRef]
- Narloch, I.; Gackowska, A.; Wejnerowska, G. Microplastic in the Baltic Sea: A review of distribution processes, sources, analysis methods and regulatory policies. Environ. Pollut. 2022, 315, 120453. [Google Scholar] [CrossRef]
- Lozoya, J.P.; Carranza, A.; Lenzi, J.; Machin, E.; Teixeira de Mello, F.; Gonzalez, S.; Hernandez, D.; Lacerot, G.; Martinez, G.; Scarabino, F.; et al. Management and research on plastic debris in Uruguayan Aquatic Systems: Update and perspectives. J. Integr. Coast. Zone Manag. 2015, 15, 377–393. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P.; Manna, C.; Jain, M. Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review. Sci. Total. Environ. 2021, 782, 146695. [Google Scholar] [CrossRef]
- Kentin, E.; Battaglia, G. Policies and Perspectives on Regulating Microplastic Fibre Pollution. In Polluting Textiles: The Problem with Microfibres, Routledge Explorations in Environmental Studies; Routledge by Taylor & Francis: Oxford, UK, 2022. [Google Scholar]
- Barcelo, D.; Pico, Y. Case studies of macro- and microplastics pollution in coastal waters and rivers: Is there a solution with new removal technologies and policy actions? Case Stud. Chem. Environ. Eng. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Bagnuolo, G.; Savino, I.; Uricchio, V.F. The Problem of Microplastics and Regulatory Strategies in Italy. In Plastics in the Aquatic Environment—Part II: Stakeholders’ Role Against Pollution, The Handbook of Environmental Chemistry; Stock, F., Reifferscheid, G., Brennholt, N., Kostianaia, E., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 255–276. [Google Scholar] [CrossRef]
- Coffin, S. The emergence of microplastics: Charting the path from research to regulations. Environ. Sci. Adv. 2023, 2, 356–367. [Google Scholar] [CrossRef]
- Deme, G.G.; Ewusi-Mensah, D.; Olagbaju, O.A.; Okeke, E.S.; Okoye, C.O.; Odii, E.C.; Ejeromedoghene, O.; Igun, E.; Onyekwere, J.O.; Oderinde, O.K.; et al. Macro problems from microplastics: Toward a sustainable policy framework for managing microplastic waste in Africa. Sci. Total. Environ. 2022, 804, 150170. [Google Scholar] [CrossRef]
- Fu, D.; Chen, C.M.; Qi, H.; Fan, Z.; Wang, Z.; Peng, L.; Li, B. Occurrences and distribution of microplastic pollution and the control measures in China. Mar. Pollut. Bull. 2020, 153, 110963. [Google Scholar] [CrossRef]
- Golwala, H.; Zhang, X.; Iskander, S.M.; Smith, A.L. Solid waste: An overlooked source of microplastics to the environment. Sci. Total. Environ. 2021, 769, 144581. [Google Scholar] [CrossRef]
- Gong, J.; Xie, P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere 2020, 254, 126790. [Google Scholar] [CrossRef]
- Halfar, J.; Brožová, K.; Čabanová, K.; Heviánková, S.; Kašpárková, A.; Olšovská, E. Disparities in Methods Used to Determine Microplastics in the Aquatic Environment: A Review of Legislation, Sampling Process and Instrumental Analysis. Int. J. Environ. Res. Public Heal. 2021, 18, 7608. [Google Scholar] [CrossRef]
- Jung, Y.S.; Sampath, V.; Prunicki, M.; Aguilera, J.; Allen, H.; LaBeaud, D.; Veidis, E.; Barry, M.; Erny, B.; Patel, L.; et al. Characterization and regulation of microplastic pollution for protecting planetary and human health. Environ. Pollut. 2022, 315, 120442. [Google Scholar] [CrossRef]
- Österlund, H.; Blecken, G.; Lange, K.; Marsalek, J.; Gopinath, K.; Viklander, M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. Sci. Total. Environ. 2023, 858, 159781. [Google Scholar] [CrossRef]
- Monira, S.; Bhuiyan, M.A.; Haque, N.; Shah, K.; Roychand, R.; Hai, F.I.; Pramanik, B.K. Understanding the fate and control of road dust-associated microplastics in stormwater. Process. Saf. Environ. Prot. 2021, 152, 47–57. [Google Scholar] [CrossRef]
Country * | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
China | 3.2 | 29.8 | 2.4 | - | 0.8 |
USA | - | 5.7 | - | 2.4 | - |
Germany | 0.8 | 4 | - | 0.8 | - |
UK | 0.8 | 4 | .8 | - | - |
Australia | - | 4 | - | - | - |
Thailand | - | 4 | - | - | - |
India | - | 2.4 | 0.8 | - | - |
Intervention Objective | % of the Articles Reviewed |
---|---|
Reduction in production | 4.8 |
Removal–Filtration & Separation | 21.6 |
Removal–Capture & Surface attachment | 16.1 |
Removal–hybrid | 48.4 |
Degradation | 8.1 |
Physical removal at production | 1.6 |
MP Control | Descriptions | Citation/s | % of Articles Reviewed |
---|---|---|---|
Filtration membrane | Using different types of membrane filters to remove MPs during water treatment. | [50,123,147] | 36.3 |
Constructed/natural wetland | Using natural or engineered (constructed) wetland systems to capture and remove MPs from wastewater and non-point source pollution. These include various designs of constructed wetlands, with a variety of materials and plants. | [70,74,132,156,181,182] | 15.3 |
Coagulation/electrocoagulation | Using different types of coagulants such as polyacrylamide (PAM) and alum, or electrical charge to allow MPs in water to form an agglomeration. The coagulation is followed by flocculation and then settling (sedimentation) of the particles, after which they are physically removed. | [26,63,82,104,109,127] | 15.3 |
Flocculation and sedimentation | Using flocculation of MPs, followed by their sedimentation, and then physical removal of the particles during water treatment. Various types of chemical coagulants and/or electrocoagulation have been used to speed up the natural flocculation and sedimentation process. | [109,111,128] | 15.3 |
Adsorption | Utilizing different types of sorbents (e.g., activated carbon, biochar, zeolites, sponges) or electrical charges to facilitate sorption of MPs onto these particles, followed by their sedimentation and physical removal. | [48,172] | 6.5 |
Magnetization | Utilizing magnetisms (e.g., via binding with nano-Fe3O4 particles) to magnetize the hydrophobic surface of MPs, followed by their separation and removal under the influence of a magnetic field. | [141,148] | 2.4 |
Micromachines | Utilizing novel approaches like microscale particles with magnetic properties, e.g., magnetic field, to create a continuous motion to facilitate transportation and then separation/removal of MPs in aquatic environments [48]. Micromachines can also include utilizing a bubble barrier device to collect [175] and surface-functionalize microbubbles to accumulate and remove MPs in aquatic systems [176]. | [48,175,176] | 0.8 |
Superhydrophobic materials | Using various chemicals, with superhydrophobic surfaces, to functionalize MP surfaces which results in a change in the surface chemistry of the particle, facilitating removal (e.g., via sorption, flocculation and sedimentation). | [63] and references therein | 1.6 |
Microorganism aggregation | Using microorganisms (e.g., micro-algae and bacterial films) to facilitate aggregation (via biofilm formation) of MPs in aquatic/treatment systems, which increases the density and promotes sedimentation of particles for ultimate physical removal. | [63,76,77] | 4.0 |
Photocatalytic | Using light irradiation to excite photocatalysts, a pair of electrons and holes are produced in the redox reaction, and then this process degrades MPs into smaller inorganic molecules, such as carbon dioxide and water. | [47] | 0.8 |
Microorganism degradation | Using microorganisms (e.g., bacteria) to physically degrade MPs as natural and/or engineered remediation of MPs in aquatic systems. | [48] and references therein [65,66] | 10.5 |
Thermal degradation | Using various thermal processes, often hydrothermal hydrolysis combined with the use of various chemical treatments (e.g., Thermal Fenton Reaction), to remove MPs in water bodies or WWTPs. | [72,93] | 4.0 |
Oxidation ditch | Exposing MPs to an oxidizing environment enriched with bacteria (e.g., during activated sludge system in WWTPs) increases their oxidation, which will increase their hydrophilicity. The increased hydrophilicity of MPs assists with their removal via froth flotation in the presence of cationic and anionic surfactants. | [90,100] | 8.9 |
Sedimentation | Removal of MPs from aquatic systems (including WWTPs) via vertical sinking (often combined with coagulation and flocculation) and deposition onto the bottom, which can be followed by physical removal. | [26,48,63] | 6.5 |
Mechanical manual removal | Mechanical/manual removal of MPs via flotation, sedimentation and filtration, using various filtration techniques such as screening, sand/membrane filtration and reverse osmosis. | [26,48] | 4.0 |
Agglomeration | Natural and/or enhanced (using chemical and/or electrical coagulation) aggregation of MPs into a large mass. The agglomerated particles are larger and thus sink and accumulate on the bottom, after which they can be physically removed. | [88,89,139] | 1.6 |
Sand filtration column | Using a sand filtration system that traps MPs between sand grains is often enhanced with the addition of various filtration aids such as biochar. | [26] and references therein [92] | 1.6 |
Laundry technology | Using various technologies in washing machines (e.g., filtration system or removable fiber attracting innovations as part of the wash) for source control of MPs. | [79,120,121] | 0.8 |
Type of Intervention | <25% | 26–50% | 51–75% | 76–90% | >90% | Effective: Rate Not Disclosed |
---|---|---|---|---|---|---|
Source control (n = 14) | - | - | 14.3 | 21.4 | 14.3 | 50.0 |
Wastewater/sludge treatment (n = 91) | 4.4 | 1.1 | 12.1 | 19.8 | 41.8 | 20.9 |
Bioremediation (n = 10) | 30.0 | 10.0 | - | 20 | 10.0 | 30.0 |
Stormwater treatment (n = 7) | - | - | 14.3 | 14.3 | 42.6 | 28.6 |
In situ water/sediment treatment (n = 2) | 50.0 | - | - | - | 50.0 | - |
Total (n = 124) | 7.4 | 1.6 | 11.3 | 19.4 | 36.3 | 25.1 |
Intervention Objective | <25% | 26–50% | 51–75% | 76–90% | >90% | Effective: Rate Not Disclosed |
---|---|---|---|---|---|---|
Reduction in production (n = 6) | - | - | 1.7 | 33.3 | 1.7 | 33.3 |
Removal–Filtration & separation (n = 26) | 7.7 | - | 26.9 | 15.4 | 26.9 | 23.1 |
Removal–Capture & surface attachment (n = 21) | 4.8 | 9.5 | 4.8 | 28.6 | 28.6 | 23.8 |
Removal–hybrid (n = 59) | 3.4 | - | 8.5 | 16.9 | 50.8 | 20.3 |
Degradation (n = 10) | 30.0 | - | - | 20.0 | 10.0 | 40.0 |
Physical removal at point of production (n = 2) | - | - | - | - | - | 100.0 |
Total (n = 124) | 5.6 | 1.6 | 11.3 | 19.4 | 36.3 | 24.2 |
Method/Technology | <25% | 26–50% | 51–75% | 76–90% | >90% | Effective: Rate Not Disclosed |
---|---|---|---|---|---|---|
1 (n =29) | - | - | 10.3 | 17.2 | 51.7 | 20.7 |
1,11 (n = 2) | - | - | - | - | 50.0 | 50.0 |
1,13 (n = 4) | - | - | - | - | 75.0 | 25.0 |
1,13,14 (n = 1) | - | - | - | - | - | 100.0 |
1,13,14,15 (n = 1) | - | - | 100.0 | - | - | - |
1,14 (n = 2) | - | - | - | 50.0 | 50.0 | - |
1,2 (n = 2) | - | - | 100.0 | - | - | - |
1,2,4,9,11,14 (n = 1) | - | - | - | - | - | 100.0 |
1,3,4,13 (n = 1) | - | - | - | - | 100.0 | - |
1,4 (n = 3) | - | - | 33.3 | - | 33.3 | 33.3 |
1,4,11,13 (n = 1) | - | - | - | 100 | - | - |
1,4,13 (n = 2) | - | - | - | 50 | 50 | - |
1,4,13,14 (n = 1) | - | - | - | 100 | - | - |
1,9,13 (n = 1) | - | - | - | - | 100 | - |
2 (n = 16) | 12.5 | - | 18.8 | 18.8 | 31.3 | 18.8 |
2,3,6 (n = 1) | - | - | - | 100 | 0 | 0 |
3 (n = 9) | 22.2 | - | 11.1 | 22.2 | 33.3 | 11.1 |
3,4 (n = 4) | 25 | - | - | 25 | 50 | - |
3,4,5,11 (n = 1) | - | - | - | - | - | 100 |
3,5 (n = 1) | - | - | - | 100 | - | - |
3,6(n = 1) | - | - | - | 100 | - | - |
4 (n = 5) | - | - | - | 60 | 40 | - |
5 (n = 3) | - | - | - | - | 33.3 | 66.7 |
5,12 n = 1) | - | - | - | - | 100 | - |
6 (n = 2) | - | - | - | 50 | - | 50 |
6,12 (n = 1) | - | - | - | - | 100 | 0 |
7 (n = 1) | - | - | - | - | 100 | - |
8 (n = 2) | - | - | - | - | 100 | - |
9 (n = 2) | - | 100 | - | - | - | - |
11(n = 8) | 37.5 | - | - | 12.5 | - | 50 |
12 (n = 3) | - | - | - | 33.3 | - | |
13 (n = 2) | - | - | 50 | - | - | 50 |
14 (n = 4) | - | - | 25 | - | - | 75 |
15 (n = 2) | - | - | - | - | - | 100 |
16 (n = 2) | - | - | - | - | 100 | - |
17 (n = 1) | - | - | - | - | - | 100 |
18 (n = 1) | - | - | 100 | - | - | - |
Rank | Knowledge Gaps | F (n = 129) | Citations |
---|---|---|---|
1 | Data on sources, diversity, transport and fates of MPs, particularly within developing countries. | 30 | [3,20,27,45,49,56,189,198,205,206,209,215,218,219,223,226,234,235,238,239,240,244,248,277,278,280,282,286,290,292] |
2 | Exposure pathways and biological/toxicological effects of MPs for humans and environments. | 24 | [14,15,20,26,49,51,213,215,218,220,222,224,229,231,237,242,278,284,285,289,290,292,293,294] |
3 | Standardized MP analytical methods: Quantification and characterization. | 24 | [15,16,18,37,41,189,193,199,211,214,219,220,222,227,233,246,254,255,264,274,280,283,289,293] |
4 | MP weathering, degradation and removal (e.g., via biodegradation). | 12 | [1,49,50,53,195,196,246,247,262,266,272,274] |
5 | Abilities of MP to interact with and eventually release associated pollutants. | 7 | [3,197,217,221,225,226,252] |
Recommendations | |||
1 | Develop standardized detection and analytical methods to study and monitor MPs. | 37 | [14,26,27,49,50,56,189,192,197,199,204,205,206,208,209,215,225,226,227,234,235,239,240,242,243,244,251,252,255,256,268,282,284,288,294,295,296] |
2 | Conduct more research on sources, transport pathways, fates, trophic interactions, toxicity, removal (e.g., biodegradation, electrocoagulation) and ecological impacts of MPs. | 28 | [16,25,36,47,49,52,53,189,205,206,207,209,212,216,217,218,219,220,221,222,223,226,231,238,239,243,258,295] |
3 | Implement comprehensive policies/legislation/regulations at local, national and international levels to prevent or remove MPs, and foster research collaboration and cooperation. | 24 | [14,15,16,18,41,193,216,219,224,227,229,230,232,233,234,242,277,278,279,290,291,292,293,294] |
4 | Conduct extensive public education, training and awareness programs on MP pollution mitigation. | 16 | [18,51,204,223,229,231,233,242,244,245,267, 279,282,283,285,292] |
5 | Optimize secondary and tertiary MP treatments (e.g., with membrane bioreactors) at wastewater/sludge treatment plants. | 12 | [11,51,53,195,200,237,248,251,252,255,257,258] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munien, S.; Adhikari, P.L.; Reycraft, K.; Mays, T.J.; Naidoo, T.; Pruitt, M.; Arena, J.; Sershen. Application and Efficacy of Management Interventions for the Control of Microplastics in Freshwater Bodies: A Systematic Review. Water 2024, 16, 176. https://doi.org/10.3390/w16010176
Munien S, Adhikari PL, Reycraft K, Mays TJ, Naidoo T, Pruitt M, Arena J, Sershen. Application and Efficacy of Management Interventions for the Control of Microplastics in Freshwater Bodies: A Systematic Review. Water. 2024; 16(1):176. https://doi.org/10.3390/w16010176
Chicago/Turabian StyleMunien, Suveshnee, Puspa L. Adhikari, Kimberly Reycraft, Traci J. Mays, Trishan Naidoo, MacKenzie Pruitt, Jacqueline Arena, and Sershen. 2024. "Application and Efficacy of Management Interventions for the Control of Microplastics in Freshwater Bodies: A Systematic Review" Water 16, no. 1: 176. https://doi.org/10.3390/w16010176
APA StyleMunien, S., Adhikari, P. L., Reycraft, K., Mays, T. J., Naidoo, T., Pruitt, M., Arena, J., & Sershen. (2024). Application and Efficacy of Management Interventions for the Control of Microplastics in Freshwater Bodies: A Systematic Review. Water, 16(1), 176. https://doi.org/10.3390/w16010176