Linking Nutrient Dynamics with Urbanization Degree and Flood Control Reservoirs on the Bahlui River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Sampling Locations
2.2. Historical Milestones: Flood and Drought Periods
2.3. Hydrotechnical Infrastructure
2.4. Statistical Analysis
3. Results and Discussion
3.1. Bahlui River Discharge Monitoring during 2005–2022 Period
3.1.1. Drought Periods Examination
3.1.2. Flood Episode Examination
3.2. Nutrient Dynamics on Bahlui River during 2011–2022 Period
Individual Nutrient Analysis
3.3. Discharge–Nutrient Correlation
3.4. Nutrient Dynamics: Influence of Urbanization Degree and Flood Control Reservoirs on the Course of Bahlui River
3.4.1. Urbanization Degree
3.4.2. Flood Control Reservoirs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Hare, M.T.; Baattrup-Pedersen, A.; Baumgarte, I.; Freeman, A.; Gunn, I.D.M.; Lázár, A.N.; Sinclair, R.; Wade, A.J.; Bowes, M.J. Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model. Front. Plant Sci. 2018, 9, 451. [Google Scholar] [CrossRef]
- Boyd, C.E. Eutrophication. In Water Quality: An Introduction; Springer International Publishing: Cham, Switzerland, 2020; pp. 311–322. [Google Scholar]
- Jeppesen, E.; Moss, B.; Bennion, H.; Carvalho, L.; DeMeester, L.; Feuchtmayr, H.; Friberg, N.; Gessner, M.O.; Hefting, M.; Lauridsen, T.L.; et al. Interaction of Climate Change and Eutrophication. In Climate Change Impacts on Freshwater Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 119–151. [Google Scholar]
- Moldovan, A.C.; Micle, V.; Hrăniciuc, T.A.; Marcoie, N. Research on the Sustainable Development of the Bistrita Ardeleana River through the Resizing of Weirs. Water 2022, 14, 3333. [Google Scholar] [CrossRef]
- McDowell, R.W.; Noble, A.; Pletnyakov, P.; Mosley, L.M. Global database of diffuse riverine nitrogen and phosphorus loads and yields. Geosci. Data J. 2021, 8, 132–143. [Google Scholar] [CrossRef]
- Newcomer Johnson, T.A.; Kaushal, S.S.; Mayer, P.M.; Smith, R.M.; Sivirichi, G.M. Nutrient Retention in Restored Streams and Rivers: A Global Review and Synthesis. Water 2016, 8, 116. [Google Scholar] [CrossRef]
- Payen, S.; Cosme, N.; Elliott, A.H. Freshwater eutrophication: Spatially explicit fate factors for nitrogen and phosphorus emissions at the global scale. Int. J. Life Cycle Assess. 2021, 26, 388–401. [Google Scholar] [CrossRef]
- Graham, D.J.; Bierkens, M.F.P.; van Vliet, M.T.H. Impacts of droughts and heatwaves on river water quality worldwide. J. Hydrol. 2024, 629, 130590. [Google Scholar] [CrossRef]
- Garnier, J.; Brion, N.; Callens, J.; Passy, P.; Deligne, C.; Billen, G.; Servais, P.; Billen, C. Modeling historical changes in nutrient delivery and water quality of the Zenne River (1790s–2010): The role of land use, waterscape and urban wastewater management. J. Mar. Syst. 2013, 128, 62–76. [Google Scholar] [CrossRef]
- Neamtu, M.; Ciumasu, I.M.; Costica, N.; Costica, M.; Bobu, M.; Nicoara, M.N.; Catrinescu, C.; van Slooten, K.B.; De Alencastro, L.F. Chemical, biological, and ecotoxicological assessment of pesticides and persistent organic pollutants in the Bahlui River, Romania. Environ. Sci. Pollut. Res. 2009, 16, 76–85. [Google Scholar] [CrossRef]
- Oiște, A.M.; Gabriela, I. Nitrate trends during the seasons on Bahlui river and its tributaries in build-up area of Iasi city. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2011, 68, 116–123. [Google Scholar] [CrossRef]
- Benchea, R.E.; Cretescu, I.; Macoveanu, M. Monitoring of water quality indicators for improving water resources management of Bahlui River. Environ. Eng. Manag. J. 2011, 10, 327–332. [Google Scholar] [CrossRef]
- Barjoveanu, G.; Teodosiu, C.; Cojocariu, C.; Augustijn, D.; Craciun, I. Instruments for integrated water resources management: Water quality modeling for sustainable wastewater management. Environ. Eng. Manag. J. (EEMJ) 2013, 12, 1679–1690. [Google Scholar]
- Zaharia, C. Evaluation of water pollution status in Bahlui River (Iasi town area) due to domestic and urban wastewater treatment activities. J. Eng. Stud. Res. 2015, 21, 79–88. [Google Scholar] [CrossRef]
- Zaharia, C.; Teslaru, M.I. Control and analysis of some water quality indicators of Bahlui River in Iasi county area (spring season). Bull. Polytech. Inst. Iasi Ser. Chem. Chem. Eng. Sect. 2012, 58, 69–79. [Google Scholar]
- Mihu-Pintilie, A.; Romanescu, G. Determining the potential hydrological risk associated to maximum flow in small hydrological subbasins with torrential character of the river Bahlui. Present Environ. Sustain. Dev. 2011, 5, 255–266. [Google Scholar]
- Tutunaru, I.D.; Blindaru, T.; Pricop, I.C. The assessment of the cultural heritage’s vulnerability to flash floods in Bahlui river basin, Iasi County. Eur. J. Sci. Theol. 2013, 9, 233–242. [Google Scholar]
- Crenganiş, L.M.; Telişcă, M. GIS application in water resources management and environmental engineering. Glob. J. Adv. Pure Appl. Sci. [Online] 2013, 1, 657–664. [Google Scholar]
- Boers, P.; Lammens, E.; Perjoiu, M.; Clipa, H.; Coman, I. Nutrients and Silt in the Bahlui River System; National Administration “Apele Romane”: Bucharest, Romania, 2006. [Google Scholar]
- Rotaru, A.; Raileanu, P. Alunecarea de teren de la Pârcovaci, Judetul Iasi [Pârcovaci landslide, Iasi County]. In Proceedings of the International PIARC Seminar on “Managing Operational Risk on Roads”, Iaşi, Romania, 5–7 November 2009. [Google Scholar]
- Giurma, I.; Craciun, I.; Giurma, C.-R. The analysis of the impact of storage lake on environment using the chemical characterization of the water resources. Case study Bahlui Basin River. “Ovidius” Univ. Ann. Constantza. Ser. Civ. Eng. 2007, 1, 119. [Google Scholar]
- Ludikhuize, D.; Savin, A.; Schropp, M. A Sobek Model for the Bahlui River; National Administration "Apele Romane": Iasi, Romania, 2004. [Google Scholar]
- Nicu, I.C. Hydrography. In Hydrogeomorphic Risk Analysis Affecting Chalcolithic Archaeological Sites from Valea Oii (Bahlui) Watershed, Northeastern Romania: An Interdisciplinary Approach; Springer International Publishing: Cham, Switzerland, 2016; pp. 19–29. [Google Scholar]
- Schropp, M.; Savin, A. Reducing the Flood Frequency for the City of Iaşi; National Administration "Apele Romane": Arnhem, The Netherlands; Iaşi, Romania, 2003. [Google Scholar]
- Bălinișteanu, O. Iașiul anului 1932, un oraș calamitat; Ziarul Lumina: Bucharest, Romania, 2019. [Google Scholar]
- Minea, I. The evaluation of the water chemistry and quality for the lakes from the south of the Hilly Plain of Jijia (Bahlui drainage basin). Lakes Reserv. Ponds 2010, 4, 131–144. [Google Scholar]
- Albulescu, A.-C.; Minea, I.; Boicu, D.; Larion, D. Comparative Multi-Criteria Assessment of Hydrological Vulnerability—Case Study: Drainage Basins in the Northeast Region of Romania. Water 2022, 14, 1302. [Google Scholar] [CrossRef]
- Połomski, M.; Wiatkowski, M. Impounding Reservoirs, Benefits and Risks: A Review of Environmental and Technical Aspects of Construction and Operation. Sustainability 2023, 15, 16020. [Google Scholar] [CrossRef]
- Langat, P.K.; Kumar, L.; Koech, R. Identification of the Most Suitable Probability Distribution Models for Maximum, Minimum, and Mean Streamflow. Water 2019, 11, 734. [Google Scholar] [CrossRef]
- Prezentare Generala. Available online: https://comunabelcesti.ro/despre-comuna/prezentare-generala/ (accessed on 3 April 2024).
- Dughilă, A.; Iancu, O.G.; Râșcanu, I.D. Geochemical evaluation of quality indicators for the water of the Tansa Lake from the Jijia catchment, Romania. Carpathian J. Earth Environ. Sci. 2012, 7, 79–88. [Google Scholar]
- Minea, I. Minimum discharge in Bahlui basin and associated hydrologic risks. Aerul Si Apa. Compon. Ale Mediu. 2010, 508. Available online: https://www.proquest.com/scholarly-journals/minimum-discharge-bahlui-basin-associated/docview/1335068855/se-2 (accessed on 3 April 2024).
- Breabăn, I.G.; Stan, O.C. The Influence of the Anthropogenic Activities on the Bahlui Water Quality, Holboca Section (Iassy county). Seminarul Geografic “D. Cantemir” 2006, 26, 169–179. [Google Scholar]
- Tutunaru, D.-I.; Pricop, C.-I.; Crăciun, I.; Blidaru, T.-V.; Crăciun, E.; Timofte, M.-C. Assessment of the impact and type of drought recorded in 2012 in the lower basin of the river Jijia. Lucr. Semin. Geogr. “Dimitrie Cantemir” 2013, 35, 5–16. [Google Scholar]
- Bissolli, P.; Friedrich, K.; Rapp, J.; Ziese, M. Flooding in eastern central Europe in May 2010—Reasons, evolution and climatological assessment. Weather 2011, 66, 147–153. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V. Extreme Floods in the Eastern Part of Europe: Large-Scale Drivers and Associated Impacts. Water 2021, 13, 1122. [Google Scholar] [CrossRef]
- Romanescu, G.; Stoleriu, C.C. Exceptional floods in the Prut basin, Romania, in the context of heavy rains in the summer of 2010. Nat. Hazards Earth Syst. Sci. 2017, 17, 381–396. [Google Scholar] [CrossRef]
- Blaas, H.; Kroeze, C. Excessive nitrogen and phosphorus in European rivers: 2000–2050. Ecol. Indic. 2016, 67, 328–337. [Google Scholar] [CrossRef]
- Guignard, M.S.; Leitch, A.R.; Acquisti, C.; Eizaguirre, C.; Elser, J.J.; Hessen, D.O.; Jeyasingh, P.D.; Neiman, M.; Richardson, A.E.; Soltis, P.S.; et al. Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Front. Ecol. Evol. 2017, 5, 70. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Finlay, J.C.; Janke, B.D.; Nidzgorski, D.A.; Millet, D.B.; Baker, L.A. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 2017, 114, 4177–4182. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Normative of February 28, 2002 Regarding the Establishment of Limits of Pollutant Loading of Industrial and Urban Wastewater at Discharge into Natural Receptors; NTPA-001/2002 Published in the Official Gazette, Part I nr. 187 of 20 March 2002; Romanian Government Decision: Bucharest, Romania, 2002.
- Lloyd, C.E.M.; Freer, J.E.; Johnes, P.J.; Coxon, G.; Collins, A.L. Discharge and nutrient uncertainty: Implications for nutrient flux estimation in small streams. Hydrol. Process. 2016, 30, 135–152. [Google Scholar] [CrossRef]
- Stoleriu, A.F.; Breaban, I.G.; Stoleriu, A.P. Assessing Water Quality from Tansa Barrier Lake (Romania) Using Sentinel-2 Data. Int. Multidiscip. Sci. GeoConf. SGEM 2021, 21, 247–254. [Google Scholar]
- Rakovec, O.; Samaniego, L.; Hari, V.; Markonis, Y.; Moravec, V.; Thober, S.; Hanel, M.; Kumar, R. The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth’s Future 2022, 10, e2021EF002394. [Google Scholar] [CrossRef]
- Mouri, G.; Takizawa, S.; Oki, T. Spatial and temporal variation in nutrient parameters in stream water in a rural-urban catchment, Shikoku, Japan: Effects of land cover and human impact. J. Environ. Manag. 2011, 92, 1837–1848. [Google Scholar] [CrossRef]
- Yang, F.; Yu, Z.; Bouwman, A.F.; Chen, H.; Jian, H.; Beusen, A.H.W.; Liu, X.; Yao, Q. Human-driven long-term disconnect of nutrient inputs to the Yellow River basin and river export to the Bohai Sea. J. Hydrol. 2023, 618, 129279. [Google Scholar] [CrossRef]
- Batalla, R.J.; Gómez, C.M.; Kondolf, G.M. Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). J. Hydrol. 2004, 290, 117–136. [Google Scholar] [CrossRef]
- Fisher, J.; Acreman, M.C. Wetland nutrient removal: A review of the evidence. Hydrol. Earth Syst. Sci. 2004, 8, 673–685. [Google Scholar] [CrossRef]
- Jiang, B.; Mitsch, W.J. Influence of hydrologic conditions on nutrient retention, and soil and plant development in a former central Ohio swamp: A wetlaculture mesocosm experiment. Ecol. Eng. 2020, 157, 105969. [Google Scholar] [CrossRef]
- Halecki, W.; Stachura, T.; Fudała, W. Capacity of River Valleys to Retain Nutrients from Surface Runoff in Urban and Rural Areas (Southern Poland). Water 2022, 14, 3259. [Google Scholar] [CrossRef]
- Mallin, M.A.; Johnson, V.L.; Ensign, S.H. Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream. Environ. Monit. Assess. 2009, 159, 475–491. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Oişte, A.M.; Breabăn, I.G. Organic and Inorganic contaminants in the Bahlui River in the built-up area of Iasi city. In Proceedings of the Water Resources and Wetlands, Tulcea, Romania, 14–16 September 2012. [Google Scholar]
- Minea, I.; Sfîcă, L. Assessment of hydrological drought in the north-eastern part of Romania. Aerul Si Apa. Compon. Ale Mediu. 2017, 93–100. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Assessment+of+hydrological+drought+in+the+north-eastern+part+of+Romania&btnG= (accessed on 3 April 2024).
- Moldovan, A.C.; Hrăniciuc, T.A.; Micle, V.; Marcoie, N. Research on the Sustainable Development of the Bistrita Ardeleana River in Order to Stop the Erosion of the Riverbanks and the Thalweg. Sustainability 2023, 15, 7431. [Google Scholar] [CrossRef]
- Udeigwe, T.K.; Wang, J.J. Biochemical Oxygen Demand Relationships in Typical Agricultural Effluents. Water Air Soil Pollut. 2010, 213, 237–249. [Google Scholar] [CrossRef]
- Soro, M.-P.; N’Goran, K.M.; Ouattara, A.A.; Yao, K.M.; Kouassi, N.G.L.B.; Diaco, T. Nitrogen and phosphorus spatio-temporal distribution and fluxes intensifying eutrophication in three tropical rivers of Côte d’Ivoire (West Africa). Mar. Pollut. Bull. 2023, 186, 114391. [Google Scholar] [CrossRef] [PubMed]
- Mbaye, M.L.; Gaye, A.T.; Spitzy, A.; Dähnke, K.; Afouda, A.; Gaye, B. Seasonal and spatial variation in suspended matter, organic carbon, nitrogen, and nutrient concentrations of the Senegal River in West Africa. Limnologica 2016, 57, 1–13. [Google Scholar] [CrossRef]
- Mararakanye, N.; Le Roux, J.J.; Franke, A.C. Long-term water quality assessments under changing land use in a large semi-arid catchment in South Africa. Sci. Total Environ. 2022, 818, 151670. [Google Scholar] [CrossRef] [PubMed]
- Dalu, T.; Wasserman, R.J.; Magoro, M.L.; Froneman, P.W.; Weyl, O.L.F. River nutrient water and sediment measurements inform on nutrient retention, with implications for eutrophication. Sci. Total Environ. 2019, 684, 296–302. [Google Scholar] [CrossRef]
- Green, W.J.; Stage, B.R.; Preston, A.; Wagers, S.; Shacat, J.; Newell, S. Geochemical processes in the Onyx River, Wright Valley, Antarctica: Major ions, nutrients, trace metals. Geochim. Cosmochim. Acta 2005, 69, 839–850. [Google Scholar] [CrossRef]
- Kim, D.; Lim, J.-H.; Chun, Y.; Nayna, O.K.; Begum, M.S.; Park, J.-H. Phytoplankton nutrient use and CO2 dynamics responding to long-term changes in riverine N and P availability. Water Res. 2021, 203, 117510. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.N.; Némery, J.; Gratiot, N.; Strady, E.; Tran, V.Q.; Nguyen, A.T.; Aimé, J.; Peyne, A. Nutrient dynamics and eutrophication assessment in the tropical river system of Saigon – Dongnai (southern Vietnam). Sci. Total Environ. 2019, 653, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.F.; Zhu, Q.Y.; Liu, J.A.; Zhang, Z.L.; Yang, S.L.; Shi, B.W.; Zhang, W.X.; Wang, Y.P. Historic changes in nutrient fluxes from the Yangtze River to the sea: Recent response to catchment regulation and potential linkage to maritime red tides. J. Hydrol. 2023, 617, 129024. [Google Scholar] [CrossRef]
- Ravi, N.K.; Srivastava, A.; Ram, K.; Jha, P.K. Nutrient chemistry and eutrophication risk assessment of the Ghaghara river, India. Water Supply 2021, 21, 3486–3502. [Google Scholar] [CrossRef]
- Salim Aoubid, H.; Opp, C. Nitrogen and Phosphorus Discharge Loads Assessment Using the SWAT Model: A Case Study of the Shatt Al-Arab River Basin. Appl. Sci. 2023, 13, 8376. [Google Scholar] [CrossRef]
- Mosley, L.M.; Priestley, S.; Brookes, J.; Dittmann, S.; Farkaš, J.; Farrell, M.; Ferguson, A.J.; Gibbs, M.; Hipsey, M.; Huang, J.; et al. Extreme eutrophication and salinisation in the Coorong estuarine-lagoon ecosystem of Australia’s largest river basin (Murray-Darling). Mar. Pollut. Bull. 2023, 188, 114648. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.G.; Maher, D.T. Drought, megafires and flood - climate extreme impacts on catchment-scale river water quality on Australia’s east coast. Water Res. 2022, 218, 118510. [Google Scholar] [CrossRef] [PubMed]
- Tenebe, I.T.; Julian, J.P.; Emenike, P.C.; Dede-Bamfo, N.; Maxwell, O.; Sanni, S.E.; Babatunde, E.O.; Alves, D.D. Multi-Dimensional Surface Water Quality Analyses in the Manawatu River Catchment, New Zealand. Water 2023, 15, 2939. [Google Scholar] [CrossRef]
- Jarosiewicz, A.; Obolewski, K.; Ożgo, M. Long-term trends in nutrient concentrations in Polish coastal rivers. Ocean Coast. Manag. 2015, 118, 37–46. [Google Scholar] [CrossRef]
- Garnier, J.; Némery, J.; Billen, G.; Théry, S. Nutrient dynamics and control of eutrophication in the Marne River system: Modelling the role of exchangeable phosphorus. J. Hydrol. 2005, 304, 397–412. [Google Scholar] [CrossRef]
- Soana, E.; Gervasio, M.P.; Granata, T.; Colombo, D.; Castaldelli, G. Climate change impacts on eutrophication in the Po River (Italy): Temperature-mediated reduction in nitrogen export but no effect on phosphorus. J. Environ. Sci. 2024, 143, 148–163. [Google Scholar] [CrossRef]
- Yin, S.; Gao, G.; Li, Y.; Xu, Y.J.; Turner, R.E.; Ran, L.; Wang, X.; Fu, B. Long-term trends of streamflow, sediment load and nutrient fluxes from the Mississippi River Basin: Impacts of climate change and human activities. J. Hydrol. 2023, 616, 128822. [Google Scholar] [CrossRef]
- Rattan, K.J.; Corriveau, J.C.; Brua, R.B.; Culp, J.M.; Yates, A.G.; Chambers, P.A. Quantifying seasonal variation in total phosphorus and nitrogen from prairie streams in the Red River Basin, Manitoba Canada. Sci. Total Environ. 2017, 575, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Castillo, M.M.; Carrillo, L.; Jarquín-Sánchez, A.; Alcérreca-Huerta, J.C.; Álvarez-Merino, A.; Lázaro-Vázquez, A. Transport of nutrients into the southern Gulf of Mexico by the Grijalva–Usumacinta rivers. Hydrol. Process. 2023, 37, e14838. [Google Scholar] [CrossRef]
- Pacheco, F.S.; Ometto, J.P.H.B.; Gomes, L.; Tôsto, K.; Miranda, M.; Loverde-Oliveira, S.; Pessi, D.D.; Cox, C. Nutrient Balance and Use Efficiency in Agricultural Lands in the Vermelho River Watershed, Upper Pantanal, Brazil. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005673. [Google Scholar] [CrossRef]
- Perillo, V.L.; Bohn, V.Y.; Menéndez, M.C.; Ronda, A.C.; Vitale, A.J.; Perillo, G.M.E.; Piccolo, M.C.; Cuadrado, D.G. Spatial and seasonal dynamics of phosphorous and physicochemical variables in the Negro River Estuary (Argentina): A preliminary approach. Environ. Sci. Pollut. Res. 2022, 29, 15490–15500. [Google Scholar] [CrossRef]
- Pizarro, J.; Vergara, P.M.; Rodríguez, J.A.; Sanhueza, P.A.; Castro, S.A. Nutrients dynamics in the main river basins of the centre-southern region of Chile. J. Hazard. Mater. 2010, 175, 608–613. [Google Scholar] [CrossRef] [PubMed]
No. | Bank | River | Length [km] | Surface Area [km2] |
---|---|---|---|---|
1 | Right | Bahluet | 40 | 500 |
2 | Voinesti | 25 | 131 | |
3 | Nicolina | 18 | 171 | |
4 | Magura | 25 | 78 | |
5 | Left | Gurguiata | 31 | 129 |
6 | Cacaina | 21 | 60 | |
7 | Ciric | 19 | 56 | |
8 | Hoisesti | 11 | 27 | |
9 | Chirita | 15 | 39 | |
10 | Totoesti | 11 | 25 | |
11 | Bogonos | 9 | 36 | |
12 | Fundu Vaii | 7 | 12 | |
Various ungauged tributaries | 838 |
Floods | Drought Periods | ||||
---|---|---|---|---|---|
Year | Month | Flow [m3/s] | Years | Season | Flow [m3/s] |
1932 | April | 600 | 1953–1954 | Winter | >0.001 |
1969 | July | 160 | 1962–1963 | ||
1971 | August | 108 | 1963–1964 | ||
1975 | June | 182 | 1954, 1958, 1959, 1962, 1992, 2000 | Summer |
No. | Year | River | Reservoir | Average Flow [m3/s] | Sub-Basin Area [km2] |
---|---|---|---|---|---|
1 | 1964 | Bahluet | Podu Iloaiei | 1.06 | 500 |
2 | Ciric | Aroneanu | 0.10 | 50 | |
3 | Valea Locii | Ciurbesti | 0.22 | 82 | |
4 | Valea Lunga | Chirita | 0.08 | 40 | |
5 | Ezareni | Ezareni | 0.06 | 27 | |
6 | 1968 | Voinesti | Cucuteni | 0.25 | 131 |
7 | 1975 | Bahlui | Tansa | 0.84 | 346 |
8 | 1978 | Gurguiata | Plopi | 0.21 | 117 |
9 | 1980 | Ciric | Ciric III | 0.11 | 57 |
10 | 1982 | Carlig (Cacaina) | Carlig | 0.06 | 46 |
11 | Nicolina | Ciurea | 0.10 | 36 | |
12 | Ezareni | Cornet | 0.03 | 13 | |
13 | Valea Locii | Barca | 0.08 | 40 | |
14 | 1983 | Carlig (Cacaina) | Vanatori | 0.03 | 23 |
15 | Valea Oii | Sarca | 0.20 | 91 | |
16 | 1985 | Bahlui | Parcovaci | 0.42 | 95 |
17 | 1988 | Fundu Vaii | Rediu | 0.02 | 8.6 |
Location | Mean | StDev * | Minimum | Q1 * | Median * | Q3 * | Maximum |
---|---|---|---|---|---|---|---|
Parcovaci | 0.2857 | 1.1329 | 0.0180 | 0.0419 | 0.0595 | 0.0700 | 24.5915 |
Belcesti | 0.5480 | 1.2975 | 0.0030 | 0.0485 | 0.1123 | 0.3063 | 14.8447 |
Podu Iloaiei | 0.8103 | 1.3847 | 0.0244 | 0.1605 | 0.3358 | 0.7204 | 15.3273 |
Holboca | 4.0199 | 3.8982 | 0.5617 | 2.1222 | 2.9667 | 4.3658 | 62.1468 |
Location | Year | Mean | StDev | Minimum | Q1 | Median | Q3 | Maximum |
---|---|---|---|---|---|---|---|---|
Parcovaci | 2006 | 0.4422 | 1.2262 | 0.0220 | 0.0340 | 0.0490 | 0.0690 | 9.6892 |
2007 | 0.038377 | 0.005964 | 0.026400 | 0.033453 | 0.039424 | 0.043608 | 0.047896 | |
2011 | 0.3832 | 1.2467 | 0.0255 | 0.0349 | 0.0394 | 0.0649 | 15.4678 | |
2012 | 0.0827 | 0.2636 | 0.0327 | 0.0425 | 0.0469 | 0.0561 | 2.4989 | |
2013 | 0.2462 | 0.6966 | 0.0180 | 0.0522 | 0.0575 | 0.0670 | 4.2317 | |
Belcesti | 2006 | 0.8988 | 1.9029 | 0.0980 | 0.1787 | 0.2163 | 0.3899 | 10.1955 |
2007 | 0.2380 | 0.6381 | 0.0600 | 0.0820 | 0.1599 | 0.2539 | 6.4773 | |
2011 | 0.6346 | 1.0218 | 0.0049 | 0.0049 | 0.0053 | 0.7856 | 4.6467 | |
2012 | 0.3182 | 0.6896 | 0.0030 | 0.0049 | 0.1123 | 0.2850 | 4.6488 | |
2013 | 0.3555 | 0.7908 | 0.0089 | 0.0166 | 0.0182 | 0.3951 | 4.1781 | |
Podu Iloaiei | 2006 | 1.258 | 1.913 | 0.088 | 0.416 | 0.553 | 0.811 | 8.510 |
2007 | 0.3995 | 0.5660 | 0.1018 | 0.1560 | 0.3627 | 0.4998 | 6.0000 | |
2011 | 1.0156 | 1.0434 | 0.1033 | 0.2259 | 0.6024 | 1.4605 | 4.9478 | |
2012 | 0.4386 | 0.7514 | 0.0244 | 0.0667 | 0.1602 | 0.4722 | 4.9810 | |
2013 | 0.8127 | 1.1501 | 0.1142 | 0.2839 | 0.4223 | 0.7241 | 10.2434 | |
Holboca | 2006 | 6.219 | 5.859 | 2.886 | 3.390 | 4.098 | 5.410 | 34.349 |
2007 | 3.1051 | 1.0214 | 1.6517 | 2.4486 | 3.0458 | 3.3346 | 9.3919 | |
2011 | 4.442 | 3.537 | 2.047 | 2.601 | 3.226 | 5.306 | 34.140 | |
2012 | 3.1295 | 1.4300 | 1.7623 | 2.3228 | 2.6022 | 3.3358 | 10.0813 | |
2013 | 4.560 | 5.117 | 1.608 | 2.539 | 3.307 | 4.390 | 62.147 |
Location | Month | Mean | StDev | Minimum | Q1 | Median | Q3 | Maximum |
---|---|---|---|---|---|---|---|---|
Parcovaci | May | 1.032 | 2.155 | 0.028 | 0.028 | 0.028 | 1.165 | 9.462 |
June | 3.74 | 6.77 | 0.03 | 0.03 | 0.03 | 5.17 | 24.59 | |
July | 0.623 | 1.127 | 0.028 | 0.028 | 0.028 | 1.113 | 4.971 | |
August | 0.1276 | 0.3256 | 0.0309 | 0.0371 | 0.0447 | 0.1409 | 1.8596 | |
Belcesti | May | 2.163 | 2.289 | 0.451 | 0.489 | 0.783 | 4.724 | 6.704 |
June | 3.834 | 2.734 | 0.447 | 0.613 | 4.449 | 6.534 | 7.355 | |
July | 3.039 | 2.725 | 0.21 | 0.356 | 1.055 | 5.724 | 6.977 | |
August | 0.651 | 0.943 | 0.14 | 0.14 | 0.14 | 0.732 | 2.894 | |
Podu Iloaiei | May | 2.054 | 1.94 | 0.577 | 0.691 | 0.94 | 4.131 | 5.947 |
June | 4.144 | 3.296 | 0.663 | 0.894 | 4.019 | 6.297 | 15.327 | |
July | 3.773 | 3.17 | 0.422 | 0.625 | 3.632 | 6.867 | 8.309 | |
August | 0.827 | 0.783 | 0.304 | 0.422 | 0.474 | 0.786 | 2.679 | |
Holboca | May | 4.61 | 2.74 | 2.376 | 2.898 | 3.047 | 6.382 | 12.204 |
June | 10.94 | 10.09 | 2.34 | 4.43 | 8.35 | 9.93 | 41.77 | |
July | 9.67 | 7.76 | 2.85 | 5.17 | 7.99 | 8.96 | 39.28 | |
August | 3.279 | 0.805 | 2.442 | 2.657 | 2.835 | 4.031 | 4.925 |
Indicator | Location | Mean | StDev | Minimum | Q1 | Median | Q3 | Maximum |
---|---|---|---|---|---|---|---|---|
TN | Belcesti | 7.367 | 4.528 | 1.230 | 3.895 | 6.220 | 10.250 | 19.890 |
Holboca | 8.972 | 3.483 | 1.470 | 6.400 | 8.520 | 10.590 | 25.400 | |
Parcovaci | 0.6303 | 0.4488 | 0.1500 | 0.4000 | 0.5400 | 0.7000 | 2.9200 | |
Podu Iloaiei | 3.971 | 2.297 | 0.250 | 2.360 | 3.460 | 4.670 | 12.300 | |
TP | Belcesti | 0.4184 | 0.5262 | 0.0600 | 0.1930 | 0.3080 | 0.4145 | 3.7300 |
Holboca | 1.0586 | 0.4969 | 0.2500 | 0.6700 | 0.9740 | 1.3125 | 2.4270 | |
Parcovaci | 0.0819 | 0.0980 | 0.0025 | 0.0200 | 0.0400 | 0.1000 | 0.4670 | |
Podu Iloaiei | 0.3729 | 0.2692 | 0.0680 | 0.2100 | 0.2980 | 0.4730 | 1.9820 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcoie, N.; Chihaia, Ș.; Hrăniciuc, T.A.; Balan, C.D.; Drăgoi, E.N.; Nechita, M.-T. Linking Nutrient Dynamics with Urbanization Degree and Flood Control Reservoirs on the Bahlui River. Water 2024, 16, 1322. https://doi.org/10.3390/w16101322
Marcoie N, Chihaia Ș, Hrăniciuc TA, Balan CD, Drăgoi EN, Nechita M-T. Linking Nutrient Dynamics with Urbanization Degree and Flood Control Reservoirs on the Bahlui River. Water. 2024; 16(10):1322. https://doi.org/10.3390/w16101322
Chicago/Turabian StyleMarcoie, Nicolae, Șerban Chihaia, Tomi Alexăndrel Hrăniciuc, Cătălin Dumitrel Balan, Elena Niculina Drăgoi, and Mircea-Teodor Nechita. 2024. "Linking Nutrient Dynamics with Urbanization Degree and Flood Control Reservoirs on the Bahlui River" Water 16, no. 10: 1322. https://doi.org/10.3390/w16101322
APA StyleMarcoie, N., Chihaia, Ș., Hrăniciuc, T. A., Balan, C. D., Drăgoi, E. N., & Nechita, M. -T. (2024). Linking Nutrient Dynamics with Urbanization Degree and Flood Control Reservoirs on the Bahlui River. Water, 16(10), 1322. https://doi.org/10.3390/w16101322